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Abstract

Background
Although several methods have been proposed for predicting the effects of

genetic variants and their role in disease, it is still a challenge to identify and

prioritize pathogenic variants within sequencing studies.

Methods
Here, we compare different variant and gene-specific features as well as existing meth-

ods and investigate their best combination to explore potential performance gains.

Results
We found that combining the number of “biological process” Gene Ontology

annotations of a gene with the methods PON-P2, and PROVEAN significantly

improves prediction of pathogenic variants, outperforming all individual meth-

ods. A comprehensive analysis of the Gene Ontology feature suggests that it is

not a variant-dependent annotation bias but reflects the multifunctional nature

of disease genes. Furthermore, we identified a set of difficult variants where dif-

ferent prediction methods fail.

Conclusion
Existing pathogenicity prediction methods can be further improved.

Introduction

High throughput sequencing technologies have evolved

rapidly, providing new opportunities for investigating the

genetic basis of disease in an affordable and efficient manner.

Countless small- and large-scale studies such as the 1000

Genomes Project (Abecasis et al. 2012), the HapMap Project

(The International HapMap Consortium, 2003), or the

Exome Sequencing Project have led to the discovery of mil-

lions of genetic variants. Consequently, there have been con-

siderable efforts in characterizing human genetic variation

and identifying the variants that have a functional impact

(Ng and Henikoff 2006; Gnad et al. 2013). Of particular

interest for investigating the genetic basis of heritable dis-

eases are potentially pathogenic variants (Ferrer-Costa et al.

2002; Ng and Henikoff 2006; Ye et al. 2007; Thusberg et al.

2011; de Beer et al. 2013). SIFT (Ng and Henikoff 2001) and

PROVEAN (Choi et al. 2012), for example, compute scores

based on multiple sequence alignments to assess whether

substitutions are likely tolerated or deleterious. Several tools

use statistical learning methods to estimate prediction rules

from different types of features (Ferrer-Costa et al. 2005;

Adzhubei et al. 2010; Wang et al. 2012; Kircher et al. 2014;

Niroula et al. 2015). Sequence conservation is a commonly

used feature, since variants in highly conserved regions are

usually not tolerated and can cause disease phenotypes (Wu

and Jiang 2013). Other features, including different amino

acid biochemical properties, sequence neighborhood, pro-

tein disorder, residue accessibility, and secondary structure

information have been used by the methods PMUT (Ferrer-

Costa et al. 2005), SNAP (Bromberg and Rost 2007), Fun-

SAV (Wang et al. 2012), and PolyPhen-2 (Adzhubei et al.

2010). Some methods use a large number of features, for

example, CADD (Kircher et al. 2014) combines 63 features

to provide an estimate of deleteriousness. Recently, individ-

ual predictors have been combined into consensus predic-
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tors to further improve prediction performance. The most

prominent examples are Condel (Gonz�alez-P�erez and

L�opez-Bigas 2011), CoVEC (Frousios et al. 2013), and Pre-

dictSNP (Bendl et al. 2014).

An important issue of these consensus predictors is the

potential overlap of training and validation data. Perfor-

mance evaluation on variants that have been used to train

the input predictors may lead to an overoptimistic assess-

ment of the consensus predictor, a problem described as cir-

cularity (Grimm et al. 2015). In particular, Grimm et al.

investigated the effects of two types of circularity: type 1 cir-

cularity arising from the overlap of variants in the training

and validation data, type 2 circularity resulting from distinct

variants in these sets that are located in the same genes.

Most features used in prediction methods are variant

specific, as they capture a property of the mutated amino

acid or its position in the protein. Few methods have

attempted to incorporate gene-specific features, which may

only aid classification in the combination with variant fea-

tures, since gene features necessarily have the same values

for pathogenic and benign variants in the same gene.

SNPs&GO (Calabrese et al. 2009) and PON-P2 (Niroula

et al. 2015) incorporate a feature based on Gene Ontology

(GO) annotations in their prediction scores, while SySAP

(Huang et al. 2012) and SuSPect (Yates et al. 2014) include

gene features derived from protein interaction network

measures. Yet, to the best of our knowledge, the potential

performance gain for variant prediction by integrating dif-

ferent gene features has not been assessed systematically.

Even though a great number of prediction methods

have been developed in recent years, two main challenges

remain. First, investigate if existing methods can be fur-

ther improved, in particular by integrating gene features,

while avoiding circularity. Second, identify and character-

ize difficult cases where individual methods tend to mis-

predict and assess the extent of common weaknesses.

In this study, we perform an analysis of 16 variant-

and 12 gene-based features, including current methods

for predicting variation effect, and assess their individual

and combined contribution to pathogenicity prediction.

We derive sets of features that archive the highest predic-

tion accuracy and analyze the constituting features in

more detail. Finally, we derive a set of difficult variants

where different methods fail, which might be useful for

future method development.

Materials and Methods

Ethical compliance

Given that only data from public databases and HGMD�

Professional was analyzed in this study, an ethics commit-

tee approval was not required.

Polymorphism datasets

Sets of pathogenic and benign single amino acid polymor-

phisms (SAPs) were created based on the corresponding

missense single-nucleotide polymorphisms (SNPs). The

analysis was restricted to missense SNPs, since many

properties are not defined for other types of small varia-

tions. Pathogenic missense SNPs were taken from entries

with the “mutation class” “disease mutation (DM)” in

the Human gene mutation database (HGMD� Profes-

sional) from BIOBASE Corporation (Stenson et al. 2014)

version 2014.03 or with the “clinical significance” “patho-

genic” in the ClinVar database (Landrum et al. 2014) ver-

sion 20140929. Pathogenic SNPs were only included, if

they were either not observed in the phase 3 calls of the

1000 Genomes Project (Abecasis et al. 2012) or were

observed with an allele frequency smaller than 0.01. This

restriction ensured a reduction of false SNPs in the

pathogenic set. Benign missense SNPs were selected from

the phase 3 1000 Genomes calls under the constraint that

they have an allele frequency greater than 0.01 and that

they are not listed as “DM” in HGMD� version 2014.03

or as “pathogenic” in ClinVar version 20140929. To avoid

gender-specific effects on the X and Y chromosomes, only

SNPs on the autosomes were selected. A total of 90% of

the pathogenic and benign SAPs were randomly selected

to constitute a training set used for feature selection and

model training, while the remaining 10% constitute the

validation set used for the final model evaluation. To

avoid type 2 circularity (Grimm et al. 2015), all SAPs

from one gene were assigned either to the training or to

the validation set.

Preliminary analysis on the training set showed that

PON-P2 (Niroula et al. 2015) and Condel (Gonz�alez-

P�erez and L�opez-Bigas 2011) are excellent predictors for

pathogenicity. To avoid type 1 and 2 circularity, we

removed any SAP from the training and validation sets

for which either the SAP itself or its gene overlapped with

train or test data used in the development of PON-P2.

Unfortunately, the training sets used in the weight tuning

of Condel and in its two constituting predictors FatHMM

(Shihab et al. 2013) and MutationAssessor (Reva et al.

2011) almost completely contain all currently available

variants and their removal would have precluded any

meaningful analysis. To avoid spurious results due to circu-

larity, we excluded Condel, PolyPhen-2 (Adzhubei et al.

2010), and CADD (Kircher et al. 2014) from the main

analysis. An analysis including these methods is available in

Data S1. The final number of SAPs in the training set are

pathogenic = 14,033 (in 1,753 genes), benign = 15,574 (in

6,120 genes); and in the validation set pathogenic = 2,085

(in 241 genes), benign = 2,351 (in 856 genes). The overlap

of genes including both pathogenic and benign variants for

432 ª 2016 European Academy of Bozen/Bolzano (EURAC). Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

Pathogenic Variant Prediction E. K€onig et al.



both sets is shown in Fig. S1. The overlap of the training

and validation datasets to the existing datasets ExoVar (Li

et al. 2013), HumVar (Adzhubei et al. 2010), SwissVar

(Mottaz et al. 2010), and VariBench (protein tolerance

dataset 1) (Nair and Vihinen 2013) is shown in Fig. S2.

The handling of variants with missing data is described in

Data S1. The complete datasets are available upon request

to the authors, if a valid HGMD Professional license is pro-

vided. Without a license, the datasets can be reduced to

include only SAPs from 1000 Genomes and ClinVar.

Features

Twenty-eight features were analyzed for their discrimina-

tive power in SAP classification. Of these, 16 are variant

features, whose values depend on properties of the

nucleotide or amino acid change, or on its position in the

protein. The remaining 12 are gene features, whose values

exclusively depend on characteristics of the genes in

which the SAPs are located (see Table 1). In the descrip-

tion below, feature names are highlighted in italics when

they appear for the first time.

Variant features

SIFT (Ng and Henikoff 2001), PolyPhen-2 (Adzhubei

et al. 2010), GERP (Cooper et al. 2005), and correspond-

ing gene ids were queried from the Ensembl database ver-

sion 75 (Cunningham et al. 2015) using the Dintor

software suit (Weichenberger et al. 2015). Condel 2.0

scores db-version 05 (Gonz�alez-P�erez and L�opez-Bigas

2011) (weighted average of FatHMM (Shihab et al. 2013)

and MutationAssessor (Reva et al. 2011)), PON-P2 scores

(Niroula et al. 2015), PROVEAN scores v1.1.3 (Choi et al.

2012), and CADD phred scores v1.2 (Kircher et al. 2014)

were queried via the respective web servers. Grantham

scores (Grantham 1974) were extracted from the CADD

output. To obtain a conservation measure on the protein

residue level, an evolutionary rate feature (evolution-

ary.rate) was computed with the rate4site program ver-

sion 3.0.0 (Pupko et al. 2002) on multiple sequence

alignments obtained for each protein from the Phy-

lomeDB database v4 (Huerta-Cepas et al. 2014). Rate4site

computes an evolutionary rate for every residue position

in the alignment. The Needleman–Wunsch algorithm

from the EMBOSS-6.6.0 program (Rice et al. 2000) was

used to map the sequences in PhylomeDB to the refer-

ence amino acid sequence obtained from Ensembl version

75. Disordered region (disordered.region) values for the

reference amino acid at all positions in all proteins were

computed with the Spine-D program version 2.0 (Zhang

et al. 2012) and the values at the corresponding positions

were mapped to the SAPs. Values smaller than 0.5 indi-

cate ordered residues, while values greater than or equal

to 0.5 indicate disordered residues. In the same manner,

residue accessibility (accessibility) and secondary structure

according to the three and eight class definition (sec-

ondary.structure.3 and secondary.structure.8, respectively)

were computed with the SCRATCH-1D program version

1.0 (Cheng et al. 2005; Magnan and Baldi 2014) on the

reference amino acids. Regions with PfamA domains were

obtained from Pfam 27.0 (Finn et al. 2004). The feature

PfamA is a binary variable indicating whether the variant

is located within a PfamA domain or not. Five amino

acid indices were selected from the AAindex database

(section AAindex1) (Kawashima et al. 2008) to represent

distinct biochemical properties of amino acids. For each

SAP, the absolute difference in the respective AAindex

value for the original and mutated amino acid was calcu-

lated, creating the five features AAindex.polarity

(GRAR740102), AAindex.hydropathy (KYTJ820101), AAin-

dex.volume (GRAR740103), AAindex.composition

(KH900101), and AAindex.net.charge (KLEP840101). We

name PolyPhen-2, Condel, PON-P2, and CADD “trained

prediction scores” (TPS), as their values are determined

by trained statistical models. Since the training data of

PolyPhen-2, Condel, and CADD overlap with our training

set, we do not use these scores as possible input features

for our models in the main analysis (see Data S1 for an

analysis with all TPS). We name SIFT, PROVEAN, GERP,

and Grantham “rule prediction scores” (RPS), where the

first three are computed from multiple sequence align-

ments and the latter reflects biochemical properties of the

amino acid change. These features are not affected by cir-

cularity, since no machine learning was performed. We

call the remaining variant features and the gene features

described below as “raw features”. The selection of fea-

tures aims to cover different strategies that have been

proposed for predicting variant effect, including basic bio-

chemical properties and established prediction methods.

The selected features rely on the properties of the substi-

tuted nucleotide or residue or their position, however,

PON-P2 also takes gene annotations into account.

Gene features

A conservation measure on the gene level (protein.age)

was obtained with ProteinHistorian version 1.0 using

default parameters (Capra et al. 2012). Human gene par-

alogs and mouse orthologs were downloaded from

Ensembl 77. A human gene has none, one, or multiple

paralogous and orthologous genes, each annotated with a

confidence of zero or one and an identity value between

0 and 100, which reflects the similarity of the paralogous

or orthologous gene with the target gene. Two paralog

and ortholog features were defined, considering only par-
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Table 1. The twenty-eight features used in this study.

Feature Class Type 1 Type 2 Description Reference

PON-P2 Numeric Variant TPS PON-P2 score Niroula et al. (2015)

SIFT Numeric Variant RPS SIFT score Ng and Henikoff (2001)

PROVEAN Numeric Variant RPS PROVEAN score Choi et al. (2012)

Grantham Numeric Variant RPS Grantham score Grantham (1974)

GERP Numeric Variant RPS GERP conservation score, computed on 37

eutherian mammals

Cooper et al. (2005)

evolutionary.rate Numeric Variant Raw feature Residue evolutionary rate computed with rate4site

on PhylomeDB alignments

Pupko et al. (2002),

Huerta-Cepas et al. (2014)

disordered.region Numeric Variant Raw feature Disordered region value between 0 and 1,

computed with SPINE-D. Ordered: val < 0.5,

disordered: val ≥ 0.5

Zhang et al. (2012)

accessibility Numeric Variant Raw feature Residue accessibility value between -5 and 95,

computed with SCRATCH-1D. Low values

correspond to buried residues, high values to

exposed residues

Cheng et al. (2005),

Magnan and Baldi (2014)

secondary.structure.3 Categorical Variant Raw feature Secondary structure prediction, 3 class, computed

with SCRATCH-1D

Cheng et al. (2005),

Magnan and Baldi (2014)

secondary.structure.8 Categorical Variant Raw feature Secondary structure prediction, 8 class, computed

with SCRATCH-1D

Cheng et al. (2005),

Magnan and Baldi (2014)

PfamA Categorical Variant Raw feature 1 if the variant is in a PfamA domain, 0 else Finn et al. (2004)

AAindex.polarity Numeric Variant Raw feature AAindex GRAR740102 (Polarity) from section

AAindex1

Kawashima et al. (2008)

AAindex.hydropathy Numeric Variant Raw feature AAindex KYTJ820101 (Hydropathy) from section

AAindex1

Kawashima et al. (2008)

AAindex.volume Numeric Variant Raw feature AAindex GRAR740103 (Volume) from section

AAindex1

Kawashima et al. (2008)

AAindex.composition Numeric Variant Raw feature AAindex KH900101 (AA composition of total

proteins) from section AAindex1

Kawashima et al. (2008)

AAindex.net.charge Numeric Variant Raw feature AAindex KLEP840101 (Net charge) from section

AAindex1

Kawashima et al. (2008)

protein.age Numeric Gene Raw feature Protein age computed with ProteinHistorian Capra et al. (2012)

paralog.id Numeric Gene Raw feature Maximum paralog identity value of gene, 0 if the

gene has no paralog

Cunningham et al. (2015)

paralog.nr Numeric Gene Raw feature Number of human paralog genes Cunningham et al. (2015)

mouse.orth.id Numeric Gene Raw feature Maximum mouse ortholog identity value of gene, 0

if the gene has no mouse ortholog

Cunningham et al. (2015)

mouse.orth.nr Numeric Gene Raw feature Number of mouse ortholog genes Cunningham et al. (2015)

GO.BP Numeric Gene Raw feature Number of GO BP annotations of a gene with

information content greater 2 considering all

evidence codes and disregarding children nodes

The Gene Ontology

Consortium (2015)

expression Numeric Gene Raw feature Fraction of tissues in which this gene is expressed

at a threshold

Kolesnikov et al. (2015)

degree Numeric Gene Raw feature Degree of gene on the mentha network Calderone et al. (2013)

centrality Numeric Gene Raw feature Alpha centrality of gene on the mentha network Calderone et al. (2013)

betweenness Numeric Gene Raw feature Betweenness of gene on the mentha network Calderone et al. (2013)

gene.length Numeric Gene Raw feature Gene length in base pairs Cunningham et al. (2015)

protein.length Numeric Gene Raw feature Protein length in base pairs Cunningham et al. (2015)

PolyPhen-21 Numeric Variant TPS PolyPhen-2 score Adzhubei et al. (2010)

Condel1 Numeric Variant TPS Condel 2.0 score (weighted average of FatHMM

and MutationAssessor)

Gonz�alez-P�erez and

L�opez-Bigas (2011)

CADD1 Numeric Variant TPS CADD phred score Kircher et al. (2014)

TPS, trained prediction score; RPS, rule prediction score.
1Not used as features in the main analysis due to circularity.
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alogs and orthologs with a confidence of one: the number

of paralogous genes (paralog.nr), and their maximum

identity value (paralog.id), which was assigned zero for

genes that did not have any paralogous genes. Mouse

ortholog features were computed accordingly (mou-

se.orth.nr and mouse.orth.id). “Biological process” (BP)

annotations in the Gene Ontology (GO) database version

2014.11 (The Gene Ontology Consortium, 2015) were

used to obtain a measure for gene multifunctionality cor-

responding to the gene’s number of BP annotations and

thus the number of processes it is involved in. Specifi-

cally, the feature GO.BP was computed with the Dintor

software suit (Weichenberger et al. 2015) as the number

of GO BP annotations of a gene, considering all evidence

codes (see Data S1 for command line parameters). To

obtain a nonredundant set of GO annotations, two filter-

ing steps were performed prior to the counting. First,

terms with an information content (IC) smaller 2.0 were

excluded, since these are nonspecific terms that add little

information. The threshold of 2.0 was determined heuris-

tically. Examples for excluded terms are “cellular meta-

bolic process” (IC = 0.48) and “oxidation–reduction
process (IC = 1.52)”. More specific terms like “leukocyte

activation” (IC = 2.03) or “complement-dependent cyto-

toxicity” (IC = 5.87) were included. Second, if a gene was

annotated with a term and its child terms, only the parent

term was counted, since its child term only represents a

specification of the GO term and not a distinct BP. For

example, the GO term “mitochondrial respiratory chain

complex assembly” has the child “mitochondrial respira-

tory chain complex I assembly”. The IC filtering was per-

formed prior to the removal of the children. The gene

expression dataset E-MATB-1733 containing expression

values for 19,021 human genes in 27 tissues was down-

loaded from the ArrayExpress database (Kolesnikov et al.

2015). The feature expression is the fraction of tissues that

were expressed at a 3.5 threshold, which is the mean first

quartile value of the distribution of tissue expression at

the gene level. A network with 157,962 human protein–
protein interactions was downloaded from mentha on

2014-11-24 (Calderone et al. 2013). To restrict the net-

work to interactions with high confidence, interactions

with a confidence score below 0.126 (the first quartile

value of the distribution of the confidence scores of the

whole network) were discarded. The filtered network con-

sisted of 140,289 interactions. On this network, three fea-

tures (degree, centrality, and betweenness) were computed

for each gene with the igraph package version 0.6.5-2

(Csardi and Nepusz 2006) in the statistical programming

language R version 3.1.0. Finally, the features gene.length

(the gene length in base pairs including introns) and pro-

tein.length (the number of amino acids of the correspond-

ing protein) were retrieved from Ensembl.

Clustering of features

Hierarchical clustering on all numeric features was per-

formed on the absolute values of the features’ Pearson

correlation, thus positively and negatively correlated fea-

tures cluster together. The categorical features PfamA,

secondary.structure.3, and secondary.structure.8 were

excluded from the analysis. The optimal number of clus-

ters and their quality was determined as the cluster com-

position that maximizes the clusters’ mean silhouette

values (Rousseeuw 1987) (R package hopach_2.28.0). A

feature’s silhouette value lies between �1.0 and 1.0: a

value of 1.0 indicates that the feature is optimally clus-

tered, while a value of �1.0 indicates that the assignment

to a different cluster would be more appropriate. Clusters

with high silhouette values thus correspond to high clus-

ter quality and include correlated features distinct from

features in other clusters.

Decision trees, logistic regression, and
random forest models

To determine which of the 28 features characterize patho-

genic and benign SAPs, a classification problem was

defined. The binary response variable “class” encodes the

true variant status of pathogenic (1) or benign (0), and

the 28 features are possible predictors or input variables.

To obtain an interpretable set of rules, decision trees were

computed with the R package rpart 4.1-9 using default

parameters. To assess feature importance and to select

sets of features for prediction, stepwise forward selection

was performed with both logistic regression (R package

stats) and random forests (R package party 1.0-20

(Hothorn et al. 2006; Strobl et al. 2007, 2008). The model

was trained once on all features on the full training set.

For logistic regression, the features were then ordered

based on the P-value of the Wald z-statistic, which tests

whether the effect of a feature is statistically significant on

the outcome class. For random forests, the features were

ordered based on their importance, as computed by the

varimp function of the party package. This implementa-

tion reflects feature importance accurately even in the

presence of feature correlation (Strobl et al. 2008). Start-

ing with the first feature in the ordered list, the next fea-

ture was added sequentially, resulting in one additional

feature per step. To evaluate the model with the current

feature set, 300 and 100 iterations of 5-fold cross valida-

tion (CV) were computed for logistic regression and ran-

dom forests, respectively. For each iteration in the CV,

SAPs were randomly divided into subsets for training and

testing, such that all SAPs from one gene were either in

the training or in the testing subset. The train and test

errors were computed as the residual sum of squares and
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the misclassification rate for logistic regression and ran-

dom forests, respectively. For the predictive feature sets

derived on the training set, logistic regression models

were computed on the validation set. The area under the

curve (AUC) was computed for each logistic regression

model and SIFT, PON-P2, and PROVEAN for compari-

son. The AUCs were ordered based on size and a Boot-

strap test (pROC package (Robin et al. 2011), 5000

permutations) was performed to test for significant differ-

ences in AUC size of each method with the next best

method. All analyses were performed with the R statistical

software version 3.2.1.

Results

Feature comparison

Prior to the selection of the best predictive features, we

performed an unsupervised hierarchical cluster analysis to

evaluate between-feature correlations (see Fig. 1 and

Table S2). Silhouette width analysis showed that the opti-

mal number of clusters was 10. The cluster with best

quality (highest silhouette width) corresponds to the

amino acid index features, polarity and hydropathy with

a silhouette width value of 0.69. The largest, but only

sixth best cluster with a silhouette width of 0.28 includes

all RPSs, PON-P2, and the raw scores disordered.region,

evolutionary.rate, and accessibility. The correlation of

these features is expected, as these methods include evolu-

tionary models for estimating residue conservation and

for assessing deleterious substitutions. In general, there is

low correlation between features in different clusters with

few exceptions. In this respect, we observe a correlation

of 0.44 between GO.BP and the PON-P2 method, since

the latter includes a GO-derived feature as one of its

inputs. Further, the amino acid index features that are

not clustered together have correlation values between

0.05 and 0.32.

Feature selection

Next, we computed decision trees on the training set to

get an initial overview of the most important features dis-

criminating pathogenic from benign variants. To obtain a

biologically interpretable result, we first excluded RPSs

and the TPS PON-P2 from the analysis and sequentially

added RPS and PON-P2 back to evaluate whether predic-

tions improve. Using only raw scores as input resulted in

a classification tree with the variant features evolution-

ary.rate, and disordered.region, and the gene feature

GO.BP (see Fig. 2A). Inclusion of RPS resulted in a tree

with PROVEAN and GO.BP (see Fig. 2B) and addition-

ally including PON-P2 resulted in a tree with the features

PON-P2 and PROVEAN (see Fig. 2C). Inclusion of RPS

features and PON-P2 improved the predictive power of

the respective classification tree. The error rate for the

tree based only on raw features was 0.21, it decreased to

0.17 after inclusion of RPS and to 0.14 after inclusion of

all features.

As an alternative approach to determine the best com-

bination of discriminative features, we employed a for-

ward feature selection strategy based on logistic regression

and random forests. Again, we used a multistep approach,

that is, first excluding RPS and PON-P2 from the analysis

and sequentially including them to evaluate differences in

classification performance. As in the classification tree

approach, both logistic regression and random forest

identified the features GO.BP, evolutionary.rate, and dis-

ordered.region as the most predictive among all raw fea-

tures (see Fig. 3A). After the inclusion of these features,

the random forest error rate increased, therefore only the

first three features were selected to form the predictive

feature set 1 (PFS1). In 49% of the logistic regression CV

iterations, evolutionary.rate was selected as first and

GO.BP as second feature. Next, we included the RPS to

the input features and repeated the analysis (see Fig. 3B).

Both random forest and logistic regression selected

GO.BP, PROVEAN, SIFT, GERP, and disordered.region

as the five most important features. Determining a good

cutoff for feature selection was less straightforward in this

case, but additional analysis (see Fig. S3) showed that the

first five features constitute the best performing subset

and were thus selected to form predictive feature set 2

(FPS2). Then, we performed the feature selection analysis

on the full feature set including PON-P2. The most pre-

dictive features for both logistic regression and random

forests were PON-P2, GO.BP, and PROVEAN (see

Fig. 3C), which were combined into the predictive feature

set 3 (PFS3).

To summarize, we defined three sets of features capable

to discriminate pathogenic from benign variants. We found

a good agreement for best discriminative features among

the different feature selection methods. PFSs that include

scores from pathogenic variant prediction methods in com-

bination with raw features dramatically decreased the CV

error rate. PON-P2 was chosen for PFS3, even though there

is no overlap of our training set with the PON-P2 train and

test data. Importantly, the gene feature GO.BP was found

to be among the most discriminative features in all analyses

and was included in all PFSs.

Analysis of selected features and GO
annotation bias

To better understand the impact of the seven features

selected in PFS1, PFS2, and PFS3, we analyzed them in
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more detail (see Fig. 4). Genes of pathogenic variants had

more than three times as many GO BP annotations than

genes of benign variants (see Fig. 4A). This might indicate

that genes related to disease tend to be involved in multi-

ple processes. However, an important question is to what

extent the GO.BP feature truly measures the level of gene

multifunctionality and to what extend it represents an

annotation bias. Certain genes and BPs have been studied

more intensively than others, for example, due to their

involvement in disease, and thus have more annotations

associated. For our analysis, it is important to determine

if reports of disease-associated variants in genes lead to

follow-up studies on these genes, which then result in an

increase in GO BP annotations. To address this question,

we compared GO releases 2013.03 and 2008.01, which

was the oldest easily assessable GO version. We deter-

mined all genes for which the first disease variant had

been added to HGMD version 2014.03 in 2008 (n = 957,

Figure 1. Hierarchical clustering of all features (except PfamA, secondary.structure.3, and secondary.structure.8) on their absolute Pearson

correlation values. In each cell, the rounded absolute correlation value is given, the higher the value, the darker the corresponding cell. Black

squares correspond to the 10 clusters that were found to maximize the mean silhouette values.
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first group), all genes for which the first disease variant

had been added to HGMD version 2015.01 in 2013

(n = 349, second group), and all protein-coding genes

which did not have a pathogenic variant reported in

HGMD version 2015.01 (n = 13,001, third group), and

calculated the difference of GO.BP between the 2013 and

2008 data for these three groups of genes. The first

group of genes was known to harbor disease variants in

this time period, while for the second group, this was

only discovered afterward. If a variant-dependent GO

bias existed, we would expect the increase of annotations

in the first group to be larger than in the second group.

However, even though the mean is higher in the first

group than in the second group (see Fig. 5), a one-sided

student’s t-test showed that the difference in mean

between the two distributions was not significant at a

Figure 2. Decision trees computed on the training set using different input features. Each tree node has three rows: the upper row contains the

decision made in this node with 0 = benign and 1 = pathogenic; the second row shows the fraction of single amino acid polymorphisms (SAPs)

classified at this node as benign (left) and pathogenic (right); the third row shows the percentage of all input SAPs that are classified at this node.

Starting from the root node, at each node, the left child is traversed if the condition evaluates to true and the right child is traversed if the

condition evaluates to false. (A) Tree computed on raw features, excluding rule prediction scores (RPSs) and PON-P2. (B) Tree computed on raw

features and RPSs, excluding PON-P2. (C) Tree computed on all features.

Figure 3. Cross-validation (CV) test error of stepwise forward selection with random forest and linear regression. Points correspond to the mean

test error from all CV iterations with error bars. The label corresponds to the feature that was added in this step and the number below indicates

the percentage of CV iterations in which this feature was selected. Labels are printed above and below the points for random forest and linear

regression, respectively. The vertical dashed line shows the cutoff for feature selection. Only the first 10 steps of the forward selection are shown.

GO = GO.BP, evol.rate = evolutionary.rate, disord = disordered.region, paral.id = paralog.id, acc = accessibility, prot.age = protein.age,

mouse.id = mouse.orth.id; expr = expression, betw = betweeness, PROV = PROVEAN, p.len = protein.length, Grant = Grantham. (A) Stepwise

forward selection on raw scores, excluding rule prediction scores (RPS) and PON-P2. (B) Stepwise forward selection on raw scores and RPSs,

excluding PON-P2. (C) Stepwise forward selection on all features.
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5% threshold (P = 0.1). Therefore, in the time period

from 2008 to 2013, knowledge of disease variants in

genes did not lead to a significant increase in their num-

ber of GO BP annotations compared with genes for

which no disease variants were known in this period.

For the second and third group, no pathogenic variants

were known in these genes until 2013. That is, neither

group of genes was more intensively studied due to

knowledge of pathogenic variants between 2008 and

2013. Yet, the increase in GO BP annotations in the sec-

ond group is significantly larger than the increase in the

third group (one-sided student’s t-test, P = 1.5 9 10�5)

(see Fig. 5). Since the second group comprises genes that

actually harbor pathogenic variants, while the third

group does not (given the state of knowledge in 2015),

these results indicate that multifunctionality as measured

by the GO.BP feature is a true characteristic of disease

genes.

For another feature of PFS1, evolutionary.rate, patho-

genic SAPs had lower values than benign SAPs, which

agrees well with previous findings that changes at

evolutionary conserved sites tend to be deleterious (Ng

and Henikoff 2003; Cooper et al. 2005) (see Fig. 4B).

Pathogenic SAPs further had lower disordered.region

values, that is, they tend to lie in regions with more

stable conformations, while benign SAPs tend to lie in

more disordered regions (see Fig. 4C). Using the thresh-

old of 0.5 to classify the residues as ordered or disor-

dered, these results agree very well with a previous

analysis (Vacic et al. 2012) and indicate that SAPs in

ordered regions interrupt protein structure, activity, and

stability. In contrast, by using disordered region defini-

tions from the DisProt database, Ye et al. (2007) found

that 112 of 114 disease-associated SAPs lie in disordered

regions. Similarly, Huang et al. (2010) found that the

disorder of two amino acids ahead of the SAP was the

second most important predictor for deleteriousness.

Pathogenic and benign SAPs were well separated by

PROVEAN and SIFT scores according to the empirical

thresholds proposed by the respective developers (see

Figs. 4D and E). Pathogenic variants had GERP values

that were about twice as high as those of benign vari-

ants (see Fig. 4F), which, like evolutionary.rate, supports

previous findings that variants in conserved regions tend

Figure 4. Box-and-whisker plots of the seven features constituting the predictive feature sets 1, 2, and 3 on the training set in pathogenic (P)

and benign (B) single amino acid polymorphisms. The boxes show the first and third quartile of the distributions with their median; the whiskers

extend to 1.5 times the interquartile range. For PROVEAN, SIFT, and PON-P2, the classification thresholds estimated by the developers are shown

as dashed horizontal lines. (A) GO.BP. (B) evolutionary.rate, (C) disordered.region. (D) PROVEAN. (E) SIFT. (F) GERP. (G) PON-P2.

Figure 5. Increase in Gene Ontology (GO) biological process (BP)

annotations from 2008 to 2013 for 957 genes for which the first

disease variant has been reported in HGMD in 2008 (left, first group),

for 349 genes for which the first disease variant has been reported in

HGMD in 2013 (middle, second group), and for 13,001 genes that

have no pathogenic variant reported in HGMD (right, third group).
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to be deleterious. The PON-P2 values in pathogenic and

benign SAPs separated even more clearly than the PRO-

VEAN values (see Fig. 4G). The distribution of values in

pathogenic and benign SAPs for all remaining features is

shown in Fig. S4.

Combination of variant and gene-based
features improves variant classification

Next, we evaluated the performance of logistic regression

classifiers built on the three PFS on the independent vali-

dation data set. For each PFS, we first trained a logistic

regression classifier using the training data set, obtained

predictions for the validation set, and calculated receiver

operating characteristic (ROC) curves. To enable compar-

isons with existing pathogenic variant prediction

algorithms, ROC curves were also computed for SIFT,

PON-P2, and PROVEAN on the validation set (see

Fig. 6A). For each method, we calculated the AUC,

ordered the AUCs by size, and tested for significance at a

5% threshold between the AUC values of a method and

the next best (see Table 2). For the logistic regression

models of PFS1, PFS2, and PFS3, we determined the cut-

off that maximized the Matthew’s correlation coefficient

(MCC). For PON-P2, PROVEAN, and SIFT cutoffs were

used as proposed by the developers of the respective

method. Using these cutoffs, we computed sensitivity,

specificity, accuracy, positive predictive value, negative

predictive value, and MCC for all methods (see Table 2).

Logistic regression based on PFS3 had the best perfor-

mance with an AUC of 0.95, which was significantly lar-

ger than the AUC of the next best performing method

PON-P2. PFS3 further had the highest accuracy and

MCC of all predictors. PON-P2 performed significantly

better than the logistic regression based on PFS2 and had

the second highest AUC and MCC. After PFS2, the next

best method was PROVEAN, followed by the logistic

regression based on PFS1, and SIFT (see Table 2). The

performance of the established prediction methods Con-

del, PolyPhen-2, and CADD has also been investigated,

but the results for these methods are not directly compa-

rable, given the circularity in the datasets. The results are

available in the Data S1 and can be used as an upper per-

formance estimate for these methods. In this regard, we

note that logistic regression based on PFS3 has a signifi-

cantly larger AUC (P = 1.4 9 10�3) than Condel, and

that all models except SIFT have a significantly larger

AUC than PolyPhen-2 and CADD, even though these

methods have the unfair advantage of circularity on the

datasets (see Data S1).

We further compared the sensitivities of the different

approaches at the specificity reported for PON-P2 by its

developers (0.86) to better reproduce results in a real

application scenario. At the given specificity level, the sen-

sitivities obtained by the different methods in general

agree with their AUC ranking (see Fig. 6B). Finally, we

Figure 6. Receiver operating characteristic (ROC) curves showing specificity versus sensitivity of the logistic regression models and prediction

scores at different thresholds on the validation set. In the legend, models are ordered according to their AUC values. One line is dotted to

improve visibility. (A) Full ROC curve. The vertical dashed line at 0.86 corresponds to the specificity of PON-P2 as estimated by the developers. (B)

Same data as in (A), zoomed into the region where the lines of the ROC curve intersect the specificity threshold of 0.86.
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computed precision–recall curves for all methods, which

show a similar performance as the ROC curves (see

Fig. S5). The distribution of the logistic regression predic-

tions on PFS1, PFS2, and PFS3 are shown in Fig. S6.

It is noteworthy that the best and the third best per-

forming approaches combine results of recent prediction

methods with the GO.BP feature, indicating that it is still

possible to improve performance of current methods. The

second best performing method, PON-P2 incorporates a

GO feature which measures the over-representation of a

gene’s GO term in genes of pathogenic variants. Hence,

multifunctionality, as reflected by GO annotations,

appears to be an important indicator for the pathogenic-

ity of a variant in that gene.

Systematic miss-classification of SAPs

An important question is whether there exists a group of

SAPs where all methods tend to fail in making correct

predictions. To address this issue, we selected the repre-

sentative candidates PON-P2, PROVEAN, and the logistic

regression models trained on the PFSs. We used the cut-

offs listed in Table 2 for all methods. PFS1, PFS2, and

PFS3 were trained on the training set and predictions

were computed for the validation set. Values for PON-P2

and PROVEAN were taken from the validation set. We

determined which SAPs were falsely predicted as patho-

genic (false positives) and falsely predicted as benign

(false negatives, FN). Between 11% (PFS3) and 20%

(PFS1) of pathogenic and 7% (PON-P2) and 20% (PRO-

VEAN) of benign SAPs were incorrectly predicted by an

individual method, while only 5% of pathogenic and 2%

of benign SAPs (85 and 31, respectively) were incorrectly

predicted by all five methods (see Fig. 7). We label SAPs

falsely classified by all five methods “difficult SAPs”. That

is, about 19% of a method’s false positives and about

32% of a method’s FNs were difficult SAPs. Analysis of

the features constituting PFS1, PFS2, and PFS3 showed

that their distribution in the false positive and FN SAPs is

similar to their distribution in the true positive and true

negative SAPs, respectively. Further, none of the remain-

ing features can be used to distinguish false from true

predictions (see Fig. S7). However, while the mean 1000

Genomes phase 3 allele frequency was 0.001 for both the

true positives in the validation set and the difficult FN

SAPs, the mean allele frequency in the difficult false posi-

tive SAPs was 0.068, which was lower than the mean

allele frequency of 0.165 of the true negative SAPs in the

validation set. Next, we checked if there were genes that

had a higher number of difficult SAPs than expected

given the total number of variants in this gene and the

error rate of 5% and 2% for pathogenic and benign SAPs,

respectively. Twenty genes had more than one difficult

SAP (see Table S4), six genes even had more than three

difficult FN SAPs. Of these, five genes had a frequency of

FN SAPs higher than 5% given the total number of SAPs

for this gene in the validation set: Five of seven SAPs in

RAI1 (OMIM:607642) are FN with “Smith–Magenis syn-

drome” HGMD annotations. Four of 48 SAPs in MSH6

(OMIM:600678) are FN with “colorectal cancer” HGMD

annotations. Four of 30 SAPs in PEX6 (OMIM:601498)

are FN with “Peroxisome biogenesis disorder/Zellweger

syndrome” HGMD annotations. Four of four SAPs in

ROM1 (OMIM:180721) are FN with “Retinitis pigmen-

tosa/macular dystrophy modifier” HGMD annotations.

Four of seven SAPs in CRELD1 (OMIM:607170) are FN

with “Cardiac atrioventricular septal defect” HGMD

annotations. Possibly, these genes or diseases possess par-

ticular characteristics different from other disease genes

or disease phenotypes that cause the misclassification of

the pathogenic SAPs in these genes. The set of difficult

cases (without SAPs from HGMD) is available as

Table S5.

Discussion

In this study, we have assessed novel features and existing

methods for predicting the pathogenicity of SAPs. We

have found the combination of PON-P2, GO.BP, and

PROVEAN to perform best on our validation set. The

evaluation of this model is not biased by circularity in

our data. However, PON-P2 is correlated with both

GO.BP and PROVEAN, which might lead to an overopti-

mistic evaluation of the PFS 3. On the other hand, the

feature selection with both logistic regression and random

forests resulted in the same set of features. Given that the

random forest implementation used in this study accu-

rately evaluates feature importance even in the presence

of correlated features, this increases our confidence in the

results. The features selected by the decision trees are sim-

ilar to the features selected with random forests and logis-

tic regression in the forward selection. These results

suggest that the classification rules determined by the

decision trees provide meaningful interpretations of the

characteristics of pathogenic and benign SAPs. We con-

clude that by combining the GO.BP gene feature with

existing methods, the prediction performance can be fur-

ther improved.

The gene-based feature GO.BP has been included in all

PFSs indicating that it provides a substantial contribution

to pathogenicity prediction. As GO.BP is the number of

“BP” Gene Ontology (GO) annotations, it reflects a mea-

sure of gene multifunctionality. We found that a gene’s

number of GO BP annotations was not biased by whether

or not pathogenic variants had been reported in the gene,

as the knowledge of pathogenic variants in genes did not

441ª 2016 European Academy of Bozen/Bolzano (EURAC). Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

E. K€onig et al. Pathogenic Variant Prediction



lead to a significantly higher increase in the genes’ num-

ber of annotations from 2008 to 2013. Genes unknown to

actually harbor pathogenic variants further had a signifi-

cantly higher increase in annotations from 2008 to 2013

than neutral genes, which indicates that gene multifunc-

tionality, as captured by the GO.BP feature, is a true

characteristic of disease genes. On the other hand, the

GO.BP feature might suffer from an additional bias that

is independent of pathogenic variants, as genes might also

be more intensively studied if they are known to be

involved in disease pathways or interact with disease

genes, leading likewise to a higher number of GO annota-

tions compared to non-disease genes. Consequently, it is

possible that a model using this feature will perform

worse on pathogenic SAPs in genes that have not yet been

associated with disease, but this effect will dissolve, as

with the advance of next-generation sequencing most dis-

ease genes are being identified.

Notably, GO.BP was the only gene-based feature that

improved prediction performance. However, other gene-

based features might benefit from improved underlying

data. In the case of the network features (degree, central-

Table 2. Performance of classifiers.

Classifier1 Features2 Cutoff Sensitivity Specificity Accuracy PPV NPV MCC AUC P-value3 Significant4

PFS3 LR PON-P2, GO.BP,

PROVEAN

0.5255 0.885 0.884 0.885 0.905 0.860 0.767 0.946 4.2 9 10�3 Yes

PON-P2 – 0.56 0.795 0.931 0.855 0.935 0.783 0.722 0.940 1.3 9 10�6 Yes

PFS2 LR GO.BP, PROVEAN, SIFT,

GERP, disordered.region

0.5575 0.854 0.851 0.853 0.878 0.823 0.703 0.915 1.6 9 10�13 Yes

PROVEAN – 2.2826 0.826 0.802 0.815 0.840 0.786 0.627 0.879 1.4 9 10�2 Yes

PFS1 LR GO.BP, evolutionary.rate,

disordered.region

0.5775 0.795 0.802 0.798 0.834 0.757 0.594 0.861 3.5 9 10�1 No

SIFT – 0.056 0.798 0.776 0.788 0.817 0.754 0.572 0.859 – –

PFS, predictive feature set; LR, logistic regression; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthew’s correlation coef-

ficient; AUC, area under the curve.
1Ranked by AUC.
2Constituting features for the predictive feature sets.
3Bootstrap test for difference in AUC to next ranking classifier.
4Whether the difference in AUC is significant at a 0.05 threshold.
5Cutoff that maximizes the MCC.
6Cutoff as proposed by the program developers.

Figure 7. Venn diagram showing the overlap of false predictions on the validation set by PON-P2, PROVEAN, and the logistic regression models

trained on the predictive feature sets (PFS) 1, 2, and 3. (A) False positives (single amino acid polymorphisms falsely predicted as pathogenic). (B)

False negatives (single amino acid polymorphisms falsely predicted as benign).
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ity, and betweenness), which have been successfully used

for pathogenicity prediction before (Huang et al. 2012;

Yates et al. 2014), a more comprehensive and reliable

human interaction network might improve the prediction

performance. The gene expression feature, which mea-

sures the fraction of tissues in which the gene was

expressed, is likely not sensitive enough to capture the

disease and tissue-specific effects. With the increase in

next-generation sequencing efforts, higher quality tran-

scriptome data will likely be available in the near future.

We have identified a set of difficult SAPs, where PON-

P2, PROVEAN, and the logistic regression models based

on PFS1, PFS2, and PFS3 all fail in their prediction. We

acknowledge the possibility that the predictors are actu-

ally correct, and that these SAPs were initially assigned to

the wrong set in the design of the datasets. That is, they

might represent erroneous pathogenic entries in HGMD

or ClinVar or might be pathogenic SAPs despite a high

allele frequency in the 1000 Genomes project due to low

penetrance. Nevertheless, with the chosen cutoff, 83% of

a method’s false positives and 87% of a method’s FNs

were correctly predicted by at least one other method.

This is an interesting finding, given that our PFSs already

combine features and existing methods, especially PON-

P2 and PROVEAN. We conclude that each method has

individual strengths and weaknesses and that, despite the

employment of consensus predictors, considering multiple

methods yields the highest accuracy.

HGMD and ClinVar are extremely valuable resources

in the investigation of the genetic basis of disease, never-

theless the lack of penetrance data and uniform criteria

for defining pathogenic variants are considerable limita-

tions, though there are some efforts to address the latter

point (Richards et al. 2015). As a result, the derived sets

of pathogenic variants are very heterogeneous, which neg-

atively affects the analysis and further progress in the

field.

For practicability reasons most previous studies, includ-

ing this one, have focused on the effects of SAPs. Conse-

quently, many prediction scores (e.g., SIFT, PolyPhen-2,

and Condel) are not applicable to indels or multi-nucleo-

tide polymorphisms. However, two of our top features,

GO.BP and PROVEAN are defined for any small genetic

variation and are promising candidate features for

improved prediction programs.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Methods and results.

Figure S1. Venn diagram showing the number and over-

lap of the SAPs’ genes. Benign = unique number of genes

of the benign SAPs; pathogenic = unique number of

genes of the pathogenic SAPs. (A) training data set. (B)

validation data set.

Figure S2. Overlap of the training and validation datasets

with ExoVar, HumVar, SwissVar, and VariBench. (A)

Overlap of the datasets for the pathogenic SAPs. (B)

Overlap of the datasets for the benign SAPs.

Figure S3. Receiver operating characteristic (ROC) curves

of the logistic regression models and prediction scores on

the validation dataset for alternative feature sets to PFS2.

(A) Full ROC curve. The vertical dashed line at 0.86 cor-

responds to the specificity of PON-P2 as estimated by the

authors. (B) Same data as in (A), zoomed into the region

where the lines of the ROC curve intersect the specificity

threshold of 0.86.

Figure S4. Distribution of values in pathogenic (P) and

benign (B) variants for the 21 features not in PFS1, PFS2,

or PFS3 on the training set and the trained prediction

scores PolyPhen-2, Condel, and CADD. (A) PolyPhen-2.

(B) Condel. (C) CADD. (D) Grantham. (E) accessibility.

(F) secondary.structure.3. (G) secondary.structure.8. (H)

PfamA. (I) AAindex.polarity. (J) AAindex.hydropathy.

(K) AAindex.volume. (L) AAindex.composition. (M)

AAindex.net.charge. (N) protein.age. (O) paralog.nr. (P)

paralog.id. (Q) mouse.orth.nr. (R) mouse.orth.id. (S)

expression. (T) degree. (U) centrality. (V) betweenness.

(W) gene.length. (X) protein.length.

Figure S5. Precision–Recall curves for all methods

accessed in the main analysis.

Figure S6. Prediction of logistic regression models,

trained on the training set and predicted on the validation

set. P = true disease class is pathogenic, B = true disease

class is benign. The dotted red line corresponds to the

threshold at the maximal Matthew’s correlation coeffi-

cient to classify SAPs as pathogenic or benign. (A) PFS1

(class ~ GO.BP + evolutionary.rate + disordered.region);

threshold = 0.577. (B) PFS2 (class ~ GO.BP + PROVEAN +
SIFT + GERP + disordered.region); threshold = 0.557. (C)

PFS3 (class ~ PON-P2 + GO.BP + PROVEAN); thresh-

old = 0.525.
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Figure S7. Distribution of feature values (and PolyPhen-2,

Condel, CADD) on subsets of the validation set based on the

prediction overlap of PFS1, PFS2, PFS3, PON-P2, and PRO-

VEAN. SAP, single amino acid polymorphism; FP, SAPs fal-

sely predicted pathogenic by all five methods; FN, SAPs

falsely predicted benign by all five methods; TP, SAPs cor-

rectly predicted pathogenic by all five methods; TN, SAPs

correctly predicted benign by all five methods. (A) PolyPhen-

2. (B) Condel. (C) CADD. (D) PON-P2. (E) SIFT. (F) PRO-

VEAN. (G) Grantham. (H) GERP. (I) evolutionary.rate. (J)

disordered.region. (K) accessibility. (L) secondary.structure.3.

(M) secondary.structure.8. (N) PfamA. (O) AAindex.polarity.

(P) AAindex.hydropathy. (Q) AAindex.volume. (R) AAin-

dex.composition. (S) AAindex.net.charge. (T) protein.age.

(U) paralog.nr. (V) paralog.id. (W) mouse.orth.nr. (X) mou-

se.orth.id. (Y) GO.BP. (Z) expression. A2: degree. B2: central-

ity. C2: betweenness. D2: gene.length. E2: protein.length.

Figure S8. Feature selection using all features as input,

including the trained prediction scores Condel, PolyPhen-2,

and CADD that suffer from circularity on the training and

validation set. (A) Decision tree computed on the training set.

Each tree node has three rows: the upper row contains the

decision made at this node with 0 = benign and

1 = pathogenic; the second row shows the fraction of single

amino acid polymorphisms (SAPs) classified at this node as

benign (left) and pathogenic (right); the third row shows the

percentage of all input SAPs that are classified at this node.

Starting from the root node, at each node, the left child is tra-

versed if the condition evaluates to true and the right child is

traversed if the condition evaluates to false. (B) Cross-valida-

tion (CV) test error of stepwise forward selection with ran-

dom forest and linear regression. Points correspond to the

mean test error from all CV iterations with error bars. The

label corresponds to the feature that was added in this step

and the number below indicates the percentage of CV itera-

tions in which this feature was selected. Labels are printed

above and below the points for random forest and linear

regression, respectively. The vertical dashed line shows the

cutoff for feature selection. Only the first 10 steps of the for-

ward selection are shown.

Figure S9. Receiver operating characteristic (ROC) curves

showing specificity versus sensitivity of the logistic regression

models including predictive feature set 4 (PFS4) and predic-

tion scores at different thresholds on the validation set. In the

legend, models are ordered according to their AUC values.

Some lines are dotted to improve visibility. (A) Full ROC

curve. The vertical dashed line at 0.86 corresponds to the

specificity of PON-P2 as estimated by the developers. (B)

Same data as in (A), zoomed into the region where the lines

of the ROC curve intersect the specificity threshold of 0.86.

Figure S10. Precision–Recall curves for all methods accessed

in this study, as well as Condel, PolyPhen-2, and CADD.

Table S1. Number of pathogenic and benign single amino

acid polymorphisms employed in the feature selection with

decision trees, logistic regression, and random forests in the

training set.

Table S2. Results of the silhouette width analysis on the

features clustered based on their absolute correlation. Clus-

ters were ordered according to their mean silhouette width

values.

Table S3. Classifier performance including the trained pre-

diction scores PolyPhen-2, Condel, and CADD that suffer

from circularity on the training and validation set. SAPs

containing NA values in any features constituting the PFS

or the comparison scores were removed from the training

and validation sets.

Table S4. Genes of the validation set that have at least

two “difficult SAPs”. FN, false negative; FP, false positive.

Table S5. “Difficult SAPs” (without SAPs from HGMD).
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