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Lung cancer is the leading cause of cancer-related mortality for males and females.
Radiation therapy (RT) is one of the primary treatment modalities for lung cancer. While
delivering the prescribed dose to tumor targets, it is essential to spare the tissues near the
targets—the so-called organs-at-risk (OARs). An optimal RT planning benefits from the
accurate segmentation of the gross tumor volume and surrounding OARs. Manual
segmentation is a time-consuming and tedious task for radiation oncologists.
Therefore, it is crucial to develop automatic image segmentation to relieve radiation
oncologists of the tedious contouring work. Currently, the atlas-based automatic
segmentation technique is commonly used in clinical routines. However, this technique
depends heavily on the similarity between the atlas and the image segmented. With
significant advances made in computer vision, deep learning as a part of artificial
intelligence attracts increasing attention in medical image automatic segmentation. In
this article, we reviewed deep learning based automatic segmentation techniques related
to lung cancer and compared them with the atlas-based automatic segmentation
technique. At present, the auto-segmentation of OARs with relatively large volume such
as lung and heart etc. outperforms the organs with small volume such as esophagus. The
average Dice similarity coefficient (DSC) of lung, heart and liver are over 0.9, and the best
DSC of spinal cord reaches 0.9. However, the DSC of esophagus ranges between 0.71
and 0.87 with a ragged performance. In terms of the gross tumor volume, the average
DSC is below 0.8. Although deep learning based automatic segmentation techniques
indicate significant superiority in many aspects compared to manual segmentation,
various issues still need to be solved. We discussed the potential issues in deep
learning based automatic segmentation including low contrast, dataset size, consensus
guidelines, and network design. Clinical limitations and future research directions of deep
learning based automatic segmentation were discussed as well.
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INTRODUCTION

Cancer is becoming the leading cause of death and the most
prominent obstacle to life expectancy increases in all countries.
According to GLOBOCAN 2020, it is estimated that 19.3 million
new cancer cases and 9.96 million cancer deaths occurred in
2020. Lung cancer, accounting for 11.4% of all new cases, is the
second most common cancer. Meanwhile, it ranks first among
the cancer-related mortality worldwide, accounting for 18.0% of
the total cancer death (1).

In order to control the malignant tumors and improve the
quality of life of cancer patients, various cancer treatment methods
have gradually emerged in addition to surgical resection (2, 3), such
as chemotherapy (4), radiotherapy (5–7), thermotherapy (8–10),
immunotherapy (11, 12) and so on. With radiation therapy (RT)
witnessing tremendous advancements in recent years, RT plays a
crucial role in lungcancer treatment (6, 7, 13–15).The success ofRT
depends on accurate irradiating the tumor targets while sparing the
organs-at-risk (OARs) and avoiding RT-related complications.
Accordingly, it is vital to segment the gross tumor volume (GTV)
and OARs accurately in the RT treatment planning to deliver the
prescription dose to the GTV.

Manual segmentation of the GTV and OARs is a laborious
and tedious process for radiation oncologists, which could result
in significant delays of RT treatment and low survival rates,
especially in clinics with inadequate resources. Furthermore, the
quality of manual segmentation relies on the prior knowledge
and experience of the radiation oncologists. Even if they
segmented the GTV and OARs according to the same
guidelines, inconsistencies may still exist in the segmentation
for both inter- and intra-observers. On the other hand, the
automatic segmentation technique has the potential to provide
efficient and accurate results (16, 17). It can not only shorten the
time needed to exploit the anatomy but also allow experts to
devote time to optimize RT treatment planning so that the OARs
could be less irradiated. In recent years, various image
segmentation techniques have been proposed, resulting in
more accurate and efficient image segmentation for clinical
diagnosis and treatment (18–24).

Traditional automatic segmentation techniques usually
segment the target depending on the shallow features of the
image such as grayscale, texture, gradient, etc. In traditional
automatic segmentation techniques, the common methods are
Thresholding Method (25, 26), Atlas Method (27), and Region
Growing Method (28) etc. Based on the target and background
needed to be segmented, appropriate grayscale thresholding is
selected. According to the selected thresholding, all pixels in the
image to be segmented are classified into two categories, viz
target and background, to perform the segmentation task. But
when the grayscale difference between the image background and
the target is not significant, it is difficult to segment the image
accurately and efficiently (29). The Atlas Method registers the
new input image to the reference image known as an atlas
template, and then the labels in the atlas templates are
propagated to the new input image to finalize the delineating
task (30). However, the performance of the Atlas Method is
heavily reliant upon the registration algorithms and the quality of
Frontiers in Oncology | www.frontiersin.org 2
the selected atlas templates (31). The Region Growing Method
manually defines sub-regions in advance, then merges the
adjacent pixels with similar attributes to the pre-defined
region, and finally achieves the segmentation of the target
region from the background (32). Nevertheless, the Region
Growing Method lacks objectivity owing to the manual
selection of sub-regions. Moreover, when the color feature or
location information of the organs to be segmented is similar to
that of other organs, the segmentation accuracy is usually not
sufficiently high.

With the development of deep learning, deep learning-based
models have shown superior capabilities in medical image auto-
segmentation (33). Deep learning models learn feature
representation independently and utilize the learned high-
dimensional abstraction to finalize segmentation tasks without
manual intervention (20). Recently, several studies have
proposed various deep learning based automatic segmentation
techniques for lung cancer (34–42). There is not yet a review of
deep learning based automatic segmentation techniques for lung
cancer radiotherapy. This manuscript aims to comprehensively
review the deep learning based automatic segmentation
techniques on lung cancer radiotherapy. The current
challenges, practical issues, and future research directions of
automatic segmentation are also discussed.
DEEP LEARNING BASED AUTOMATIC
SEGMENTATION

Basis of Deep Learning
With significant advances in computing technique and data
accumulation, deep learning as a branch of artificial intelligence is
attracting increasing attention in image automatic segmentation
(29, 33, 43). Along with the continual increase of the model depth,
deep learning can represent more complex phenomena by
hierarchically extracting features of the input data via the hidden
layers and by repeatedly training the network with the input data,
such as convolutional neural networks (CNNs) (44), fully
convolutional networks (FCNs) (45), and U-Net (46).

As shown in Figure 1, CNNs (44) are generally feedforward
neural networks composed of convolutional layers, pooling
layers, and fully connected layers. In principle, CNNs allow to
classify each individual pixel in the image, whereas the training
of CNNs becomes time-consuming and computationally
expensive. Although the CNN models can automatically
extract image features, the pooling layers also reduce the
image’s resolution while shrinking the size of the feature maps.
Also, the fully connected layers have a fixed number of nodes,
which limits the size of the input images.

In 2015, Long et al. (45) proposed fully convolutional
networks (FCNs) based on the improvement of CNNs. FCNs
replace the final fully-connected layers of CNNs with the
convolutional layers so that FCNs can accept input images of
any size. The skip connections in FCNs improve the efficiency of
image segmentation and combine the context information of the
image simultaneously. Figure 2 is a typical FCN. However, the
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Deep Learning Based Auto-Segmentation
problem is that the multiplier used in the FCNs upsampling
operation is too large, resulting in the loss of segmentation
accuracy and insufficient integration of context information.

To solve this problem, Ronneberger et al. (46) proposed the
U-Net architecture (as illustrated in Figure 3), which uses the
same number of convolutional layers in upsampling and
downsampling. In addition, a skip connection exists between
each level of the upsampling layer and the correspondingly
downsampling layer, which enables the features extracted by
the downsampling layer to be passed to the upsampling layer.
The above-mentioned two improvements make U-Net more
accurate in the aspect of pixel positioning and segmentation.

Segmentation of OARs and GTV
for Lung Cancer
The pathological characteristics of lung cancer are more complex
compared with other malignant tumors. Early clinical diagnosis
Frontiers in Oncology | www.frontiersin.org 3
of lung cancer is often difficult, so that the majority of patients
diagnosed with lung cancer have reached the advanced stage.
The five-year survival rate of patients with advanced stage lung
cancer is less than 15%, but this value can reach 40~70% if
diagnosed at the early stage (47). Therefore, the early diagnosis
and treatment of lung cancer is the key to improving the curative
ratio. Employing deep learning in clinical practice may
potentially shorten the unnecessary time and alleviate the
workload of relevant staff (48). In recent years, several deep
learning based automatic segmentation techniques have been
proposed successively (35, 49–56). In this section, studies related
to the deep learning based automatic segmentation of the OARs
and GTV in lung cancer are discussed and compared. A manual
searching with keywords “lung cancer, automatic segmentation,
and deep learning” was carried out on three academic electronic
databases viz. Web of Science, PubMed, and IEEE Xplore.
Studies published from 2018~2020 are selected in this review.
FIGURE 2 | Architecture of a typical FCN (45). The white boxes represent multi-channel feature maps after the convolutional operation.
FIGURE 1 | Architecture of a classic CNN (44).
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OARs Segmentation
The precise segmentation of OARs is of vital importance to
optimize the delivery of decreased dose to normal tissues, and it
strongly affects the quality and outcome in lung cancer RT. Some
studies have been published with regard to the segmentation of
OARs in lung cancer utilizing deep learning algorithms.

In 2018, Zhao et al. (35) proposed a FCN-based network to
segment lung with various diseases. In their design, they
introduced a multi-instance loss to facilitate updating the most
input-related convolution kernels during iterative training, and
employed a conditional adversary loss to assist in correcting the
lung segmentation mask. The DSC they achieved over three
datasets was 0.9176, 0.9613, and 0.9793, respectively. Agnes et al.
(57) trained a CNN-based network to segment lung in low-dose
chest computed tomography (CT) images. They reported a
mean DSC of 0.95 on LIDC-IDRI database (58). Zhu et al.
(59) developed a CNN-based deep learning algorithm to
automatically segment multiple thoracic OARs, including
lungs, heart, spinal cord, esophagus, and liver. In their design,
the network architecture was adapted from U-Net, but replacing
the convolutional layer with a residual convolutional unit. In
their method, the DSC of lungs, heart, spinal cord, esophagus,
and liver was 0.95 ± 0.01, 0.91 ± 0.03, 0.79 ± 0.03, 0.71 ± 0.05, and
0.89 ± 0.02, respectively.

In 2019, Dong et al. (38) proposed a U-Net-GAN strategy to
automatically contour left and right lungs, spinal cord,
esophagus and heart. Their design adopted the architecture of
Frontiers in Oncology | www.frontiersin.org 4
generative adversarial network (GAN), employing the U-Nets as
generators and the FCNs as discriminators. They achieved a DSC
of 0.97 ± 0.01, 0.97 ± 0.01, 0.90 ± 0.04, 0.87 ± 0.05, and 0.75 ±
0.08 for the left lung, right lung, spinal cord, heart, and
esophagus, respectively. Correspondingly, the mean surface
distance (MSD) was 0.61 ± 0.73, 0.65 ± 0.53, 0.38 ± 0.27,
1.49 ± 0.85, and 1.05 ± 0.66 mm. The average sensitivity of the
proposed method was 0.74 ~ 0.97, with the best for the lung and
the worst for the esophagus. Additionally, they compared the
performance of U-Net with and without the adversarial network.
They concluded that with the assistance of the adversarial
network, the segmentation accuracy was improved, and the
biggest improvement was found for the spinal cord.

Later, Feng et al. (39) developed another novel segmentation
model based on 3D U-Net for the automatic segmentation of five
thoracic OARs, including left and right lungs, heart, esophagus and
spinal cord. In their model, given that each organ has a relatively
fixed position within the CT images, they firstly cropped the original
3D images into smaller patches ensuring each patch containing only
one organ to be segmented. Secondly, for each organ, an individual
3D U-Net was trained to segment the organ from the cropped
patches. The individual segmentation results were resampled and
integrated together to generate the final segmentation results.
According to their testing, the model segmented the OARs with a
mean DSC of 0.893, 0.972, 0.979, 0.925, 0.726 for the spinal cord,
right lung, left lung, heart and esophagus, respectively. The MSDs
were as follows: (spinal cord: 0.662 ± 0.248 mm, right lung: 0.933 ±
FIGURE 3 | Architecture of a conventional U-Net (46). The blue boxes represent multi-channel feature maps, and the white boxes correspond to the copy of feature
maps in the encoder branch. The arrows of different colors represent various operations. The number provided on the top of the box represents the number of
channels, and the x-y-size of feature map is denoted at the lower left edge of the box.
July 2021 | Volume 11 | Article 717039
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0.574 mm, left lung: 0.586 ± 0.285 mm, heart: 2.297 ± 0.492 mm,
esophagus: 2.341 ± 2.380 mm).

In the same year, Trullo et al. (60) organized a competition called
SegTHOR on the theme “Automatic segmentation of Organs-at-risk
in Thoracic CT images”. In the competition, various segmentation
techniques based on different frameworks were proposed to
automatically delineate four OARs: heart, aorta, trachea,
esophagus. Among all the techniques based on CNN architecture,
Harten et al. (61) obtained the best performance in terms of DSC
(esophagus: 0.84, heart: 0.94, trachea: 0.91, and aorta: 0.93) and
Hausdorff distance (HD) (esophagus: 3.4 mm, heart: 2.0 mm,
trachea: 2.1 mm, and aorta: 2.7 mm). They combined a 2D CNN
with a 3D CNN to segment the OARs. The 2D CNN containing
dilated convolutions performed multi-class segmentation while the
3D CNN containing residual blocks performed multi-label
segmentation, promoting additional diversity in the networks.

Among all the techniques based on U-Net architecture, He
et al. (62) obtained the highest value of DSC and lowest HD for
esophagus (DSC: 0.8594; HD: 0.2743), heart (DSC: 0.9500; HD:
0.1383) and aorta (DSC: 0.9484; HD: 0.1129). They proposed a
uniform U-like encoder-decoder architecture abstracted from
the U-Net and trained it under the multi-task learning schema.
Commonly used network architecture such as ResNet and
DenseNet could be involved in the encoder part by eliminating
their linearly connected layers, and the encoder could adopt the
transfer learning under this design. It is the transfer learning that
shortens the training time and boots the performance of the
network. With regard to the trachea, Vesal et al. (63) achieved a
better performance than He et al. with a DSC of 0.926 and an HD
of 0.193 mm. They modified the 2D U-Net mainly in two aspects.
Firstly, dilated convolutions were introduced to expand the
receptive fields so that both local and global information was
used efficiently without increasing the network complexity.
Additionally, to better incorporate multi-scale image features,
the convolution layers were replaced with the residual
convolution layers in the encoder branch.

Among all the techniques based on V-Net architecture, the best
result for the esophagus (DSC: 0.8651; HD: 0.2590 mm), heart
(DSC: 0.9536; HD: 0.1272 mm), trachea (DSC: 0.9276; HD:
0.1453 mm) and aorta (DSC: 0.9464; HD: 0.1209 mm) was
obtained by Han et al. (40) who was the winner of the
SegTHOR competition. Based on V-Net, they proposed a novel
framework called multi-resolution VB-Net. The network consists
of two parts: (a) the contraction path on the left side to extract
high-level contextual information of the input data employing
convolution and downsampling; (b) the expansion path on the
right side to integrate high-level contextual information with
detailed local information via skip connections to improve the
accuracy of the outputs. They utilized the bottleneck structure to
replace the conventional convolutional layers inside the
upsampling and downsampling processes. Furthermore, to
reduce the GPU memory and computation cost, they adopted a
multi-resolution strategy. They trained two VB-Nets separately,
one in the coarse resolution to roughly get the location of the ROI
for each organ and the other in the fine resolution to accurately
delineate the OAR boundaries from the detected ROI.
Frontiers in Oncology | www.frontiersin.org 5
In 2020, Zhang et al. (64) established a CNN network based on
ResNet-101 for automatically segmenting the OARs, including
lungs, esophagus, heart, liver, and spinal cord. They reported a
mean DSC of 0.948, 0.943, 0.821, 0.893, 0.937 and 0.732 for the left
lung, right lung, spinal cord, heart, liver, and esophagus,
respectively. Correspondingly, the MSD was 1.10 ± 0.15, 2.23 ±
2.33, 0.87 ± 0.21, 1.65 ± 0.48, 2.03 ± 1.49 and 1.38 ± 0.44 mm.

Hu et al. (65) used Mask R-CNN architecture combined with
supervised (Bayes, Support Vectors Machine) and unsupervised
(K-means and Gaussian Mixture Models) machine learning
methods to segment lungs on CT images automatically. Mask
R-CNN consists of two stages: (a) a Region Proposal Network to
generate candidate object bounding boxes and predict the classes
of objects; (b) while predicting the class and box offset, an FCN to
generate a binary mask for each detected object. They concluded
that the method combining Mask R-CNN with the K-means
kernel generated the best results for lung segmentation with a
DSC of 97.33 ± 3.24% and a sensitivity of 96.58 ± 8.58%.

Apart from various CNN models, GAN models have also been
utilized for image segmentation. Tan et al. (66) proposed a new
schema called LGAN for lung segmentation based on the
architecture of GAN. Meanwhile, a novel loss function based on
the EarthMover distance was used in their schema. For this schema,
a generative network (generator) is constructed to produce the lung
mask, and a discriminative network (discriminator) is constructed
to differentiate the generated synthetic maps from the ground truth.
The generator and discriminator are trained sequentially and
iteratively in a competing way to boost the performance of the
other, which assists the generator to generate lung segmentation
results that cannot be differentiated from the ground truth. After
exploring various discriminator designs for lung segmentation, they
achieved the best performance by designing the discriminative
network as a regression network. This proposal had an
Intersection over Union (IOU) of 0.923 and an HD of 3.380 mm
on the LIDC-IDRI dataset in which the patients were selected from
the public database founded by the Lung Image Database
Consortium and Image Database Resource Initiative. They also
evaluated the proposal on another private dataset, achieving an IOU
of 0.938 and an HD of 2.812 mm. Considering both using the
LIDC-IDRI dataset, a comparison between LGAN and U-Net (46)
had been conducted. According to the results of the paper, the DSC
of LGAN and U-Net in [mean, median] form were [0.970 ± 0.59,
0.9845] vs. [0.985 ± 0.03, 0.9864]. A better DSC indicates that
LGAN outperforms commonly used U-Net.

Pawar et al. (67) developed a deep learning algorithm to
effectively segment lung, which is denoted as LungSeg-Net.
LungSeg-Net is similar to GAN, including two networks, viz.
generator and discriminator. The generator is composed of three
major components: (a) encoder block to extract feature maps; (b)
multi-scale dense feature extraction module to extract multi-scale
features from the set of encoded feature maps; (c) decoder block to
generate the output lung segmentation map from the multi-scale
features. They compared the performance of the proposed LungSeg-
Net with the existing state-of-the-art CNNs viz. U-Net (46),
ResNet (68), VGG16 (69). The DSC of lung achieved with the
proposed network ranges between 0.9140 and 0.9899 on average.
July 2021 | Volume 11 | Article 717039
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They concluded that the LungSeg-Net showed considerable
performance improvement compared to other CNNs in the lung
segmentation with different interstitial lung disease patterns.

At present, OARs segmentation is currently limited to delineate
the whole organ in the majority of studies related to automatic
segmentation. Yet, there is evidence suggesting that dose to
sensitive cardiac substructures may give rise to cardiac toxicities
(70–72) involving cardiomyopathy, coronary artery disease etc.
(73). Especially, coronary artery calcification onset has been more
relevant to the maximum dose to the left anterior descending
artery, compared to the mean heart dose (74). However, because of
the limited ability to contour these sensitive cardiac substructures,
these dose thresholds are unavailable. Recently, Morris et al. (75)
explored the accurate segmentation of twelve cardiac
substructures, including chambers, great vessels, coronary
arteries, etc. They proposed a 3D U-Net combined with a fully
connected conditional random field to automatically segment
cardiac substructures. Eventually, they obtained acceptable
segmentations for chambers (DSC: 0.88 ± 0.03), great vessels
(DSC: 0.85 ± 0.03), and pulmonary veins (DSC: 0.77 ± 0.04),
compared to inferior performance on coronary arteries
(DSC: 0.50 ± 0.14). In terms of further refinement of coronary
artery segmentation, the author stated that utilizing conditional
random fields as RNNs may be worth of studying.
Frontiers in Oncology | www.frontiersin.org 6
It’s also worth noting that most works focused on segmenting
OARs using deep learning based algorithms in single energy CT
images. On the other hand, dual energy CT which enables to
acquire two different CT images concurrently (76) could supply
higher contrast and more information about differences between
tissues, compared with single energy CT. Therefore, using dual
energy CT as input of deep learning network may help achieve
more accurate segmentation (77, 78). Chen et al. (78) designed
four 3D FCNs on basis of U-Net and ResNet for automatically
segmenting the OARs using dual energy CT images. The four
networks merged the extra information into the network in
different ways: (a) linearly combining dual energy images into
one mixed image as the input; (b) using the dual energy images as
two channels of the same input; (c) extracting features of the low
energy image and the high energy image separately and fusing
them at the bottom of the U-Net; (d) handling the low energy
image and the high energy image separately and fusing the
prediction results into one finally. According to their test
results, the best mean DSC were 97.5 ± 0.64%, 97.6 ± 1.61%,
and 96.2 ± 1.64%, for the left lung, right lung, and
liver, separately.

Table 1 is a brief summary of the aforementioned works.
Tables 2–6 shows the comparison of selected works on the
segmentation of different OARs.
TABLE 1 | Selected works on deep learning-based automated segmentation of OARs for lung cancer.

Reference Year Networks OARs Research Highlight

Zhao et al. (35) 2018 FCN lung introducing a multi-instance loss and a conditional adversary loss to
facilitate more correct segmentation

Agnes et al. (57) 2018 U-Net lung exploring the performance of different convolutional network configurations, and
comparing proposed model with other methods such as the thresholding method etc.

Zhu et al. (59) 2018 U-Net lung, heart, esophagus, spinal cord,
and liver

replacing the common convolutional layers with residual convolution units

Dong et al. (38) 2019 U-net-GAN left lung, right lung, heart,
esophagus, and spinal cord

proposing a 2.5D patch-based GAN to delineate the left lung, right lung, and
heart, two 3D patch-based GAN to delineate esophagus and spinal cord separately

Feng et al. (39) 2019 U-Net left lung, right lung, heart,
esophagus, and spinal cord

developing two 3D U-Nets, one for localizing each OAR and the other for individually
segmenting each OAR

Harten et al. (61) 2019 CNN heart, aorta, trachea, esophagus combining a 2D CNN which utilizes dilated convolutions with a 3D CNN
which employs residual blocks

He et al. (62) 2019 adapted U-Net heart, aorta, trachea, esophagus proposing a U-like architecture in which the encoder could set diverse network
framework, and training it under the multi-task learning schema

Vesal et al. (63) 2019 U-Net heart, aorta, trachea, esophagus employing dilated convolutions in the bottleneck of a 2D U-Net styled network and
residual connections in the encoder branch

Han et al. (40) 2019 V-Net heart, aorta, trachea, esophagus proposing a multi-resolution VB-Net architecture by replacing the convolutional
layers inside the V-Net with a bottleneck framework

Zhang et al. (64) 2020 CNN left lung, right lung, heart,
esophagus spinal cord, and liver

establishing a dilated CNN structure based on ResNet-101, and comparing its
performance with atlas-based and manual segmentation

Hu et al. (65) 2020 Mask R-CNN lung using a Mask R-CNN combined with supervised and unsupervised machine
learning methods to segment the lung

Tan et al. (66) 2020 GAN lung proposing a GAN-based architecture combing a novel loss function based on
the Earth Mover distance for lung segmentation

Pawar et al. (67) 2020 c-GAN lung introducing a c-GAN structure that used multi-scale dense feature extraction
blocks for the lung segmentation with different interstitial lung disease patterns

Morris et al. (75) 2020 U-Net cardiac substructures proposing a 3D U-Net combined with fully connected conditional random fields to
segment twelve cardiac substructures

Chen et al. (78) 2020 FCN left lung, right lung, liver, spleen, left
kidney, and right kidneys

proposing a 3D FCN based on the U-Net and ResNet to segment OARs
in dual energy CT images
FCN, fully convolutional network; GAN, generative adversarial network; OAR, organ-at-risk; 3D, three dimensional; 2D, two dimensional; CNN, convolutional neural network; R-CNN,
Region- convolutional neural network; c-GAN, conditional generative adversarial network.
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Lung Tumor Segmentation
The usage of deep learning techniques assists radiation
oncologists in segmenting lung on CT or magnetic resonance
imaging (MRI) images with greater accuracy, consistency, and
efficiency. Diverse network architectures are established by
different authors in their published papers. Owing to the state-
of-the-art performance of CNNs in challenging problems, for
instance, computer vision, object detection, and image
recognition, researchers gradually shift to using CNNs for the
GTV segmentation and auxiliary diagnosis.

Inspired by CNN architectures, Wang et al. (36) introduced a
new patient-specific adaptive convolutional neural network (A-net)
for automatically contouring lung tumors seen on weekly MRI
images. A-net mainly consists of three convolution blocks, three
fully connected blocks, and one SoftMax layer. A dropout layer
comes along with a fully connected layer in the last three levels,
which was used to solve the potential over-fitting problem. 2D
patches with a size of 3 cm × 3 cm were cropped as inputs to A-
net within the region of interest of the weekly MRI scans. A-net
utilized the previous weekly MRI images and the segmentation of
the GTV to train and update the network, and the current weekly
MRI images were allocated as testing data. With this method,
they obtained the segmentation results of the weekly MRI with a
DSC and a precision of 0.82 ± 0.10 and 0.81 ± 0.10, respectively.

Zhang et al. (79) introduced another modified ResNet to
segment the GTV of non-small cell lung cancer patients on the
CT images. In this method, the deep features of the input data
were effectively extracted using two different residual
convolutional blocks. The feature maps generated at all levels
of the ResNet were merged into a single output. This
modification made shallow surface features fuse with the deep
semantic features to generate dense pixel outputs. Utilizing the
proposed modified ResNet, the average DSC level achieved is
0.73. A comparison between modified ResNet and U-Net had
been conducted on the same dataset. They concluded that
Frontiers in Oncology | www.frontiersin.org 7
modified ResNet outperforms U-Net, because U-Net has a
lower DSC with a mean value of 0.64.

Given that the residual connections solely employed in ResNet
do not eliminate the issue of poor localization and blurring arising
from consecutive pooling operations, Pohlen et al. (80) proposed the
full resolution residual neural network (FRRN) which passes
features at full image resolution to each layer. In 2018, Jiang et al.
(41) modified the FRRN and proposed two multiple resolution
residually connected network (MRRN) architectures called
incremental-MRRN and dense-MRRN to automatically segment
lung tumors. When combining feature maps at multiple image
resolutions and feature levels, a dense feature representation is
simultaneously generated so that the performance of the MRNN
on recovering the input image spatial resolution is better than other
networks. The main difference between incremental-MRRN and
dense-MRRN is that incremental-MRRN sequentially integrates
higher spatial resolution information starting from the
immediately previous residual stream, whereas dense-MRRN only
residually integrates information from the immediate higher spatial
resolution feature maps. In the work, the performance of different
networks, including U-Net (46), SegNet (81) and FRRN (80) was
compared with two MRNNs. The DSC, 95%HD, sensitivity and
precision of U-Net, SegNet, FRRN, incremental-MRRN and dense-
MRRN in three different datasets are shown in Table 7. According
to their research results, it could be concluded that incremental-
MRRN shows more robust performance than U-Net, SegNet,
and FRRN.

In addition to single-modality segmentation, multi-modality co-
segmentation have also been proposed (82, 83). Zhao et al. (82)
proposed a novel scheme that utilizes both positron emission
tomography (PET) and CT image information concurrently for
lung tumor delineating. In their scheme, the network framework
consisted of two parts namely multi-task training module and
feature fusion module. The multi-task training module included
two parallel sub-segmentation branches used for extracting features
TABLE 2 | Comparison of selected works on segmentation of lung.

Reference Year Networks Evaluation Metrics

DSC IOU HD (mm) 95%HD (mm) MSD (mm) Sensitivity Specificity

Zhao et al. (35) 2018 FCN LIDC: 0.92 – – – – – –

CLEF: 0.96
HUG: 0.98

Agnes et al. (57) 2018 U-Net 0.95 ± 0.03 – – – – 0.95 ± 0.03 0.99 ± 0.01
Zhu et al. (59) 2018 adapted U-Net 0.95 ± 0.01 – – 7.96 ± 2.57 1.93 ± 0.51 – –

Dong et al. (38) 2019 U-net-GAN Left: 0.97 ± 0.01 – – 2.07 ± 1.93 0.61 ± 0.73 0.97 ± 0.02 0.9989 ± 0.0010
Right: 0.97 ± 0.01 2.50 ± 3.34 0.65 ± 0.53 0.96 ± 0.02 0.9992 ± 0.0007

Feng et al. (39) 2019 3D U-Net Left: 0.98 ± 0.01 – – 2.10 ± 0.94 0.59 ± 0.29 – –

Right: 0.97 ± 0.02 3.96 ± 2.85 0.93 ± 0.57
Zhang et al. (64) 2020 ResNet-101 Left: 0.95 ± 0.01 – – – 1.10 ± 0.15 – –

Right: 0.94 ± 0.02 2.23 ± 2.33
Hu et al. (65) 2020 Mask R-CNN 0.97 ± 0.03 – – – – 0.97 ± 0.09 0.9711 ± 0.0365
Tan et al. (66) 2020 GAN – 0.938 2.812 – – – –

Chen et al. (78) 2020 3D FCN Left: 0.98 ± 0.01 – – – – – –

Right: 0.98 ± 0.02
July 20
21 | Volume 11
FCN, fully convolutional network; LIDC, Lung Image Database Consortium; CLEF, Conference and Labs of the Evaluation Forum; HUG, University Hospitals of Geneva; DSC, Dice similarity
coefficient; IOU, intersection over Union; HD, Hausdorff distance; 95%HD, 95% Hausdorff distance; MSD, mean surface distance; R-CNN, Region- convolutional neural network; GAN,
generative adversarial network.
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TABLE 3 | Comparison of selected works on segmentation of esophagus.

Reference Year Networks Evaluation Metrics

DSC HD (mm) 95%HD (mm) MSD (mm)

Zhu et al. (59) 2018 adapted U-Net 0.71 ± 0.05 – 7.83 ± 2.85 2.18 ± 0.80
Dong et al. (38) 2019 U-net-GAN 0.75 ± 0.08 – 4.52 ± 3.81 1.05 ± 0.66
Feng et al. (39) 2019 3D U-Net 0.73 ± 0.09 – 8.71 ± 10.59 2.34 ± 2.38
Harten et al. (61) 2019 CNN 0.85 ± 0.05 3.4 ± 2.3 – –

He et al. (62) 2019 U-Net with multi-task learning 0.86 0.274 – –

Vesal et al. (63) 2019 2D U-Net 0.86 0.331 – –

Han et al. (40) 2019 VB-Net 0.87 0.259 – –

Zhang et al. (64) 2020 ResNet-101 0.73 ± 0.07 – – 1.38 ± 0.44
Frontiers in Oncology | ww
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DSC, Dice similarity coefficient; HD, Hausdorff distance; 95%HD, 95% Hausdorff distance; MSD, mean surface distance; GAN, generative adversarial network.
TABLE 4 | Comparison of selected works on segmentation of spinal cord.

Reference Year Networks Evaluation Metrics

DSC 95%HD (mm) MSD (mm)

Zhu et al. (59) 2018 adapted U-Net 0.79 ± 0.03 4.01 ± 2.05 1.25 ± 0.23
Dong et al. (38) 2019 U-net-GAN 0.90 ± 0.04 1.19 ± 0.46 0.38 ± 0.27
Feng et al. (39) 2019 3D U-Net 0.89 ± 0.04 1.89 ± 0.63 0.66 ± 0.25
Zhang et al. (64) 2020 ResNet-101 0.82 ± 0.05 – 0.87 ± 0.21
DSC, Dice similarity coefficient; HD, Hausdorff distance; 95%HD, 95% Hausdorff distance; MSD, mean surface distance; GAN, generative adversarial network.
TABLE 5 | Comparison of selected works on segmentation of heart.

Reference Year Networks Evaluation Metrics

DSC HD (mm) 95%HD (mm) MSD (mm)

Zhu et al. (59) 2018 adapted U-Net 0.91 ± 0.03 – 7.98 ± 4.56 2.92 ± 1.51
Dong et al. (38) 2019 U-net-GAN 0.87 ± 0.05 – 4.58 ± 3.67 1.49 ± 0.85
Feng et al. (39) 2019 3D U-Net 0.93 ± 0.02 – 6.57 ± 1.50 2.30 ± 0.49
Harten et al. (61) 2019 CNN 0.95 ± 0.01 2.0 ± 1.1 – –

He et al. (62) 2019 U-Net with multi-task learning 0.95 0.138 – –

Vesal et al. (63) 2019 2D U-Net 0.94 0.226 – –

Han et al. (40) 2019 VB-Net 0.95 0.127 – –

Zhang et al. (64) 2020 ResNet-101 0.89 ± 0.05 – – 1.65 ± 0.48
DSC, Dice similarity coefficient; HD, Hausdorff distance; 95%HD, 95% Hausdorff distance; MSD, mean surface distance; GAN, generative adversarial network.
TABLE 6 | Selected works on segmentation of other OARs (liver, aorta, trachea).

Reference Year Networks Evaluation Metrics

DSC HD (mm) MSD (mm)

Zhu et al. (59) 2018 adapted U-Net Liver: 0.89 ± 0.02 – 3.21 ± 0.93
Zhang et al. (64) 2020 ResNet-101 Liver: 0.94 ± 0.03 – 2.03 ± 1.49
Chen et al. (78) 2020 3D FCN Liver: 0.96 ± 0.16 – –

Harten et al. (61) 2019 CNN Aorta: 0.93 ± 0.01 2.7 ± 3.6 –

Trachea: 0.91 ± 0.02 2.1 ± 1.0 –

He et al. (62) 2019 U-Net with multi-task learning Aorta: 0.95 0.113 –

Trachea: 0.92 0.182 –

Vesal et al. (63) 2019 2D U-Net Aorta: 0.94 0.297 –

Trachea: 0.93 0.193 –

Han et al. (40) 2019 VB-Net Aorta: 0.95 0.121 –

Trachea: 0.93 0.145 –
DSC, Dice similarity coefficient; HD, Hausdorff distance; 95%HD, 95% Hausdorff distance; MSD, mean surface distance; GAN, generative adversarial network.
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from PET or CT image independently. Each sub-segmentation
branch was designed on the basis of the V-Net which is a 3D FCN.
Afterwards, two feature maps generated by two parallel branches
were fed into the feature fusion module which was comprised of
cascaded convolutional operations. In the feature fusion module,
high-dimensional information from PET and CT were fused, and
re-extracted to generate outputs. They compared the performance
of the proposed scheme with scheme utilizing PET or CT only on
the same dataset. The comparison of three schemes on DSC were as
follows: (PET&CT: 0.85 ± 0.08; PET only: 0.83 ± 0.10; CT only: 0.76
± 0.07).

In terms of lung cancer, deep learning algorithms proposed in
various works have outperformed the existing solutions in most
scenarios. However, most recent studies predominantly focused on
the segmentation of the GTV, and few studies have explored the
usage of this state-of-the-art technique for clinical target volume
(CTV) segmentation. Bi et al. (84) established a deep dilated residual
network based on ResNet-101 to automatically delineate the CTV
for non-small cell lung cancer patients receiving postoperative RT.
They summarized that with the assistance of dilated residual
network, moderate segmentation accuracy was obtained for the
CTV with a DSC of 0.75 ± 0.06. It is more challenging to segment
the CTV perhaps owing to the following reasons. The postoperative
CTV cannot be easily recognized by discriminating tissue density as
it was for the GTV because the CTV usually contains the high-risk
nodal regions and bronchial stump. Moreover, postoperative
changes, for instance blurred soft tissue boundary, ectopic target
due to diverse lobectomies, and a wide variety of different patient’s
lung volume, possibly increase anatomical diversity. Besides, the
definition of the CTV is more complex compared with organs.
Inter-observer variability resulting from different practical
experiences and clinical guidelines has been considered to be a
huge challenge in the automated CTV delineating. More
information about the aforementioned works is summarized
in Table 8.
DISCUSSION

Comparison Between the Atlas-Based
and Deep Learning Based
Automatic Segmentation
Currently, the atlas-based automatic segmentation technique is
most commonly employed in clinical practice. The atlas-based
Frontiers in Oncology | www.frontiersin.org 9
automatic segmentation utilizes a reference image as an atlas, in
which the boundaries of interested organs are already precisely
delineated. The reference image and the new image to be
segmented are registered, and the optimal transformation
parameters between the two images are obtained. Then the
new test image is automatically segmented by propagating the
label in the atlas segmentation onto the new test image based on
the obtained transformation parameters (85–87). This method
has a precise segmentation result in theory, but in practice the
segmentation accuracy relies heavily on the similarity between
the reference image and the image to be segmented. Additionally,
the choice of the deformable image registration algorithm plays a
vital role in the performance of segmentation. Due to organ
morphology, variety of the individual patient, and image
artifacts, accurate image registration is not always ensured.
While this issue may be mitigated with a larger and more
diverse atlas dataset, it is difficult to contain all potential
patterns in the templates given the unpredictability of tumor
shape. Besides, accurate image registration is costly in
computation, and a large number of atlas templates make the
computation cost soaring with the increase in the segmentation
accuracy (38, 88–90).

Several studies compared the performance of automatic
segmentation using atlas-based and deep learning based
techniques separately to delineate the OARs in lung cancer, as
shown in Table 9. Lustberg et al. (91) compared user adjusted
contours after an atlas-based and deep learning based delineation,
against manual contours. In terms of the time saved, they reported
that the total median was 7.8 min and 10 min for using atlas-based
and deep learning based contouring software, respectively. With
regard to the esophagus, deep learning based contouring software
outperformed the atlas-based contouring software with time saved
1.5 min vs. 0.3min. Zhu et al. (59) compared atlas-based with deep
CNN-based techniques in aspects of automatic segmentation for
multiple OARs, using DSC and MSD as evaluation metrics. In
respect of the heart, lungs and liver, there was no significant
difference between the atlas-based and the deep CNN-based
techniques. As for the spinal cord and the esophagus, the deep
CNN-based technique had a superior performance than the atlas-
based technique (DSC: 0.71 vs. 0.54 &MSD: 2.6 mm vs. 3.1 mm for
the esophagus; DSC: 0.79 vs. 0.71 & MSD: 1.2 mm vs. 2.2 mm for
the spinal cord). Zhang et al. (64) also compared the CNN-based
and atlas-based automatic segmentation techniques. In their study,
the CNN-based method performed better than the atlas-based
TABLE 7 | Comparison of different networks on segmentation of lung tumors in (41).

Networks TCIA dataset MSKCC dataset LIDC dataset

DSC 95%HD Sensitivity Precision DSC 95%HD Sensitivity Precision DSC 95%HD Sensitivity Precision

U-Net 0.68 15.51 0.73 0.71 0.65 7.87 0.75 0.66 0.58 4.95 0.80 0.64
SegNet 0.70 15.24 0.73 0.72 0.66 7.92 0.72 0.69 0.57 4.48 0.77 0.60
FRRN 0.71 12.66 0.75 0.73 0.71 7.72 0.69 0.71 0.60 2.91 0.76 0.64
incremental-MRRN 0.74 7.94 0.80 0.73 0.74 5.85 0.82 0.72 0.68 2.60 0.85 0.67
dense-MRRN 0.73 8.10 0.79 0.73 0.73 5.94 0.80 0.72 0.67 2.72 0.82 0.70
Ju
ly 2021 | Vo
lume 11 | Arti
TCIA, The Cancer Imaging Archive; MSKCC, Memorial Sloan Kettering Cancer Center; LIDC, Lung Image Database Consortium; DSC, Dice similarity coefficient; 95%HD, 95% Hausdorff
distance; FRRN, full resolution residual neural network; MRRN, multiple resolution residually connected network.
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method in the left lung (DSC: 0.948 vs. 0.932; MSD: 1.10 mm vs.
1.73 mm), heart (DSC: 0.893 vs. 0.858; MSD: 1.65 mm vs. 3.66 mm)
and liver (DSC: 0.937 vs. 0.936; MSD: 2.03 mm vs. 2.11 mm). The
CNN-based method segmented the esophagus with a mean DSC of
0.732 and an average MSD of 1.38 mm, whereas that of the atlas-
based method for the esophagus was unavailable.

Considering the comparison results mentioned above, we can
summarize that deep learning based automatic segmentation is
more accurate and efficient in delineating the multiple OARs in
lung cancer. Although it is not yet available to directly apply a
deep learning based algorithm to clinical segmentation for OARs
in lung cancer RT, we can use the segmentation generated from it
as a starting point and manually adjust it to meet clinical
guidelines. Overall, deep learning based automatic segmentation
can potentially be employed in clinical routines to relieve
radiation oncologists of the tedious contouring work.

CNN, U-Net, and GAN
With the processing of the CNN layers, the level of abstraction of
the extracted features gradually increases. Shallower layers grasp
local features, while deeper layers capture global features by
using convolution kernels whose receptive fields are much
Frontiers in Oncology | www.frontiersin.org 10
broader. Generally speaking, the deeper CNNs can solve more
complex issues. However, with the network depth increasing, the
degradation phenomenon has been reported. Surprisingly, such
degradation phenomenon is not due to overfitting. Besides,
continuously adding more layers to a suitable deep network
results in bigger training error. Finally, even though the deeper
networks perform better, they are difficult to train owing to the
gradient vanishing problem. These reveal that not all CNNs are
easy to optimize and the network depth is of crucial importance.
It is tedious to find the optimal network depth by trial and error.
Introducing residual connections to create shortcuts among
blocks of layers may be beneficial to achieve fast and stable
training. Nevertheless, when the number of layers in CNNs was
rather small, the residual connections may not only fail to help
reduce the training difficulty, but also decrease the complexity of
the network and thus the expressive power. It is worthy of
considering whether or not to add residual connections while
designing the network architecture.

U-Net is one of the most popular medical image
segmentation networks (46). It is possible to train the U-Net to
produce precise segmentations with very little labeled training
data. Both convolutions and down-sampling operations are
TABLE 8 | Selected works on deep learning-based automated segmentation of lung tumors.

Reference Year Network Datasets Input Targets Results Research Highlight

Wang et al. (36) 2018 CNN 9 patients MRI GTV DSC:
0.82 ± 0.10

establishing a patient-specific adaptive patch-based
CNN and a population-based CNN, and comparing their
performance with each otherPrecision:

0.81 ± 0.10
Zhang et al. (79) 2020 ResNet 330 patients (training set:

300; test set: 30)
CT GTV DSC:

0.73 ± 0.07
proposing a modified version of ResNet to segment the
GTV for NSCLC patients and comparing its performance
with U-netJSC:

0.68 ± 0.09
TPR:

0.74 ± 0.07
FPR:

0.0012 ± 0.0014
Zhao et al. (82) 2018 3D FCN 84 patients (training set: 48;

test set:36)
PET/CT Lung

tumor
DSC:

0.85 ± 0.08
proposing a multi-modality co-segmentation network and
comparing its performance with utilizing CT or PET only

Jiang et al. (41) 2019 MRRN 1210 patients from three
datasets (377 from TCIA for
training, 304 from MSKCC
for validating, and 529 from
LIDC for testing)

CT Lung
tumor

form:
(TCIA, MSKCC, LIDC)

developing two multiple resolution residually connected
network viz. incremental-MRRN and dense-MRRN, and
comparing their performance with other commonly used
networks

DSC:
(0.74, 0.75, 0.68)

Precision:
(0.73, 0.72, 0.67)

Sensitivity:
(0.80, 0.82, 0.85)
95%HD (mm):

(7.94, 5.85, 2.60)
Bi et al. (84) 2019 ResNet-

101
269 patients (training set:
200; validation set: 50;
test set:19)

CT CTV DSC:
0.75 ± 0.06

introducing a deep residual network with dilated blocks
to segment the CTV for NSCLC patients, and comparing
with manual delineationMDTA:

2.97 ± 0.91
CV:

0.129 ± 0.040
SDD:

0.47 ± 0.22
CNN, convolutional neural network; MRI, magnetic resonance imaging; GTV, gross tumor volume; DSC, Dice similarity coefficient; RMSD, root mean surface distance; ResNet, residual
network; CT, computed tomography; JSC, Jaccard similarity coefficient; TPR, true positive rate; FPR, false positive rate; NSCLC, non-small cell lung cancer; MRRN, multiple resolutions
residually connected network; TCIA, The Cancer Imaging Archive; MSKCC, Memorial Sloan Kettering Cancer Center; LIDC, Lung Image Database Consortium; 95%HD, 95% Hausdorff
distance; CTV, clinical target volume; MDTA, mean distance to agreement; CV, coefficient of variation; SDD, standard distance deviation.
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usually local operations, meaning that a lot of local operators
need to be stacked in a cascade way to aggregate long-range
information (92). Meanwhile, the amount of training parameters
also increases while stacking them, which becomes a large
obstacle to improve the calculation efficiency. Additionally,
more down-sampling operations lead to the loss of more
spatial information during encoding, resulting in poor
accuracy of medical image segmentation. Of course, those
issues exist in the decoder as well. In allusion to this instance,
some researchers attempt to address those limitations. Wang
et al. successfully solved this issue by proposing a novel network
architecture called non-local U-Net, which is equipped with
flexible global aggregation blocks based on the self-attention
operators (92–95).

GAN, as a method of unsupervised deep learning, is
commonly used in medical image segmentation. GAN can
train any kind of network architecture as its generator
network. GAN dispenses with the need for using Markov chain
to sample repeatedly, and for inferencing in the learning process,
which avoids the difficulty of calculating the probability. But
there are some challenges faced by GAN, such as how to break
through the non-convergence problem and collapse problem
(96) which may occur in the learning process.
Frontiers in Oncology | www.frontiersin.org 11
Current Challenges and Limitations
With the significant progress in computer science and
techniques, deep learning algorithms play an indispensable role
in image segmentation with their compelling ability to extract
features automatically. According to studies in recent years,
image segmentation technologies based on deep learning have
surpassed traditional segmentation methods in segmentation
efficiency and accuracy. Nonetheless, deep learning based
automatic segmentation techniques still face various challenges
and limitations.

Low Contrast Issue
Unlike natural images, the information contained in medical
images is more complicated, and the similarity between the
target and the surrounding background in the image is
extremely high for low contrast tissues. Therefore, it is difficult
to accurately detect target boundaries or to delineate the target
from the background. Besides, to guarantee the RT outcomes,
high accuracy is required. So, the first problem to solve is that
how to precisely identify the boundaries of low contrast tissues
such as esophagus etc. and delineate them with superior
performance. Currently, proposed deep learning based
automatic segmentation algorithms merely managed to
TABLE 9 | Selected works on comparison between atlas-based and deep learning-based automated segmentation.

Reference Year Evaluation Metrics Comparison Results

atlas-based deep learning-based

Lustberg et al. (91) 2017 time saved 7.8 min 10 min
(compared with manual segmentation)

Zhu et al. (59) 2018 DSC heart: 0.90 ± 0.04 heart: 0.91 ± 0.03
liver: 0.87 ± 0.05 liver: 0.89 ± 0.02
esophagus: 0.54 ± 0.08 esophagus: 0.71 ± 0.05
spinal cord: 0.71 ± 0.06 spinal cord: 0.79 ± 0.03
lungs: 0.95 ± 0.01 lungs: 0.95 ± 0.01

MSD (mm) heart: 3.14 ± 1.31 heart: 2.92 ± 1.51
liver: 3.83 ± 1.74 liver: 3.21 ± 0.93
esophagus: 2.67 ± 1.26 esophagus: 2.18 ± 0.80
spinal cord: 3.03 ± 1.57 spinal cord: 1.25 ± 0.23
lungs: 1.85 ± 0.53 lungs: 1.93 ± 0.51

95%HD (mm) heart: 9.53 ± 4.99 heart: 7.98 ± 4.56
liver: 11.87 ± 5.06 liver: 10.06 ± 4.28
esophagus: 9.45 ± 4.64 esophagus: 7.83 ± 2.85
spinal cord: 11.97 ± 6.88 spinal cord: 4.01 ± 2.05
lungs: 8.07 ± 2.39 lungs: 7.96 ± 2.57

Zhang et al. (64) 2020 average time 2.4 minutes 1.6 minutes
DSC left lung: 0.932 ± 0.040 left lung: 0.948 ± 0.013

right lung: 0.943 ± 0.017 right lung: 0.943 ± 0.015
heart: 0.858 ± 0.077 heart: 0.893 ± 0.048
spinal cord: 0.868 ± 0.031 spinal cord: 0.821 ± 0.046
liver:0.936 ± 0.012 liver: 0.937 ± 0.027
esophagus: – esophagus: 0.732 ± 0.069

MSD (mm) left lung: 1.73 ± 1.58 left lung: 1.10 ± 0.15
right lung: 2.17 ± 2.44 right lung: 2.23 ± 2.33
heart: 3.66 ± 2.44 heart: 1.65 ± 0.48
spinal cord: 0.66 ± 0.16 spinal cord: 0.87 ± 0.21
liver: 2.11 ± 1.31 liver: 2.03 ± 1.49
esophagus: – esophagus: 1.38 ± 0.44
July 2021 | V
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segment high contrast organs in CT with satisfactory results, and
usually failed to segment the esophagus with high accuracy. This
inferior performance may be explained by the following reasons.
First, the appearance of esophagus varies depending onwhether it is
full of air, of remains of orally given contrast agent, or both (97).
Second, the esophagus has certain mobility, which leads to the fact
that the esophagus has a greatly inhomogeneous appearance and a
versatile shape. Furthermore, studies have indicated that owing to
respiration and cardiac motion, esophageal intrafraction motion is
generally between 5 and 10 mm and can reach up to 15 mm (98–
100). How to improve the inferior segmentation accuracy of the
esophaguswill becomeoneof the key researchdirections.MRIhas a
superior visualization of low contrast tissues compared to CT.
Perhaps using MRI data as input could improve the segmentation
accuracy to a certain extent. Nevertheless, we ought to put more
emphasis on improving existing deep learning segmentation
algorithms or coming up with novel ones. Given that 3D-based
convolutions could address volumetric homogeneity better and
take full advantage of the 3D spatial context compared with 2D-
based convolutions, it may be beneficial to use a 3D network to
segment the esophagus which has a thin tubular and continuous
structure. Fechter et al. (97) have proposed a new scheme and
achieved competitive results. Firstly, they employed a 3D-FNN to
yield a first estimation of the esophagus. Then, an active contour
model and a random walker approach were used to refine the first
estimation to the final contour.

Size of Dataset
The size of the training dataset greatly affects the robustness of
deep learning algorithms. It could be argued that the
generalization of deep learning algorithms is expected to
increase with an enlarged training dataset. Currently, most
studies use different datasets collected individually, except in
some segmentation competitions. Besides, most of the datasets
reported in this review are not adequate in the era of big data.
Taking a limited dataset for training and testing may lead to
model over-fitting. Hence the efficient generalization of the
proposed algorithms cannot be demonstrated. Utilizing a
transfer learning strategy may potentially handle the issue of
limited data size. Image-Net is typically employed for pre-
training networks to process medical images (101). On the
other hand, data augmentation is also an effective method to
address the issue of a limited dataset. Furthermore, it is worth
considering of establishing a public image dataset with a high-
quality ground truth label to make advances in deep learning
based automatic segmentation techniques.

However, it is not practical to establish an adequate public
image dataset for the initial training of the deep learning model
within a short time. At present, the amount of data utilized for
the initial training is most likely not adequate. With the
accumulation of clinical cases, we can utilize new cases to
further fine-tune the deep learning model to achieve better
performance. Notably, catastrophic forgetting may occur
during the fine-tuning process. While we can solve this issue
by retraining the deep learning model utilizing both old and new
cases, this approach is tedious and inefficient. Moreover, manual
labeling the new cases is also a time-consuming and laborious
Frontiers in Oncology | www.frontiersin.org 12
task. In view of such a situation, Men et al. (102) proposed a
novel scheme. In addition to training an automatic segmentation
network, they also trained a binary classifier to judge the quality
of the automatic segmentation. For a batch of new clinical cases,
the segmentation network firstly performs the automatic
segmentation. Then, the binary classifier judges the
segmentation result and selects the case with a DSC less than
the setting threshold. These selected cases are manually labeled
by radiotherapy experts and then used to fine-tune the
segmentation network to improve its performance. Their
scheme remarkably reduces the manual labeling effort and
enables the deep learning model to continually update over the
accumulation of clinical cases, thus achieving the strategy of
continual learning. Their method could be explored to efficiently
improve the robustness of deep learning models in the future.

Lack of Consensus on Guidelines
Another limitation of deep learning based automatic segmentation
technique is that we usually cannot objectively determinewhether a
clinically acceptable ground truth is an optimal case due to lack of
consensus. In general, the shape and position of organs vary greatly
amongdifferent patients due to race, gender, age and progression of
the disease etc. Radiation oncologists manually segment the OARs
and GTV to generate the ground truth depending on their own
prior knowledge and experience, which leads to inconsistencies in
process of generating the ground truth for both inter- and intra-
observers.Ground truthplays a vital role in theperformanceofdeep
learning algorithms. Moreover, differences in image acquisition
protocols (such as posture and breath-hold conditions etc.) could
also potentially affect the performance of deep learning algorithms.
Besides, it is also necessary to establish international consensus on
guidelines to eliminate the inconsistencies that existed in
contouring the ground truth for both inter- and intra-observers.

Network Design
With the increase of the number of layers used in the network, the
deep learning algorithm has stronger feature expressive power,
making subsequentpredictions easier andmore accurate.However,
the complexity of the deep learning algorithm also increases
simultaneously, which means that the network training must take
more time andGPUmemory. Furthermore, to extract and integrate
multi-scale features, most existingmethods attempt to propose and
add more complex blocks and strategies to commonly used
networks, which significantly increases the GPU memory and
computation cost. So, it is worthwhile to think about how to
achieve a balance between network design and computation time
orcost. In this review, thehighest accuracy reported in termsofDSC
was achieved by Hu et al. (65) for the lung segmentation. They
combined the Mask R-CNN with the K-means kernel to achieve
accurate segmentation. With regard to OARs, Han et al. (40)
developed a multi-resolution VB-Net architecture and achieved
the best performance in segmentation of heart, aorta, trachea,
esophagus. Moreover, it is worthwhile to explore to stack
networks sequentially to build cascaded architectures or to build
multi-level nested architectures. Zhang et al. (103) designed a slice
classification model-facilitated 3D encoder-decoder network for
segmenting OARs in head and neck cancer. The utilization of the
July 2021 | Volume 11 | Article 717039
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slice classificationmodel alleviates class-imbalance issues existing in
small volumeOARs, and decreases unnecessary computation time.
Qin et al. (104) proposed a two-level nested U-Net structure called
U2-Net for salient object detection and obtained competitive
performance against other state-of-the-art networks at a low GPU
memory and computation cost. The researchers who are interested
in this domain can grope for novel network architectures so that the
performance of segmentation can be improved.

Clinical Issues
Deep learning algorithms are referred to as black-box algorithms
owing to lack of interpretability. It is hard to fully understand
how, and which factors result in poor segmentation
performance. Namely, the deep learning algorithm may fail to
segment the OARs and GTV in an unpredictable way which is
dangerous in clinical practice. Before deep learning based
segmentation techniques can be made clinically available, we
ought to consider the legal and ethical responsibilities, and the
issues of ensuing patient safety. Therefore, it is of vital
importance to implement an exhaustive, comprehensive, and
rigid quality assurance procedure for deep learning based
segmentation techniques to assure adequately high accuracy of
the segmentation with complete conformance to a set of safety
criteria. Independent scoring software and commercial third-
party assessment software may possibly serve as tools to handle
the issues originating from automated segmentation algorithms.
Lastly, it is also important to guarantee that all generated
segmentations information can be exported/imported
consistently and accurately to other systems such as the
treatment planning system. The limitation of the automatic
segmentation techniques should be stated so that the users are
aware and vendors can address these issues (105).
SUMMARY

Deep learning based automatic segmentation techniques have
rapidly become the state-of-the-art technique in delineating the
OARs and GTV in lung cancer RT. The auto-segmentation of
lung, heart and liver has achieved satisfactory results. However,
Frontiers in Oncology | www.frontiersin.org 13
one still has to study how to improve the segmentation
performance of esophagus taking into account low contrast
and respiration motion and other factors. When it comes to
segmentation of the GTV, the studies are rather few thus far and
the segmentation performance is poor. We still need to make
effort to improve accuracy in delineating the GTV and even the
CTV. Deep learning based automatic segmentation is a rapidly
developing field. Over the next few years, a further modification
of deep learning algorithms may be explored to address the
remaining issues and improve the accuracy of segmentation. It
holds great promise to employ a deep learning based technique
as a highly useful tool to automatically segment the OARs and
GTV for routine clinical use under expert visual inspection and
approval. The promising result of segmentation potentially
contributes to optimizing RT planning and developing
adaptive radiotherapy. Finally, cautions must be taken in terms
of all aspects of limitations before deep learning based automatic
segmentation is used for clinical practice.
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21. Vrtovec T, Močnik D, Strojan P, Pernus ̌ F, Ibragimov B. Auto-Segmentation
of Organs at Risk for Head and Neck Radiotherapy Planning: From Atlas-
Based to Deep Learning Methods. Med Phys (2020) 47(9):e929–50.
doi: 10.1002/mp.14320

22. Kholiavchenko M, Sirazitdinov I, Kubrak K, Badrutdinova R, Kuleev R,
Yuan Y, et al. Contour-Aware Multi-Label Chest X-Ray Organ
Segmentation. Int J Comput Assist Radiol Surg (2020) 15(3):425–36.
doi: 10.1007/s11548-019-02115-9

23. Yahyatabar M, Jouvet P, Cheriet F. Dense-Unet: A Light Model for Lung
Fields Segmentation in Chest X-Ray Images. Annu Int Conf IEEE Eng Med
Biol Soc IEEE Eng Med Biol Soc Annu Int Conf (2020) 2020:1242–5.
doi: 10.1109/embc44109.2020.9176033

24. Candemir S, Antani S. A Review on Lung Boundary Detection in Chest X-
Rays. Int J Comput Assist Radiol Surg (2019) 14(4):563–76. doi: 10.1007/
s11548-019-01917-1

25. Beveridge JR, Griffith J, Kohler RR, Hanson AR, Riseman EM. Segmenting
Images Using Localized Histograms and Region Merging. Int J Comput
Vision (1989) 2(3):311–47. doi: 10.1007/BF00158168

26. Pal NR, Pal SK. A Review on Image Segmentation Techniques. Pattern
Recognit (1993) 26(9):1277–94. doi: 10.1016/0031-3203(93)90135-J

27. Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. J Comput Syst Sci (1997) 55
(1):119–39. doi: 10.1006/jcss.1997.1504

28. Vo A-V, Truong-Hong L, Laefer DF, Bertolotto M. Octree-Based Region
Growing for Point Cloud Segmentation. ISPRS J Photogramm Remote Sens
(2015) 104:88–100. doi: 10.1016/j.isprsjprs.2015.01.011

29. Lee LK, Liew SC, Thong WJ. A Review of Image Segmentation Methodologies in
Medical Image. In:Advanced Computer and Communication Engineering Technology:
2015//2015. Cham: Springer International Publishing (2015). p. 1069–80.
Frontiers in Oncology | www.frontiersin.org 14
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