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Introduction
Cancers often harbor genomic types of instability, including 
chromosomal instability and microsatellite instability. How-
ever, cancer-associated variation may occur at several levels 
of gene regulation and, in particular, the processing of pre-
mRNA into mature mRNAs is important for proper protein 
synthesis and cell function. Alternative pre-mRNA splicing 
is a major source of genetic variation in human beings, and 
disruption of the splicing process may cause cancer.1,2 An 
improved understanding of the mechanisms that cause such 
structural transcript variation may provide important insights 
into disease development and progression. Alternative splicing 
is regulated by splicing factors, proteins that remove certain 
introns from the pre-mRNA, thereby joining the exons of the 
mRNA together. We have recently described transcriptome 
instability (TIN) in cancer, a genome-wide characteristic 
defined by the amounts of aberrant exon usage per sample, and 
shown that this is strongly and nonrandomly associated with 
splicing factor expression levels in several cancer types.3,4

High-resolution microarrays allow for genome-wide 
expression profiling at the exon level, enabling the detection 
of alternative splicing across a large series of samples. Here, 
we describe TIN, an R package enabling analysis of TIN 
from expression data obtained by Affymetrix Human Exon 
1.0 ST Arrays. A major challenge in large-scale data analysis 
is reproducibility. With this aim, the TIN package consists of 

a set of unambiguous procedures that use raw expression data 
(cell intensity [CEL] files) as input, which are readily acces-
sible and easy to extend. Information on how to install the 
package is provided in the Supplementary File.

Methods
The TIN software package is a collection of R modules that 
make use of the aroma.affymetrix5 framework to analyze exon-
level expression data. Starting from raw CEL files, the TIN tool 
applies the Finding Isoforms using Robust Multichip Analysis 
(FIRMA) method6 for preprocessing and alternative splicing 
detection. The FIRMA method is an extension of the robust 
multichip analysis (RMA) approach7 that not only estimates 
expression levels but also detects alternative splicing patterns 
between samples. Using the FIRMA method, the first two pre-
processing steps, background correction of perfect match probes 
and inter-chip quantile normalization, are performed in concor-
dance with standard RMA procedures. For the summarization 
step, a more general model that includes the relative change for 
each sample in a particular exon is introduced in the FIRMA 
approach to allow for alternative splicing or different levels of 
expression for each exon along the gene. For each exon sample 
combination, the FIRMA method calculates alternative splic-
ing scores, FIRMA scores, based on whether the probes system-
atically deviate from the expected gene expression level. Thus, 
the FIRMA scores are a measure of the relative ratio between 
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exon expression level and corresponding gene expression level. 
Strong positive and negative scores are indicative of differential 
exon inclusion and skipping, respectively.

The main idea is to test the association between splicing 
factor expression levels and the amounts of aberrant exon usage 
among samples. Sample-wise total relative amounts of aber-
rant exon usage are recorded from exons with FIRMA scores 
exceeding user-defined thresholds, and the correlation between 
aberrant exon usage amounts and splicing factor expression  
levels is tested across all samples. Two methods are implemented 
for testing if the correlation between sample-wise aberrant  
exon usage amounts and splicing factor expression levels is stron-
ger than expected by chance. First, permutations of the FIRMA 
scores are done for each probe set/exon across all samples, and 
the sample-wise amounts of aberrant exon usage are recalcu-
lated based on the permutations. If the correlation between the 
aberrant exon usage amounts and splicing factor expression lev-
els is considerably lower when based on permutations compared 
to the original FIRMA scores, it is an indication of splicing 
factor expression having impact on the aberrant exon usage in 
the samples. Second, correlation is tested using a number of 
miscellaneous gene sets instead of the original set of 280 splic-
ing factor genes. Equivalently, poorer correlation for random 
gene sets compared to the splicing factor set can be considered 

an indication that the aberrant exon usage to some extent was 
attributable to the expression levels of the splicing factor genes. 
An overview of the pipeline is outlined in Figure 1.

Example
Five R data sets are included in the package. By issuing the 
following commands:

data(splicingFactors)
data(geneSets)
data(geneAnnotation),

data.frames with the three sets of data will become available. 
The first object is a comprehensive list of 280 splicing factor 
genes created by combining search results from several public 
annotation databases.3 Second, one of the major collections of 
gene sets in the Molecular Signatures Database, MSigDB,8 
comprising 1,454 Gene Ontology gene sets, is included to see if 
the association between aberrant exon usage and gene expres-
sion levels is different in the splicing factor gene set compared 
to more general gene sets. Third, a list of matching gene sym-
bols and Affymetrix transcript cluster identifiers for the full 
genome (core set of human genes) are provided in the annota-
tion data set to provide easy access and enable generation of 
new gene sets. The main purpose behind the TIN package 
is to facilitate reproducibility through a consistent set of  
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Figure 1. Pipeline to investigate TIN in tumor samples based on exon-level microarray data. CEL files with raw expression data is taken as input, along 
with gene-level expression data. The FIRMA algorithm is used to identify exon skipping and inclusion events, and user-defined thresholds (such as the 
upper and lower first percentile) are used for denoting exons as aberrantly spliced. The correlation between aberrant exon usage and splicing factor gene 
expression is evaluated and tested against random associations in two ways. First, the correlation step is carried out using permutations of the expression 
data at each probe set. Second, the correlation is calculated using random gene sets instead of known splicing factor genes.
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algorithms, which may be applied on real-world data; however, 
for educational purposes, a small toy data set is embedded in 
the release. Thus, preprocessed FIRMA scores for 16 samples 
and 10,000 randomly selected probe sets are included in the 
sampleSetFirmaScores object. Equivalently, gene-level expres-
sion data for the same 16 samples across the core set of human 
genes are provided through the sampleSetGeneSummaries 
object. Summary files for real gene-level expression data can 
be generated by using, for instance, Affymetrix Power Tools 
or Expression Console prior to applying the TIN package. 
The analysis pipeline is outlined in the following example, 
with expression data from 131 prostate cancers.9 The data set 
is publicly available from NCBI’s Gene Expression Omnibus 
(GEO; accession number GSE21034).

fs - firmaAnalysis(useToyData = FALSE, aromaPath = 
“/path/to/aroma.affymetrix", dataSetName = "Prostate")

gs - readGeneSummaries(useToyData = FALSE, 
summaryFile = "/path/to/prostate-gene-level-summary.
txt")

To use the small toy data set supplied with the pack-
age instead, load the sample data by issuing the following  
two commands

data(sampleSetFirmaScores)
data(sampleSetGeneSummaries, 
and copy the two objects into the fs and gs variables, 

respectively.
tra - aberrantExonUsage(1.0, fs)
perms - probesetPermutations(fs, quantiles)
corr - correlation(splicingFactors, gs, tra)
gsc - geneSetCorrelation(geneSets, geneAnnotation, 

gs, tra, 100)
In the example, the lower and upper 1st percentiles are 

used as threshold values to score exons with deviating skip-
ping or inclusion (Fig S1). Information on where to find 
documentation of the different functions is provided in the 
Supplementary File.

Having performed FIRMA analysis and entered gene-
level expression values, sample-wise amounts of aberrant exon 
usage are calculated. Pearson correlation between relative 
amounts of aberrant exon usage and splicing factor expres-
sion is obtained using tools from the WGCNA package 
(Bioconductor).10 To assess the association, correlation is also 
calculated for random permutations of the FIRMA scores at 
each probe set and for random sets of genes.
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Figure 2. (A) Sample-wise relative amounts (blue dots) of aberrant exon inclusion (horizontal axis) and exon skipping (vertical axis) events for the 131 
prostate cancers in the worked example, compared to random sample-wise amounts calculated from permuted FIRMA scores (yellow dots).  
(B) Correlation between estimated aberrant exon usage and splicing factor expression compared with random gene sets and permuted TIN-estimates. 
In the example cancer dataset, 195 of the 280 (70%) splicing factor genes had expression levels that were significantly correlated (P , 0.05; Pearson 
correlation; red dot; horizontal axis). This is more than expected by chance, as compared with first making 1,000 random permutations of the TIN-
estimates (bar graphs in dark blue) and second by selecting 1,000 random sets of 280 genes (bar graphs in light blue). (C) Negative correlation between 
TIN-estimates and splicing factor expression in the example prostate cancer dataset. Inverse relationship with strong associations between TIN-
estimates and expression levels of splicing factors (n = 280), with a much higher percentage of significantly negatively (horizontal axes) than positively 
(vertical axes) correlated splicing factor genes (red). The shift was higher than expected by chance, as demonstrated by comparing first with each of 
1,000 permutations of the TIN-estimates (dark blue) and second with genes in each of 1,000 random sets of 280 genes (light blue). (D) Unsupervised 
hierarchical clustering analysis (Euclidean distance metrics; complete linkage) of all the 131 samples based on the expression levels of all 280 splicing 
factor genes. The example prostate series is separated into clusters with some samples having predominantly lower (blue) or higher (red) relative 
amounts of deviating exon usage than the more average sample (black).
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Visualization. The TIN package implements four diffe
rent methods for visualizing the results (Fig. 2). First, a scatter 
plot visualizes sample-wise relative amounts of aberrant exon 
inclusion vs exon exclusion and optionally includes amounts 
calculated from random permutations of the FIRMA scores 
for comparison (Fig.  2A). Second, the package includes a 
function for comparing sample-wise correlation between 
splicing factor gene expression and total relative amounts 
of aberrant exon usage, with correlations obtained either 
by making permutations of the sample-wise amounts of 
aberrant exon usage or by using randomly generated gene 
sets (Fig. 2B). Third, a scatter plot that compares the amount 
of splicing factor genes for which expression levels are sig-
nificantly positively and negatively correlated with the total 
relative amounts of aberrant exon usage per sample is created 
(Fig. 2C). This plot may also include results based on per-
mutations of the sample-wise aberrant exon usage amounts 
and randomly constructed gene sets. In addition, a function 
for hierarchical clustering of the samples based on splicing 
factor expression levels is included to test for separation of 
samples according to aberrant exon usage amounts (Fig. 2D). 
Example commands for creating visualization plots are out-
lined below:

scatterPlot(“scatter.png”, TRUE, hits, perms)
correlationPlot(“correlation.png”, tra, gs, splicing-

Factors, 1000, 1000)
posNegCorrPlot(“posNegCorr.png”, tra, gs, splicing-

Factors, 1000, 1000)
clusterPlot(gs, tra, “euclidean”, “complete”, “cluster.

png”)
Further instructions on parameter usage and how the 

methods work are provided in the accompanying vignette and 
documentation of the package.

Results and Discussion
We have developed the TIN package (Bioconductor) to ana-
lyze TIN in cancer or other disease conditions from exon-level 
microarray data. By using computational tools already avail-
able to create algorithms for analyzing TIN, the package offers 
a framework for calculating and visualizing the correlation 
between sample-wise aberrant exon usage amounts and expres-
sion levels of multiple gene sets, including splicing factors. The 
R software has been applied to expression data from different 

cancer types, and we have shown that TIN is a common feature 
of several types of solid cancer. In most cancer types studied, we 
found strong and nonrandom (P , 0.001) correlations between 
the estimated aberrant exon usage and the expression levels of 
splicing factor genes.4 When analyzing multiple data sets, it is 
of great importance to be able to repeat and standardize com-
putational methodology. The TIN package facilitates reprodu
cibility through an unambiguous analysis pipeline.
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Supplementary Material
Supplementary File. This file contains installation 

guidelines, links to documentation for the TIN package, and 
Figure S1, a distribution plot of all FIRMA scores in the 
worked example.
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