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Introduction
Proteins play significant roles in the life activities of cells and 
organisms, such as neurotransmission, DNA replication, and 
cycle control. Most of the diversity of cellular functions is based 
on protein-protein interactions (PPIs). Detecting PPIs is 
highly critical for the exploration of biological cellular mecha-
nisms. With the advent of high-throughput techniques, such as 
mass spectrometric protein complex identification,1 protein 
chip,2 and yeast 2-hybrid system,3,4 considerable PPI data have 
been generated. However, high-throughput experiments are 
usually accompanied by high false positive and false negative 
rates and high cost. Moreover, these methods can hardly pre-
dict the whole PPI networks.5 Under this situation, developing 
a novel computational method to predict unknown PPIs is 
more urgent than adopting the traditional experimental 
method to identify PPI.6,7

It is important to make full use of available PPI experimen-
tal data to develop computational methods. Many PPI data-
bases, such as Human Protein References Database (HPRD),8 
Database of Interacting Protein (DIP),9 and Molecular 
INTeraction database (MINT),10 have been built after a num-
ber of experiments depicting PPI network. However, there are 
differences in protein structure information,11,12 protein 
domains, and so on. With new protein amino acid sequence 
data explosively growing, computational methods are urgently 
needed to detect the information of protein sequence.

In recent years, a number of computational methods have 
been proposed to extract the feature vectors mainly from the 
amino acid sequence.13-16 The discriminative feature can 
improve the performance of a classification model, and some 
computational methods were based on Chou’s pseudo amino 
acid composition (PseAAC)17-19 that retains the information 
of protein sequence, although it only considers the influence 
of 3 kinds of characteristics. Furthermore, some new meth-
ods on feature vector extraction are based on kernels. The 
method proposed by Jaakkola et al20 is the first to use Fisher 
kernel to detect homology. Shen et al21 proposed the support 
vector machine (SVM)-based method to predict PPIs. Leslie 
et al22 put forward the mismatch string kernel method, which 
detects protein amino acid sequence at a lower computa-
tional cost. The difference between a PseAAC-based method 
and a kernel-based method lies in the way of extracting the 
feature information, with the first extracting the feature 
directly from the protein sequence and the second retaining 
some prior information and extracting feature vectors more 
effectively.

In general, most of the computational methods use machine 
learning algorithms combining various descriptors of proteins. 
Concerning different kinds of protein data, the main existing 
computational approaches can be divided into 2 categories: 
one uses information from the structure of proteins and 
genomic context; the other uses information from protein 
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sequences. Moreover, newly discovered protein sequences 
grow exponentially in many different types of databases, and 
to shorten the gap between known protein sequence data and 
their interaction statuses, it is important to develop computa-
tional methods that directly use the information in protein 
sequences.

In this work, a novel computational method for predicting 
PPIs from an amino acid sequence based on a random forest 
(RF)23 classification and a Gabor feature descriptor was pro-
posed. The major improvement of this method is that it extracts 
protein sequence features through Gabor texture representa-
tion. Specifically, we adopted the Gabor feature representation 
on a Position-Specific Scoring Matrix (PSSM)24,25 to extract 
the evolutionary information from protein sequence, and then 
a classification RF is applied to infer the PPIs. In this way, each 
protein sequence is represented as a PSSM. To obtain more 
feature descriptors, we use a Gabor descriptor to extract fea-
tures in each protein PSSM, and then each protein sequence is 
represented by 100-dimensional feature vectors. Two corre-
sponding feature vectors would be joint together and represent 
a protein pair as a 200-dimensional feature vector. Finally, we 
used RF as a machine learning classifier for classification. The 
method was adopted for 3 PPI data sets from human, yeast, and 
Helicobacter pylori. Our results indicate that the computational 
method has good performance. To further evaluate the perfor-
mance of this method, we compared the results of the proposed 
method with the support vector machine classifier to the Gabor 
feature, Discrete Cosine Transform (DCT),26 and Local Phase 
Quantization (LPQ).27 Moreover, we also used our approach 
for predicting the PPIs in 4 other species using the protein 
interaction data from yeast. The results of the proposed method 
in predicting PPIs indicate this approach is trustworthy.

Materials and Methods
Golden standard data sets

From the public DIP, we collected Saccharomyces cerevisiae PPI 
data sets. Then, the protein pairs that contain a protein with 
less than 50 residues or have more than 40% sequence identity 
were removed. The positive data set was constructed with the 
remaining 5594 protein pairs. The negative data set was con-
structed with the 5594 noninteracting protein pairs, which 
have different subcellular localization. Finally, we constructed 
11 188 protein pairs, of which half are from the positive data 
set and half from the negative data set.

Two other PPI data sets were also collected. The first PPI 
data set was collected from the HPRD. The protein pairs with 
more than 25% sequence identity were removed. We con-
structed the golden standard positive data set with the remain-
ing 3899 protein-protein pairs of experimentally verified PPIs 
from 2502 different human proteins. Following previous 
work,28 we assumed that proteins in different subcellular com-
partments would not interact with each other. Therefore, 4262 
protein pairs from 661 different human proteins were set as 

the golden negative data set. The complete human data set 
consists of 8161 protein pairs. The other PPI data set was con-
structed with 2916 H pylori protein pairs (1458 interacting 
pairs and 1458 noninteracting pairs), which were described by 
Martin et al.29

Position-Specif ic Scoring Matrix

The PSSM is widely used in various biological research works, 
such as studies of subcellular localization, disordered regions, 
and protein secondary structure. The PSSM also has great 
potential in extracting evolutionary information from amino 
acid sequences. In this work, each protein sequence would be 
converted into PSSM by adopting a Position-Specific Iterated 
Basic Local Alignment Search Tool (PSI-BLAST).24 The 
PSSM can be represented as follows:
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where L is the length of an amino acid sequence and Pi, j 
denotes the possibility that the ith amino acid of the given 
protein sequence mutates to amino acid j in the evolution 
process. To obtain highly homologous sequences, the param-
eters of PSI-BLAST (E-values) are set as 0.001 and 3 itera-
tions are selected.

Gabor f ilter–based feature

First proposed by Gabor,30 the Gabor filter is very similar to 
the visual stimulus response of cells in the human visual system. 
It has good characteristics in extracting local spatial and fre-
quency domain information of targets. The Gabor feature is 
usually obtained by a convoluting image with a Gabor filter. 
Moreover, they have strong anti-interference ability in terms of 
image noise and illumination changes, and the most important 
advantages of Gabor filters are their translation, invariance to 
rotation, and scale. In image processing, the feature based on 
the Gabor filter is directly extracted from gray-level images. 
The 2-dimensional Gabor filter, in the spatial domain, is a 
Gaussian kernel function modulated by the complex sinusoidal 
plane wave. It can be defined as follows:

G( , ) exp e px y f x y j fx= −
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′ = +x x ycos sinθ θ 	 (3)

′ = − +y x ysin cosθ θ 	 (4)

where θ represents the direction of the parallel strips in the 
Gabor filter kernel, and the effective value is a real number 
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from 0° to 360°; ϕ  is the phase offset of the cosine function, 
and the effective value ranges from −180° to 180°; δ is the spa-
tial aspect ratio; σ represents the standard deviation of the 
Gaussian function in the Gabor kernel function; and f  is the 
frequency of the sinusoid.

In our work, we use 40 Gabor filters in 5 scales and 8 orien-
tations, which are shown in Figure 1. After using 40 Gabor 
filters, because of the high correlation of feature vectors, we can 
reduce the reduced feature data by way of downsampling for 
reducing information redundancy.31,32 Therefore, the protein 
sequence can be represented as Gabor feature vectors that are 
constructed by the first 100 coefficients.

Random forrest classif ier

At present, RF is one of the most popular prediction algorithms 
in data science. It was mainly developed by Breiman.23 The RF 
model is one of the efficient ensemble classification algorithms, 
which uses multiple decision trees to reduce the output variance, 
thereby improving the accuracy of the classification. The RF 
classification makes full use of 2 powerful machine learning 
techniques. The first of RF classification is the selection of 
training examples, assuming that the original sample set has the 
total of examples N V V V V yn= ((( , , , , ), ), )1 2 3   , where V 
denotes the feature of each sample and y represents a class label; 
each round is extracted from the original sample set by boot-
strap (with replacement sampling). It is worth noting that when 
drawing the training set of the current tree by replacing the 
samples, about 36.8% of the cases are omitted from the samples. 
We treat it as out-of-bag (OOB), which can be used to evaluate 
the performance of the decision tree and calculate the predic-
tion error rate of the model called the OOB data error. The 
second is a select feature that in each classification tree mainly 
samples a small fraction of features at each node. Specifically, 
RF randomly selects a part of features from the complete fea-
tures to form a new feature set and uses the new feature set to 
generate a decision tree when the Gini index reaches its maxi-
mum. Then, the data are divided into 2 subsets: positive and 

negative. Loop the 2 steps to build the RF multiple times and 
finally use the voting mechanism to get the final classification 
result.

Results and Discussion
Evaluation measures

To better evaluate the proposed method, we calculated the fol-
lowing evaluation parameters: precision (PR), prediction accu-
racy (ACC), sensitivity (SN), specificity (SPC), and Matthew’s 
correlation coefficient (MCC). Their formation can be seen as 
follows:

ACC= TP+TN
TP+FP+TN+FN

	 (5)

SN= TP
TP+FN 	 (6)

PR= TP
TP+FP 	 (7)

SPC= TN
TN+FP 	 (8)

MCC= TP TN FP FN
(TP+FP) (TN+FN) (TN+FP) (TP+FN)

× − ×

× × ×
  (9)

where true negative (TN) is the number of true noninteracting 
pairs that are predicted correctly; true positive (TP) is the 
number of true samples that are predicted correctly; false posi-
tive (FP) is the number of true noninteracting pairs that are 
predicted to be interacting; and false negative (FN) is the cor-
rect number of samples that are predicted incorrectly. Moreover, 
the receiver operating characteristic (ROC) curves are one of 
the ways to evaluate the performance of the proposed method, 
and based on the prediction result, the area under an ROC 
curve (AUC) can also be computed to summarize ROC curve 
numerically.

Assessment of prediction ability

To ensure fairness of experiments, we conducted experiments 
in 3 different data sets of yeast, human, and Helicobacter pylori. 
We set the same corresponding parameters (N-tree = 100) in an 
RF classifier. Furthermore, to increase the credibility of our 
method, we adopted a 5-fold cross-validation to divide the 
whole data set into 5 parts, of which one-fifth is used for test-
ing and four-fifths are used for training. By doing this, we can 
generate 5 models from the original data set. The prediction 
result based on RF classification models of protein sequence on 
3 data sets is shown in Tables 1 to 3.

As shown in the tables, when predicting PPIs of yeast data 
set, the proposed approach can obtain prediction performance 
with an average accuracy, precision, sensitivity, specificity, and 
MCC of 92.10%, 93.85%, 90.09%, 94.10%, and 85.43% and 
standard deviations of 0.29%, 0.69%, 0.86%, 0.60%, and 0.49%, 

Figure 1.  Gabor filter in 5 scales and 8 orientations.
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respectively. When predicting PPIs of human data set, the aver-
age accuracy, precision, sensitivity, specificity, and MCC are 
97.03%, 98.01%, 95.74%, 98.22%, and 94.22% and standard 
deviations are 0.20%, 0.53%, 0.41%, 0.50%, and 0.36%, respec-
tively. When predicting PPIs of Helicobacter pylori data set, the 
average accuracy, precision, sensitivity, specificity, and MCC are 
86.45%, 88.51%, 83.82%, 89.06%, and 76.53% and standard 
deviations are 0.90%, 0.82%, 1.55%, 1.37%, and 1.30%, respec-
tively. The ROC curves are shown in Figures 2 to 4. The y-ray 
depicts the true positive rate and the x-ray depicts the false 

positive rate in these figures. Meanwhile, the AUC values were 
also computed and the results of yeast, human, and Helicobacter 
pylori data sets were 95.72%, 99.33%, and 91.89%, respectively.

According to these results, the method is both practical and 
effective for predicting PPIs by combining the Gabor feature 
with RF classification. Furthermore, these criterion values in 
low deviations indicate that the method we proposed is stable 
and robust. The main advantage of the feature extraction 
method is that it can not only retain enough prior information 
of PSSM but also describe the sequence information of protein 

Table 1.  Five-fold cross-validation prediction results obtained on yeast data set.

Test set ACC, % PR, % SN, % SPC, % MCC, % AUC, %

1 92.18 92.87 90.91 93.38 85.56 95.85

2 91.60 93.88 88.78 94.35 84.57 95.34

3 92.31 94.47 90.38 94.37 85.80 95.24

4 92.13 93.50 90.68 93.60 85.50 96.02

5 92.27 94.53 89.70 94.82 85.71 96.13

Average 92.10 ± 0.29 93.85 ± 0.69 90.09 ± 0.86 94.10 ± 0.60 85.43 ± 0.49 95.72 ± 0.40

Abbreviations: ACC, accuracy; AUC, area under an ROC curve; MCC, Matthew’s correlation coefficient; PR, precision; ROC, receiver operating characteristic; SN, 
sensitivity; SPC, specificity.

Table 2.  Five-fold cross-validation prediction results obtained on human data set.

Test set ACC, % PR, % SN, % SPC, % MCC, % AUC, %

1 97.12 97.50 96.36 97.80 94.38 99.14

2 97.12 98.21 95.88 98.32 94.40 99.25

3 96.69 97.41 95.67 97.64 93.59 99.51

4 97.18 98.64 95.27 98.85 94.48 99.30

5 97.06 98.29 95.52 98.47 94.27 99.44

Average 97.03 ± 0.20 98.01 ± 0.53 95.74 ± 0.41 98.22 ± 0.50 94.22 ± 0.36 99.33 ± 0.15

Abbreviations: ACC, accuracy; AUC, area under an ROC curve; MCC, Matthew’s correlation coefficient; PR, precision; ROC, receiver operating characteristic; SN, 
sensitivity; SPC, specificity.

Table 3.  Five-fold cross-validation prediction results obtained on Helicobacter pylori data set.

Test set ACC, % PR, % SN, % SPC, % MCC, % AUC, %

1 86.11 88.13 83.62 88.62 76.05 92.56

2 85.08 87.89 83.01 87.36 74.58 91.74

3 87.14 89.29 84.75 89.58 77.56 91.01

4 87.31 87.73 85.87 88.67 77.80 92.00

5 86.62 89.49 81.85 91.06 76.64 92.15

Average 86.45 ± 0.90 88.51 ± 0.82 83.82 ± 1.55 89.06 ± 1.37 76.53 ± 1.30 91.89 ± 0.58

Abbreviations: ACC, accuracy; AUC, area under a ROC curve; MCC, Matthew’s correlation coefficient; PR, precision; ROC, receiver operating characteristic; SN, 
sensitivity; SPC, specificity.
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sequence efficiently. The ability of the Gabor feature in obtain-
ing effective information in PSSM is outstanding. Besides, 
considering the influence of protein sequence order, the texture 
information extracted by the Gabor feature can retain the 

effective information of protein sequence well. The results 
show that the utilization of the Gabor texture feature to extract 
evolutionary information in predicting PPIs in the proposed 
method is effective.
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Figure 2.  ROC curves performed by the proposed method on yeast protein-protein interaction data sets. AUC indicates area under an ROC curve; ROC, 

receiver operating characteristic.
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Comparison with other feature extraction methods

To evaluate the effectiveness of the Gabor feature in extracting 
protein sequence information and identifying protein interac-
tions, we further compared the results to DCT and LPQ with 
the same RF classification. The DCT algorithm is a popular 
linear separable transformation. It is mainly used for data or 
image compression, and DCT has a good performance of 
decorrelation due to its ability to convert signals from the spa-
tial domain to the frequency domain. The LPQ is considered 
as an effective operator for texture feature descriptors, which 
remain the blur-invariant property, and the LPQ is also widely 
used in facial recognition and image processing. In our work, 
the DCT feature, the LPQ feature, and the Gabor feature were 
extracted from PSSM, and then we made a comparison in the 
same RF classification.

The results of yeast and H pylori PPI data sets are pre-
sented in Figure 5. From Figure 5A to F, the Gabor feature 
basically dominates the LPQ feature and the DCT feature in 
terms of accuracy, specificity, sensitivity, precision, MCC, and 
AUC. In the yeast data set, the accuracy, specificity, and MCC 
gaps between Gabor and LPQ are 3.09%, 0.16%, and 4.45%, 
respectively. And the accuracy, specificity, and MCC gaps 
between Gabor and DCT are 0.50%, 0.23%, and 3.28%, 
respectively. Similarly, in the Helicobacter pylori data set, the 
accuracy, specificity, and MCC gaps between Gabor and LPQ 
are 6.22%, 4.35%, and 8.41%, respectively. And the accuracy, 
specificity, and MCC gaps between Gabor and DCT are 
7.36%, 5.26%, and 9.73%, respectively. Thus, the Gabor 

feature has little difference in specificity from LPQ and DCT, 
but, due to the difference in specificity from MCC, we specu-
late that the Gabor feature has better performance than LPQ 
in extracting texture feature of protein sequence, especially in 
enhancing the sequence information of a protein sequence. 
The Gabor feature is similar or even better than DCT in 
extracting protein sequence information.

Performance on the independent data sets

As we obtained good results on 3 PPI data sets of yeast, human, 
and Helicobacter pylori, for further evaluating the proposed 
method, we assumed that homologous proteins can preserve 
their ability to interact and used interactions experimentally 
identified in one organism to predict interactions in other 
organisms. The basis of this assumption is that homologs have 
similar functional behaviors. Therefore, they preserve the same 
PPI.33 The 4 independent data sets we used share low identity 
with the training data set. Specifically, 11 188 samples from the 
yeast data set were used as the training data set. Then, we tested 
on 4 PPI data sets that were independent of the training data 
set. These data sets were treated as positive data sets that have 
been converted into PSSM. The experimental results of the 4 
independent data sets are summarized in Table 4. The predic-
tion performance accuracy was 93.20%, 94.89%, 91.93%, and 
91.34% on Caenorhabditis elegans, Mus musculus, Homo sapiens, 
and Helicobacter pylori, respectively. It demonstrates that our 
proposed method can yield a superior prediction performance 
toward cross-species data sets.
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Figure 4.  ROC curves performed by the proposed method on Helicobacter pylori protein-protein interaction data sets. AUC indicates area under an ROC 
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cosine transform; LPQ, local phase quantization; MCC, Matthew’s correlation coefficient; ROC, receiver operating characteristic.

According to the results in Table 4, when the PPI data set 
from yeast was used as the positive samples to predict the 
PPIs of other cross-species, the prediction performance was 
effective. And it is noteworthy that the prediction model is 
constructed using S cerevisiae PPI data set, so the trained 
model represented the characteristics of S cerevisiae PPI. 
Meanwhile, a strong generalization ability demonstrates 
that the method we proposed is effective. Moreover, it is 

reliable to assume that PPIs generated in one species can be 
used to predict PPIs in other species. The number of PPIs 
in one organism might have “coevolved” with another organ-
ism, so their corresponding orthologs interact as well.34 This 
notion of conserved interactions is also supported by the 
observation that many interactions are conserved between 
different species in molecular machines or signal transduc-
tion pathways.35
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Comparison with other methods

In recent years, a large number of algorithms have emerged for 
predicting PPIs. In Table 5, we compared previous studies that 
proposed other methods to predict PPIs of Helicobacter pylori 
data set. The accuracy of other methods is between 75.80% and 
87.50%; our proposed method is slightly lower than ensemble 
ELM (extreme learning machine) in accuracy, sensitivity, and 
MCC, so we assumed that ensemble ELM classification is 
more effective than RF classification in learning classification. 
We then compared our method with the existing methods of 
yeast and human data sets. The results of 6 other methods with 
accuracy ranging from 75.08% to 92.10% are shown in Table 6. 
The proposed method gets high average accuracy (92.10%), 
which is higher than other methods. The lower standard devia-
tion also means that the performance of the proposed method 
is more robust. From Table 7, we can observe that the perfor-
mance of our method is higher than that of previous work 
based on RF classification.

From the table above, we can see that using an ensemble 
classifier such as the ensemble of HKNN (K-local hyperplane 
distance nearest neighbor) and boosting is better than using a 
single classifier, which can achieve more accurate and robust 
performance. Through these comparisons, and compared 
with the most advanced methods at present, we can observe 
that the RF-based model combined with PSSM can improve 
the prediction accuracy directly. Feature extraction containing 
evolutionary information and the selection of classifiers are 

the primary way to promotion. Meanwhile, its excellent per-
formance demonstrates that the Gabor feature has a strong 
ability in extracting protein sequence information, especially 
enhancing protein texture features. Thus, effective feature 
extraction improves the performance of classification.

Conclusions and Discussion
In recent years, the number of researchers requiring more 
knowledge to detect PPIs is increasing. Due to the complex-
ity and high dimensionality of proteomic data, flexible and 
powerful statistical learning tools are needed for effective 
statistical analysis, which promotes the rapid development 
of computing methods for predicting PPIs. In this article, 
we proposed a novel computational method for predicting 
PPIs in which an RF classifier combined with the Gabor 
feature descriptor on the PSSM is used. The main improve-
ments of the proposed method are that the Gabor feature 
can extract the discriminative information of protein 
sequence, especially enhancing the texture feature informa-
tion of protein sequence that the interaction between pro-
teins is more likely to occur in the region with higher energy. 
The experimental results demonstrated that the good per-
formance of our proposed method in predicting PPIs. The 
results also showed that Gabor features perform better than 
LPQ and DCT in texture feature and protein sequence cor-
relation extraction. In future studies, more effective feature 
extraction methods and machine learning techniques will be 
explored for PPI prediction.

Table 4.  Model prediction results of 4 species.

Species Test pairs ACC, %

Caenorhabditis elegans 4013 93.20

Mus musculus 313 94.89

Homo sapiens 1412 91.93

Helicobacter pylori 1420 91.34

Abbreviation: ACC, accuracy.

Table 5.  Performance comparison of different methods on the Helicobacter pylori data set.

Model ACC, % PR, % SN, % MCC, %

Signature products29 83.40 85.70 79.90 N/A

Boosting36 79.52 81.69 80.37 70.64

Ensemble ELM37 87.50 86.15 88.95 78.13

Phylogenetic bootstrap38 75.80 80.20 69.80 N/A

Ensemble of HKNN39 86.60 85.00 86.70 N/A

HKNN40 84.00 84.00 86.00 N/A

Proposed method 86.45 88.51 83.82 76.53

Abbreviations: ACC, accuracy; ELM, extreme learning machine; HKNN, K-local hyperplane distance neighbor; MCC, Matthew’s correlation coefficient; PR, precision; SN, 
sensitivity.
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Table 6.  Performance comparison of different methods on the yeast data set.

Model Test set ACC, % PR, % SN, % MCC, %

Work by Yang et al41 Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A

Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A

Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A

Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Work by You et al37 PCA-EELM 87.00 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 77.36 ± 0.44

Work by Guo et al42 AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A

Work by Zhou et al43 SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Proposed method RF 92.10 ± 0.29 93.85 ± 0.69 90.09 ± 0.86 85.43 ± 0.49

Abbreviations: ACC, accuracy; LD, local descriptor; MCC, Matthew’s correlation coefficient; PCA-EELM, principal component analysis-ensemble extreme learning 
machine; PR, precision; RF, random forest; SN, sensitivity; SVM, support vector machine.

Table 7.  Performance comparison of different methods on the human data set.

Model ACC, % PR, % SN, % MCC, %

AC + SVM44 89.3 N/A 94.0 79.2

AC + RF44 95.5 N/A 94.0 91.4

AC + RoF44 95.1 N/A 93.3 91.0

LDA + SVM44 90.7 N/A 89.7 81.3

LDA + RoF44 95.7 N/A 97.6 91.8

LDA + RF44 96.4 N/A 94.2 92.8

Proposed method 97.03 98.01 95.74 94.22

Abbreviations: ACC, accuracy; LDA, latent Dirichlet allocation; MCC, Matthew’s correlation coefficient; PR, precision; RF, random forest; RoF, rotation forest; SN, 
sensitivity; SVM, support vector machine.
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