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Abstract: Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which
are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat,
rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies
published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years
were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and
in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder
prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed
a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and
SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo
experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This
review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical
industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety
of SR, including SB and SN, need to be conducted.

Keywords: Scrophularia buergeriana; Scrophularia ningpoensis; Scrophulariae Radix; biological activities;
nutraceuticals; functional foods; in vitro study; in vivo study

1. Introduction

The genus Scrophularia consists of more than 300 different herbs, and Scrophularia
buergeriana (SB) and Scrophularia ningpoensis (SN) are representative plants plants of this
genus. SB is called “Hyun-sam” in Korea; it is a perennial plant with a strong fragrance
that grows up to 1.8 m [1,2]. It is native to Korea, North China, and Japan, and it has
an important role as a traditional medicinal herb. The SB root has been used to treat
fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and
arthritis, and it is also used for fire pursing, blood cooling, and toxin removal as oriental
medicine [3–5]. SN is called “Xuan shen” in China, and it has been mainly used as a tea
in traditional medicine. The SN root has been used to treat laryngitis, swelling, fever,
constipation, and neuritis and it also used for immune enhancement [1,6]. In this paper,
we reviewed the physiological activities of Scrophulariae Radix (SR), specifically, SB and
SN. The physiological properties discussed in this review have been verified using in vitro
and in vivo studies, and these results are the scientific basis for the development of health
foods or therapeutics.

2. Phytochemicals in Scrophulariae Radix

Lee et al. [7] and Jeong et al. [8] reported that SB roots contain E-harpagoside, 8-O-E-p-
methoxycinnamoyl-harpagide (MCA-Hg), E-p-methoxy-cinnamic acid (p-MCA), cinnamic
acid, and angoroside C, which was set as the marker compound [9]. Kim et al. (2009,
2012) [3,10] and Shin et al. [4] reported that iridoid has been isolated from a wide variety
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of plants, including SB. Ren et al. [2] isolated 162 compounds from SN and, similar to
Zhang et al., reported that iridoids, iridoid glycosides [11–29], phenolic acids, phenolic
glycosides [30–38], flavonoids [39–46], terpenoids [47–50], organic acids [51,52], and other
compounds [53–57] were identified in various studies. Gong et al. [58] suggested that
iridoid glycosides and phenylpropanoid glycosides [59–68] were constituents of SR.

Most of the compounds isolated from SN were found in the roots and isolated by
solvent fractionation. Iridoids and iridoid glycosides [11–29] are reported to have various
biological activities including anti-inflammatory activity, immunomodulatory activity,
anti-diabetic effect, and cardiovascular protection effect. In addition, it is known that
flavonoids [39–46] isolated from SN have anti-hypertension effects and terpenoids [47–50]
have anti-oxidative activity. Previous studies exhibited the anti-inflammation activity,
anti-platelet aggregation activity, and anti-tumor biological activity of phenylpropanoid
glycosides [59–65].

3. Evidence from In Vitro Studies
3.1. Anti-Inflammatory Effects

Shin et al. [4] reported that the 70% ethanol extract of SB (SBE, 10–80 µg/mL) regulated
various inflammatory factors in raw 264.7 cells. Tumor necrosis factor (TNF)-α, IL-6, and
matrix metalloproteinase (MMP)-9 are increased by lipopolysaccharide (LPS) induction,
promoting an inflammatory response and increasing p65 phosphorylation. This inhibition
of phosphorylation of p65 is considered a therapeutic target for asthma treatment. SBE
inhibited TNF-α (SBE 40, 80 µg/mL: p < 0.01), IL-6 (SBE: p < 0.01), and MMP-9 (SBE 40,
80 µg/mL: p < 0.01) mRNA expression levels in LPS-induced Raw 264.7 cells. In addition,
SBE significantly suppressed the expression of MMP-9 (SBE 10 µg/mL: p < 0.05, SBE
20–80 µg/mL: p < 0.01) and p65 phosphorylation (SBE 10, 40 µg/mL: p < 0.05, SBE 20,
80 µg/mL: p < 0.01). The mRNA expression levels of IL-6 and TNF-α in LPS-induced Raw
264.7 cells were reduced by SBE treatment with Bay11-7085 (NF-κB inhibitor).

3.2. Immune-Enhancing Effects

Kim et al. [10] demonstrated that SB water extract (0.01–1 mg/mL) with concanavalin
A showed the immune-enhancing activity in MOLT-4 cells. The production of IL-2, IFN-g,
and IL-2 induces a Th1-type cellular response, whereas IL-4, and IL-6 production increases
Th2-type humoral immunity. SB water extract increased the production of IFN-γ (SB: NS,
SB plus Con A 1 mg/mL: p < 0.05), IL-2 (SB 1 mg/mL, p < 0.05, SB plus Con A 0.1, 1 mg/mL:
p < 0.01), and IL-4 (SB: NS, SB plus Con A 0.1, 1 mg/mL: p < 0.01) in MOLT-4 cells. Moreover,
IgG (p < 0.05) production in the SNU 265 human B cell line increased with 1 mg/mL SB
treatment. The cells treated with SB and SB plus IFN-γ showed increased IL-12 (SB: NS, SB
plus IFN-γ 0.01 mg/mL: p < 0.05, SB plus IFN-γ 0.1, 1 mg/mL: p < 0.01) production and
induced NO (SB 0.1, 1 mg/mL: p < 0.05, SB plus IFN-γ 0.1, 1 mg/mL: p < 0.01) level and
iNOS (SB plus IFN-γ 0.1, 1 mg/mL) expression in mouse peritoneal macrophages.

Gong et al. [58] demonstrated that 85% ethanol extract of SR (ERS, 0.001–10 mg/mL)
demonstrated the immune-enhancing effects in lymphocytes isolated from ICR mice spleen.
The cAMP/cGMP ratio is known as an indicator of deficiency in immunity. In addition,
MDA is an indicator that reflects oxidative stress, and SOD is an enzyme that converts
superoxide radicals into molecular oxygen and hydrogen peroxide. ERS (1, 10 mg/mL:
p < 0.01) treatment increased the cell viability in lymphocytes. In addition, ERS markedly
decreased cAMP/cGMP (1 mg/mL: p < 0.05), IFN-γ/IL-10 (1 mg/mL: p < 0.01), and
MDA content (1 mg/mL: p < 0.01) and increased the SOD content (1 mg/mL: p < 0.01) in
lymphocytes isolated from ICR mice spleen.

3.3. Prevention of Bone Disorders

Nam et al. [5] reported that SBE (50–200 µg/mL) prevented the bone disorder in bone
marrow macrophage. TRAP is an enzyme expressed in osteoclasts, and an increase in TRAP
indicates mature and differentiated osteoclasts. SBE statistically (p < 0.001) suppressed
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TRAP-positive cell formation at 200 µg/mL concentration and had a resorption inhibition
effect on mature osteoclasts. The resorption area (p < 0.001) was also observed to decrease
after SB treatment.

3.4. Neuroprotective Effects

Lee et al. [7] demonstrated that SB 70% ethanol extract (SBE, 125–500 µg/mL) treat-
ment showed the neuroprotective activity in SH-SY5Y cells. Acetylcholinesterase is an
enzyme that the neurotransmitter acetylcholine, and increased activity of this enzyme
affects the concentration of acetylcholine. SBE increased the cell viability (SBE: p < 0.01)
in SH-SY5Y cells with glutamate-induced cell toxicity. Acetylcholinesterase activity (SBE
250 µg/mL: p < 0.05, SBE 500 µg/mL: p < 0.01) was decreased, and total glutathione
content (SBE: p < 0.01) was increased in a dose-dependent manner. Glutamate-induced cell
morphology changes and DNA fragmentation were measured using DAPI staining and
TUNEL assays, and SBE was observed to reduce glutamate-induced fragmentation (SBE:
p < 0.01).

Increased antioxidant enzyme activity is known to protect nerve cells by reducing
oxidative neuronal damage. SOD-1, SOD-2, and GPx-1 are antioxidant enzymes, and when
reduced, they promoted the expression of apoptosis factors such as Bcl-2-associated X (Bax),
cleaved caspase-3, and cleaved poly (adenosine diphosphate (ADP)-ribose) polymerase
(PARP). SBE treatment markedly increased SOD-1 (SBE: p < 0.01), SOD-2 (SBE: p < 0.05),
and GPx-1 (SBE: p < 0.01) expression levels, but it decreased Bax (SBE: p < 0.01) protein,
cleaved caspase-3 (SBE 125 µg/mL: p < 0.05, SBE 250, 500 µg/mL: p < 0.01), and cleaved
PARP (SBE: p < 0.01) levels. SBE treatment also reduced the phosphorylation of p38 (SBE
250, 500 mg/mL: p < 0.05). In contrast, 500 µg/mL of SBE significantly (p < 0.01) increased
B-cell lymphoma-2 (Bcl-2) expression levels.

Meng et al. [6] reported that Scrophularia ningpoensis water extract (RSAE, 6.25–50 µg/mL)
demonstrated the neuroprotection effects in PC12 cells. RSAE differently increased ac-
cording to pretreatment hour. Pretreatment RSAE for 4 h did not affect the cell viability
and pretreatment RSAE for 8 h (12.5 µg/mL: p < 0.0.05), 16 h (12.5 µg/mL: p < 0.05),
and 24 h (6.25–25 µg/mL: p < 0.00001) statistically increased the cell viability. LDH
(RSAE 12.5 µg/mL: p < 0.0001), MDA (RSAE 12.5 µg/mL: p < 0.001), and NO (RSAE
12.5 µg/mL: p < 0.01) levels are decreased and SOD (RSAE 12.5 µg/mL: p < 0.05), CAT
(RSAE 12.5 µg/mL: p < 0.05), and GSH-Px (RSAE 12.5 µg/mL: p < 0.0001) activities are
recovered with RSAE in oxygen-glucose deprived and reperfusion (OGD/R)-induced
PC12 cells. JC-1 red fluorescence for mitochondrial membrane potential change detection
was significantly increased by treating with 12.5 µg/mL RSAE in PC12 cells. OGD/R
treatment induced MMP destruction and significantly suppressed the red/green fluores-
cence ratio, but it significantly (RSAE 12.5 µg/mL: p < 0.0001) enhanced the red/green
fluorescence ratio.

3.5. Anti-Apoptotic Effects

Shen et al. [1] demonstrated that Scrophularia ningpoensis water extract (RSN) presented
the anti-apoptotic activity in HaCaT cells. RSN showed the IC50 value at 0.032 mg/mL
concentration. TNF-a stimulation activates the NF-κB pathway and induces inflammation.
In addition, ERK upstream of NF-κB affects cell proliferation and induces apoptosis.
Pretreatment with 0.032 mg/mL RSN inhibited NF-κB translocation induced by TNF-α,
which was observed using immunofluorescence staining of HaCaT cells. RSN decreased
ERK phosphorylation, and ERK increased gradually with dose and time. RSN did not
affect the cell cycle phase in G1/G0, S, and G2/M (at 0.016–0.064 mg/mL for 6–96 h) in
HaCaT cells, and a tumor-preferred effect was not detected in Colo 38, SK-Mel-28, and
MRI-221 cells. These results suggest that RSN regulates ERK and NF-κB signaling.
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3.6. Anti-Allergic Effects

Kim et al. [3] reported that SBE (10–1000 µg/mL) showed anti-allergic activity in
RBL-2H3 cells. SBE did not change the cell cytotoxicity and LDH releases at 1000 µg/mL
concentration. SBE reduced the release of β-hexosaminidase (SBE 100 µg/mL: p < 0.05,
SBE 1000 µg/mL: p < 0.001) and histamine (SBE 100, 1000 µg/mL: p < 0.05) in RBL-2H3
cells. The release of pro-inflammatory cytokines, TNF-α (p < 0.01) and IL-4 (p < 0.001),
after antigen induction in RBL-2H3 cells was decreased after 1000 µg/mL SBE treatment.
Furthermore, the cells treated with 100 and 1000 µg/mL SBE showed inhibition of ERK
(SBE 100 µg/mL: p < 0.05, SBE 1000 µg/mL: p < 0.001) and p38 phosphorylation (SBE 10,
1000 µg/mL: p < 0.001).

4. Evidence from In Vivo Studies
4.1. Anti-Inflammatory Effects

Shin et al. [4] reported that SBE possesses anti-inflammatory activity. In the BALB/c
asthma model induced by ovalbumin (OVA), SBE (20 and 40 mg/kg) was administered
orally for 6 days. SBE administration significantly reduced eosinophils (SBE: p < 0.01),
macrophages (SBE: p < 0.01), neutrophils (SBE 20 mg/kg: p < 0.05, SBE 40 mg/kg: p < 0.01),
lymphocytes number (SBE 20 mg/kg: p < 0.05, SBE 40 mg/kg: p < 0.01), and total cells
(SBE: p < 0.01) in bronchoalveolar lavage fluid (BALF) and also decreased airway hyper-
responsiveness (SBE 20 mg/kg with methylcholine (MC) 30 mg/mL: p < 0.05, SBE 40 mg/kg
with MC 20 mg/mL: p < 0.05, SBE 40 mg/kg with MC 30 mg/mL: p < 0.01).

The levels of pro-inflammatory cytokines, including IL-5 (SBE: p < 0.01), IL-13 (SBE
20 mg/kg: NS, SBE 40 mg/kg: p < 0.01), and IL-17 (SBE 20 mg/kg: p < 0.05, SBE 40 mg/kg:
p < 0.01) in BALF and total IgE (SBE 20 mg/kg: p < 0.05, SBE 40 mg/kg: p < 0.01) and OVA-
specific IgE (SBE 20 mg/kg: NS, SBE 40 mg/kg: p < 0.01) levels in the serum decreased
after SBE treatment. SBE treatment significantly decreased the inflammatory index and
mucus production index (SBE 20 mg/kg: p < 0.05, SBE 40 mg/kg: p < 0.01) in the lung
tissue. In the asthma model induced by OVA, SBE administration decreased MMP-9 (SBE:
p < 0.01) expression and p65 phosphorylation (SBE: p < 0.01).

These results suggest that SBE exhibits anti-inflammatory activity by inhibition of
NF-κB phosphorylation, and it could be applied as an effective therapeutic agent against
allergic asthma.

4.2. Anti-Amnesic Effects

Jeong et al. [8] reported that 70% ethanol extract of SB root (KD-501) possesses
cognition-enhancing activity. Male ICR mice administered scopolamine, a substance
known to cause short-term memory loss, exhibited induced amnesia. In these mice, KD-501
(3, 10, 30, 100, and 200 mg/kg) was administered either at once or for 15 days. Acute admin-
istration of KD-501 (10–200 mg/kg) (KD-501 10 mg/kg: p < 0.05, KD-501 30–200 mg/kg:
p < 0.01), as well as treatment with 3–200 mg/kg KD-501 (KD-501 3, 10 mg/kg: p < 0.05,
KD-501 30–200 mg/kg: p < 0.001) for 15 days significantly increased the step-through
latency in the passive avoidance test. Acute and prolonged (for 15 days) treatment of
100 mg/kg KD-501 improved spatial memory ability by reducing escape latency in the
Morris water maze test conducted for 4 days. The acetylcholinesterase activity of the cortex
(KD-501: p < 0.05) and hippocampal (KD-501 100 mg/kg: p < 0.05, KD-501 200 mg/kg:
p < 0.01) tissue was significantly increased by the acute administration of KD-501.

Acute treatment with 100 mg/kg KD-501 resulted in antioxidant activity by decreasing
GSSG/total GSH (KD-501: p < 0.001 in hippocampus and increasing glutathione reductase
(KD-501: p < 0.001 in Cortex, KD-501: p < 0.01 in hippocampus) and SOD (KD-501: p < 0.001
in Cortex, KD-501: p < 0.01 in hippocampus) activities in the cortex and hippocampal tissue
of amnesic mice. The prolonged (for 15 days) oral treatment with 100 mg/kg KD-501
showed antioxidant activity by decreasing GSSG/total GSH (KD-501: p < 0.001) and
increasing glutathione reductase (KD-501: p < 0.001) and SOD (KD-501: p < 0.001) activities
in the cortex and hippocampus.
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These results showed that KD-501 may be used for the prevention and therapeutics of
Alzheimer’s disease.

Lee et al. [9,69] demonstrated that SBE has a neuroprotective effect on mice with
memory impairment induced by scopolamine and β-amyloid. The mice were orally
administered 30 and 100 mg/kg SBE for 28 days. The step-through latency (SBE: p < 0.05)
in the passive avoidance test that decreased after scopolamine injection was significantly
increased by treatment with 30 and 100 mg/kg SBE, and escape latency and swim distance
were decreased in the Morris water maze test. Moreover, in the probe trial conducted on day
28, administration of SBE (30 and 100 mg/kg) significantly increased the crossing number
(SBE: p < 0.01). The decreased acetylcholine (SBE 30 mg/kg: p < 0.05, SBE 100 mg/kg:
p < 0.01) level was increased, while increased acetylcholinesterase (SBE 100 mg/kg: p < 0.01)
activity was decreased in the hippocampus after SBE (30 and 100 mg/kg) administration.

Scopolamine injection reduced the BDNF expression levels and CREB phosphoryla-
tion. However, 100 mg/kg SBE treatment markedly increased the BDNF (SBE: p < 0.01)
expression level, and 30 and 100 mg/kg SBE administration significantly increased CREB
(SBE: p < 0.01) phosphorylation. Furthermore, SOD-1 (SBE: p < 0.01) and SOD-2 (SBE
100 mg/kg: p < 0.05) expression levels were increased and IL-1β (SBE 100 mg/kg: p < 0.01),
IL-6 (SBE 30 mg/kg: p < 0.05, SBE 100 mg/kg: p < 0.01), and TNF-α (SBE 100 mg/kg:
p < 0.01) gene expression levels were decreased in mice with SBE. The group injected with
scopolamine showed increased expression levels of Bax, cleaved caspase-9, and cleaved
PARP and decreased expression level of Bcl-2. The SBE treatment decreased Bax (SBE:
p < 0.01), cleaved caspase-9 (SBE 100 mg/kg: p < 0.01), and cleaved PARP (SBE: p < 0.01)
expression levels and increased Bcl-2 (SBE 100 mg/kg: p < 0.01) expression level.

The mice injected with β-amyloid showed decreased step-through latency in the
passive avoidance test and increased escape latency and swim distance. SBE treatment (30
and 100 mg/kg) in these mice increased the step-through latency (SBE 30 mg/kg: p < 0.05,
SBE 100 mg/kg: p < 0.01) and decreased escape latency and swim distance in the Morris
water maze test. The crossing number (SBE 30 mg/kg: p < 0.05, SBE 100 mg/kg: p < 0.01)
was also increased after SBE treatment. Glutathione reductase activity (SBE: p < 0.01) and
SOD-1 (SBE 100 mg/kg: p < 0.01), SOD-2 (SBE 100 mg/kg: p < 0.01), and GPx-1 (SBE
100 mg/kg: p < 0.01) expression levels were decreased by β-amyloid injection and increased
in the mice administered SBE. Furthermore, Bax (SBE: p < 0.01), cleaved caspase-9 (SBE:
p < 0.01), and cleaved PARP (SBE: p < 0.01) levels were markedly decreased, and Bcl-2 (SBE
100 mg/kg: p < 0.01) expression level was increased after SBE treatment. The β-amyloid
(SBE: p < 0.01) and phosphorylation of Tau (SBE: p < 0.01) were significantly decreased in
the mice treated with SBE. According to the in vitro and in vivo studies, SBE improved
spatial memory and cognitive ability by inhibiting cell apoptosis.

SBE indicated its potential for development as a health functional food for memory
improvement and as a treatment for Alzheimer’s disease.

Meng et al. [6] reported that RSAE has a neuroprotective effect on the middle cerebral
artery occlusion and reperfusion (MCAO/R) mouse model. Oral administration of RSAE
(2.4 g/kg) for 7 days significantly decreased the brain water content (RSAE 2.4 g/kg:
p < 0.05) and MDA (RSAE 2.4 g/kg: p < 0.01) and NO (RSAE 2.4 g/kg: p < 0.01) levels in
the ischemic hemisphere. 2,3,5-Triphenyltetrazolium chloride (TTC) staining presented that
the corrected infarct volume increased by MCAO/R operation was significantly decreased
by RSAE (2.4 g/kg: p < 0.0001) administration. In the cortex and CA1 region, significantly
increased neuronal damage due to MCAO/R was observed compared to the sham group.
RSAE treatment significantly decreased neuronal damage by increasing neuron density
in the ischemic cortex (RSAE 2.4 g/kg: p < 0.01) and hippocampus CA1 region (RSAE
2.4 g/kg: p < 0.01).

The MCAO/R group showed increased cell apoptosis by an increase in Bax-positive
cells and a decrease in Bcl-2-positive cells. However, RSAE significantly reduced Bax (RSAE
2.4 g/kg: p < 0.05) expression and increased Bcl-2 (RSAE 2.4 g/kg: p < 0.0001) expression
in focal cerebral ischemia and markedly decreased the phosphorylation of ERK1/2 (RSAE
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2.4 g/kg: p < 0.05), p38 MAPK (RSAE 2.4 g/kg: p < 0.01), and JNK1/2 (RSAE 2.4 g/kg:
NS). According to the in vitro and in vivo studies, RSAE inhibits apoptosis and exhibits
neuroprotective effects by regulating the MAPK pathway.

These results suggest that RSAE could be a new therapeutic target for ischemic
stroke patients.

4.3. Anti-Depressant Effects

Xu et al. [70] demonstrated that SN EtOAc extract (II) has an anti-depressive effect.
Male ICR mice were orally treated with II (5, 10, 15, and 20 mg/kg) for 5 consecutive
days, and the avoidance–escape test was performed. The extract of II (15 mg/kg: p < 0.01,
20 mg/kg: p < 0.005) remarkably decreased the number of escape failures and had an
anti-depressive effect on the animal model.

These results suggest that II could be used for the treatment of depression.

4.4. Anti-Allergic Effects

Kim et al. [3] reported that SBE possesses anti-allergic activity. Dinitrofluorobenzene
was used to induce the hypersensitivity reaction in BALB/c mice. SBE (10, 100, and
1000 µg/ear) was topically administered to the ear for 3 days.

SBE application reduced ear thickness (SBE 10 µg at 48 h, 72 h: p < 0.05, SBE 100 µg at
48 h: p < 0.01, SBE 100 µg at 72 h: p < 0.001, 1000 µg at 48, 72 h: p < 0.001) and weight (SBE
1000 µg at 48 h: p < 0.001, 100, 1000 µg at 72 h: p < 0.01) and decreased TNF-α (SBE 100 µg:
p < 0.05, SBE 1000 µg: p < 0.01) and IL-4 (SBE 1000 µg: p < 0.01) levels in ear homogenates
in a dose-dependent manner.

According to the previous in vitro and in vivo studies, SBE showed anti-allergic
activity and may be effective in treating rhinitis and asthma.

4.5. Cardioprotective Effects

Huang et al. [71] demonstrated that the ethanolic extract of Scrophularia ningpoensis
root (EERS) has a ventricular remodeling effect. Left ventricular remodeling was induced
in rats orally administered with 60, 120, and 240 mg/kg EERS for 14 weeks. The ventricular
remodeling group showed decreased systolic blood pressure (SBP), diastolic blood pressure
(DBP), and mean arterial pressure (MAP) when compared with the sham-operated control.
The ERRS-treated rats showed increased SBP (CAL plus 120 mg/kg EERS: p < 0.05), DBP
(CAL plus 60, 120, and 240 mg/kg EERS: NS), and MAP (CAL plus 60, 120, and 240 mg/kg
EERS: NS), and their increased heart rate (CAL 120 mg/kg: p < 0.05, CAL plus 60 mg/kg
EERS: p < 0.01) was significantly reduced. The hemodynamic parameter left ventricular
systolic pressure (CAL plus 120, 240 mg/kg EERS: p < 0.01) was remarkably increased by
ERRS. Increased by left coronary artery ligation (CAL), cardiac weight indexes such as the
left ventricular weight index (LVWI) (CAL plus 60, 240 mg/kg EERS: p < 0.05) and heart
weight index (HWI) (CAL plus 60, 120, and 240 mg/kg EERS: p < 0.05) and cardiocyte
cross-section area (CAL plus 60, 120, and 240 mg/kg EERS: p < 0.01) were decreased in the
ERRS-treated group.

The ERRS-treated group showed that types I and III collagen volume (CAL plus 60,
120, and 240 mg/kg EERS: p < 0.01) and I/III collagen (CAL plus 60, 120, and 240 mg/kg
EERS: p < 0.05) in the interstitial space were remarkably decreased. The interstitial collagen
volume fraction (ICVF) (CAL plus 60, 120, and 240 mg/kg EERS: p < 0.01) and perivascular
collagen volume fraction were also significantly reduced with ERRS treatment. The serum
angiotensin II (Ang II) (CAL plus 120 mg/kg EERS: p < 0.05, CAL plus 240 mg/kg EERS:
p < 0.01) concentration was decreased in the ERRS-treated rats. Endothelin (ET)-1 (CAL
plus 60, 120, and 240 mg/kg EERS: p < 0.05), atrial natriuretic peptide (ANP) (CAL plus
60 mg/kg EERS: p < 0.05, CAL plus 120, 240 mg/kg EERS: p < 0.01), hydroxyproline
(Hyp) (CAL plus 60, 120, and 240 mg/kg EERS: p < 0.01), MMP-2 (CAL plus 60, 120, and
240 mg/kg EERS: p < 0.01), and TNF-α (CAL plus 60, 240 mg/kg EERS: p < 0.01, CAL plus
120 mg/kg EERS: p < 0.05) concentrations were decreased by ERRS administration. The rats
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with ventricular remodeling that were administered ERRS showed a significant decrease in
angiotensin-converting enzyme (ACE) (CAL plus 60, 120, and 240 mg/kg EERS: p < 0.01),
ET-1 (CAL plus 60 mg/kg EERS: p < 0.01, CAL plus 120, 240 mg/kg EERS: p < 0.05), and
ANP (Cal plus 240 mg/kg EERS: p < 0.05) mRNA expression levels.

These results suggest that ERRS exhibits preventive effects against cardiac fibrosis and
attenuates ventricular remodeling. It could be used to treat early ventricular remodeling
and heart failure.

Zhang et al. [72] showed that the active extract of Scrophularia Radix (ACRS) possesses
ventricular remodeling inhibition effects. Spontaneously hypertensive (SHR) male rats
were used for the experiment and orally treated with 70, 140, and 280 mg/kg ACRS for
21 weeks. The cardiac mass indexes LVWI (SHR with 70, 280 mg/kg ACRS: p < 0.01, SHR
with 140 mg/kg ACRS: p < 0.05), HWI (SHR with 70, 140, and 280 mg/kg ACRS: p < 0.01),
and ICVF (SHR with 70, 140, and 280 mg/kg ACRS: p < 0.01), perivascular collagen area
(PVCA) (SHR with 70, 140, and 280 mg/kg ACRS: p < 0.01) ratio, collagen I (SHR with 70,
140, and 280 mg/kg ACRS: p < 0.01) and III (SHR with 140, 280 mg/kg ACRS: p < 0.01)
volumes, I/III ratio (SHR with 140, 280 mg/kg ACRS: p < 0.05), serum norepinephrine
(SHR with 140, 280 mg/kg ACRS: p < 0.05), myocardium Ang II (SHR with 140, 280 mg/kg
ACRS: p < 0.05), and serum TNF-α levels were significantly decreased by ACRS treatment
in the SHR rats.

The ACRS-treated SHR rats showed reduced collagen I (SHR with 70, 140, and
280 mg/kg ACRS: p < 0.01), TGF-β1 (SHR with 70, 140, and 280 mg/kg ACRS: p < 0.05),
and ACE (SHR with 70, 140, and 280 mg/kg ACRS: p < 0.05) mRNA expression levels and
decreased phosphorylation of p44/42 MAPK (SHR with 70 mg/kg ACRS: p < 0.05, SHR
with 280 mg/kg: p < 0.01), SANP/JNK (SHR with 70, 140 mg/kg ACRS: p < 0.01, SHR with
280 mg/kg ACRS: p < 0.05), and p38 MAPK (SHR with 140, 280 mg/kg ACRS: p < 0.05).
These results show that ACRS inhibited ventricular remodeling through MAPK pathway
regulation, and it may be used to prevent and treat heart failure.

Gu et al. [73] showed that ERS possesses cardioprotective effects. Experimental
ventricular remodeling was induced in the rats that were orally administered 8 (L) and
16 (H) g/kg ERS for 4 weeks. Cardiac weight indexes such as LVWI (ERS-L: NS, ERS-
H: p < 0.05), HWI (ERS-L: NS, ERS-H: p < 0.05), myocardium Ang II (ERS-L: p < 0.05,
ERS-H: p < 0.01), and Hyp (ERS-L and H: p < 0.01) decreased with the ERS treatment. To
analyze the cardiocyte cross-section area (ERS-L and H: p < 0.01) by H&E staining, ERS
administration was reduced similarly to that in the captopril group used as the positive
control. In addition, PVCA (ERS-L and H: p < 0.01) and CVF (ERS-L and H: p < 0.01), which
are increased by ventricular remodeling, were significantly decreased by the ERS treatment.

Subtypes I (ERS-L and H: p < 0.01) and III collagen contents (ERS-L: p < 0.05, ERS-H:
p < 0.01) were significantly decreased and AT1R (ERS-L and H: p < 0.01), TNF-α (ERS-L and
H: p < 0.01), and TGF-β1 (ERS-L and H: p < 0.01) mRNA expression levels were reduced in
the myocardium by the ERS treatment.

These results suggest that ERS may be used for the treatment of myocardial infarction
by decreasing the progression of left ventricular remodeling.

4.6. Immune-Enhancing Effects

Gong et al. [58] reported that ERS has immune-enhancing activity. The mice were
administered 2 g/kg ERS intragastrically for 14 days, and the exterior signs of the mice with
ERS were measured. Body weight (ERS: p < 0.01) was observed to significantly increase, and
body temperature (ERS: p < 0.05), heart rate (ERS: p < 0.05), average speed (ERS: p < 0.01),
and upright time (ERS: p < 0.01) were found to markedly decrease. Measurement of serum
MDA and SOD levels and cAMP/cGMP suggested that ERS treatment decreased the MDA
(ERS: p < 0.05) level and cAMP/cGMP (ERS: p < 0.05) and increased SOD (ERS: p < 0.05)
level. The ERS-treated mice showed a statistical decrease in IL-6 (ERS: p < 0.01) expression
level in the serum and Na+-K+ATP enzyme content (ERS: p < 0.01) in the liver homogenates.
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According to the in vitro and in vivo studies, ERS showed its immune regulation and
antioxidant activities, and it can be used as dietary supplement for better health.

5. Conclusions

In this review, we summarized the biological effects of SB, SN, and SR based on the
previous in vitro and in vivo studies. SB was administered orally at a minimum dose of
20 mg/kg to a maximum of 200 mg/kg (mice), SN was administered orally at a minimum
dose of 5 mg/kg to a maximum of 2.4 g/kg (mice), and SR was orally administered at
2 g/kg (rat). SB showed anti-inflammation activity, immune-enhancing effects, bone disor-
der prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect.
SN exhibited neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, cardiopro-
tective effect, and anti-depressant effect; and SR showed immune-enhancing activity and
cardioprotective effects. However, clinical trials need to be conducted to investigate the
efficacy and safety of SR, including SB and SN.

As per studies published on SB, SN, and SR in the last 20 years, these plants have been
processed using water or ethanol as a solvent. This is thought to reduce side effects when
administered orally, and will help increase their applicability to various formulations when
developing health functional foods or therapeutics in the future.

Taken together, we suggested the possibility of utilizing SB, SN, and SR for developing
health functional foods or therapeutics for various applications on the basis of previously
reported literature.
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