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A B S T R A C T   

Accessible risk predictors are crucial for improving the early detection and prognosis of breast cancer. Blood 
samples are widely available and contain proteins that provide important information about human health and 
disease, however, little is still known about the contribution of circulating proteins to breast cancer risk pre-
diction. We profiled EDTA plasma samples collected before diagnosis from the Swedish KARMA breast cancer 
cohort to evaluate circulating proteins as molecular predictors. A data-driven analysis strategy was applied to the 
molecular phenotypes built on 700 circulating proteins to identify and annotate clusters of women. The unsu-
pervised analysis of 183 future breast cancer cases and 366 age-matched controls revealed five stable clusters 
with distinct proteomic plasma profiles. Among these women, those in the most stable cluster (N = 19; mean 
Jaccard index: 0.70 ± 0.29) were significantly more likely to have used menopausal hormonal therapy (MHT), 
get a breast cancer diagnosis, and were older compared to the remaining clusters. The circulating proteins 
associated with this cluster (FDR < 0.001) represented physiological processes related to cell junctions (F11R, 
CLDN15, ITGAL), DNA repair (RBBP8), cell replication (TJP3), and included proteins found in female repro-
ductive tissue (PTCH1, ZP4). Using a data-driven approach on plasma proteomics data revealed the potential 
long-lasting molecular effects of menopausal hormonal therapy (MHT) on the circulating proteome, even after 
women had ended their treatment. This provides valuable insights concerning proteomics efforts to identify 
molecular markers for breast cancer risk prediction.   

Introduction 

Breast cancer is the most common cancer among females worldwide 
and the leading cause of cancer-related mortality in middle-aged women 
[1]. Improving risk prediction and early detection is crucial for 
providing a better prognosis and improving the chances of survival. 
Circulating biomarkers have a great potential for simple and minimally 
invasive health assessment. Although studies show promising results for 
blood tests detecting common cancers of the ovary, liver, stomach, 
pancreas, esophagus, colorectum, and lung by circulating proteins [2], 
identifying putative biomarkers for risk prediction and early detection of 

breast cancer has thus far been less successful [2–4]. One reason could 
be that many breast cancers are already being detected at an early stage 
in mammographic screening programs. Blood levels of early-stage can-
cer biomarkers are expected to be low [5], possibly even too low to 
detect before the tumor can be uncovered by mammography. Further 
complicating the search for biomarkers, breast cancer, like most cancers, 
does not represent a single homogeneous phenotype but consists of 
multiple subtypes, each arising from distinct molecular mechanisms and 
progressing on diverging clinical paths. So far, proteomic studies have 
suggested that plasma protein biomarkers for breast cancer may be both 
subtype and stage-specific [3,6–9]. In addition, there is a growing 
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awareness about inter-individual diversity of molecular profiles even 
across clinically healthy individuals [10]. Moreover, germline genetic 
variation may add another layer of complexity to finding circulating 
proteins as common disease biomarkers [11]. 

Phenotypic and molecular heterogeneity often limits the utility of 
classical dichotomous case-control analyses. These can prove chal-
lenging to delineate or simplistic for understanding the underlying 
molecular subtypes. In these instances, alternative strategies, such as 
unsupervised and data-driven methods, can allow for novel hypotheses 
and the finding of translational biomarkers. Our ambition is to yield 
unexpected patterns in the data to deliver subgroups that can then 
readily be linked to molecular phenotypes, clinical risk factors, and 
potentially stratified intervention. Machine learning-based clustering is 
one approach to achieve such explorative, data-driven subtyping. It has 
been applied successfully in other disease areas, such as diabetes [12] 
and heart failure [13]. Clustering approaches have also previously been 
applied to breast cancer for prognosis stratification [14,15] and tumor 
subtyping [14,16,17] using a variety of clinical and molecular param-
eters. We used data-driven clustering to stratify women by decomposing 
their molecular profiles as defined by circulating proteins and to study 
the resulting groups for breast cancer risk and risk factors. 

With access to the Swedish prospective population-based KARMA 
(Karolinska Mammography Project for Risk Prediction of Breast Cancer) 
cohort [18,19], we applied exploratory profiling of circulating proteins 
using a multiplexed affinity proteomics approach based on antibody 
suspension bead array (SBA) assays. The method allows for many pro-
teins to be screened in small plasma volumes of a large number of 
samples [20]. We used a data-driven clustering approach on the plasma 
proteomics data from age-matched breast cancer cases and controls 
collected before diagnosis to identify proteins associated with pheno-
typic traits and breast cancer risk factors. The emerging clusters were 
investigated for associations with clinical parameters, and proteins 
important for the clustering were identified. We assumed heterogeneity 
in breast cancer development and risk and wanted to learn how risk 
factors influence the plasma proteome. Our study aimed to improve our 
currently limited knowledge about using the circulating proteins to 
identify women at risk of developing breast cancer. 

Material and methods 

Study design, sample inclusion criteria, and data collection 

The source population was the KARMA (Karolinska Mammography 
Project for Risk Prediction of Breast Cancer) Cohort consisting of 70,877 
women visiting any of four Swedish mammography units during 
2011–2013 [18,19]. All participants signed informed consent forms 
before joining the KARMA study, and the ethical review board of Kar-
olinska Institutet approved the study (DNR 2010/958–31/1). Cases 
were defined as women diagnosed with breast cancer (N = 183) after 
entering the cohort. Controls were 1:2 matched to each case based on 
age at last regular screening mammogram and study site (Fig. 1). 

The median time from blood draw to breast cancer diagnosis was 23 
days (range 0–588 days). Twelve of the incident cases had been diag-
nosed with breast cancer in the past (5–30 years before blood draw; 
median 11 years). For all, the previous breast tumor was in the other 
breast than the tumor that was detected after sampling. 2 controls had 
previous breast cancer diagnoses, 6 and 16 years before study entry. 

In addition, 19 cases and 10 controls had been diagnosed with other 
types of cancer before sampling (cases: 0.6–35 years; controls: 1–46 
years). An additional set of 60 samples from 30 cancer-free individuals 
from the KARMA cohort were included for quality control (named 
‘doubles’). These 30 individuals were sampled on two separate occa-
sions with a median time interval of 19.1 months (range 10.7–19.9) 
between sampling times. 

Raw (unprocessed) digital mammograms for each study participant 
were collected at KARMA study enrolment as previously described [18, 
21]. Additional phenotypic information was obtained from the KARMA 
study questionnaire, and national health care registers [18]. BMI (body 
mass index) was calculated at study entry and was based on self-reported 
height and weight. Information on tumor characteristics was obtained 
by linkage to the Swedish nationwide cancer registry. Information on 
menopausal hormonal therapy (MHT) and statin use was extracted from 
the Swedish drug prescription registry and supplemented with data 
collected from KARMA questionnaires. Anatomical Therapeutic Chem-
ical (ATC) codes were extracted for MHT prescriptions containing only 
estrogens, only progestogens, or a combination of estrogens and 

Fig. 1. Overview of study design and data analysis. SBA; suspension bead array.  
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progestogens, as well as for the use of lipophilic and hydrophilic statins 
(Supplementary Table S1). MHT information was also available from 
the KARMA questionnaire. It was merged with the drug registry used for 
analysis. In instances where both registry and questionnaire data was 
available, registry data took precedence. 

Plasma sample collection 

Non-fasting EDTA (ethylenediaminetetraacetic acid) plasma samples 
of peripheral blood were collected between January 2011 and 
September 2012 from the KARMA participants at the study enrolment 
[18]. All blood samples were handled following a strict 30-hours 
cold-chain protocol and were processed at the Karolinska Institutet 
high-throughput biobank in Stockholm, Sweden. 

Antibody bead arrays 

We used antibody suspension bead arrays (SBA) to determine protein 
profiles in plasma samples. The SBAs were generated using carboxylated 
magnetic beads (MagPlex-C, Luminex Corp.) as previously described 
elsewhere in [20]. All plasma samples within each study set were 
retrieved from the biobank and analyzed at the same point in time. 
Plasma samples stored at − 80 ◦C were thawed at 4 ◦C and randomized 
across seven 96-well microtiter plates in a stratified manner: Each 
double pair and trio (case and two matched controls) were placed within 
the same plate, resulting in an even distribution of cases, controls, and 
doubles across all seven plates. Samples were assayed in 384 well plates, 
where the fourth quadrant in each 384-well contained the same 96 
samples that originated from one of the crude 96-well sample plates. In 
addition, all plates included four aliquot replicates from a crude plasma 
pool from all individuals included in the study. Samples were bio-
tinylated, diluted, heat-treated at 56 ◦C, and combined with the bead 
array on two separate 384-well assay plates following previously 
described protocols [22]. The protein levels were reported as units of the 
median fluorescence intensity (MFI) from measuring at least 32 beads 
per antibody assay. 

Protein target selection 

We used antibodies derived from the Human Protein Atlas [23] to 
construct three SBAs. The SBAs were built on sets of 422, 347, and 350 
antibodies (SBA1-SBA3, Supplementary Fig. S1) as previously 
described in [10]. These targeted a total of 701 unique protein-encoding 
genes, and a complete list of all antibodies included in the study is 
provided in Additional file 1. The 422 antibodies included in the first 
bead array (SBA1) targeted 295 protein-encoding genes annotated to 
extracellular matrix (www.uniprot.org) [24], including integrins (N =
27), laminins (N = 21), matrix metalloproteases (N = 21), metal-
lopeptidases (N = 18), and proteoglycans (N = 16). Most of the anti-
bodies (82%) in SBA1 targeted secreted proteins. The 347 antibodies in 
SBA2 included 243 antibodies (127 proteins) targeting breast 
cancer-related proteins from literature, 62 antibodies towards 55 pro-
teins with strong expression in breast tissue according to RNAseq data 
(www.proteinatlas.org), 39 antibodies towards 11 proteins with indic-
ative associations to breast cancer from previous screenings and 3 con-
trols. The 350 antibodies against 241 protein-encoding genes included 
in the third suspension bead array (SBA3) were selected based on 
possible relationship to mammographic breast density, cancer devel-
opment and/or progression, tissue composition and/or remodeling. Due 
to overlap between the different arrays, the total number was 1073 
unique antibodies targeting 701 unique proteins. This included sets of 
paired antibodies with common protein targets. 

Data processing 

The generated raw protein profile data was normalized and 

annotated as follows. Antibody-specific probabilistic quotient normali-
zation (Abs-PQN) [10] was applied per 96-well plate to reduce 
within-plate sample-to-sample variation. Between-plate normalization 
was performed using a multidimensional (MA) normalization method 
[25] (Supplementary Fig. S2). 

A set of 96 duplicated samples was used to assess technical variation 
and to confirm the reproducibility of antibody profiles within all three 
SBAs. Prior to statistical analyses, the data were annotated based on 
assay performance using three criteria. Internal controls and antibodies 
were excluded from proceeding analyses if they showed low reproduc-
ibility in replicated analyses (as rho<0.7), correlation to human IgG 
levels (rho>0.5), or elevated background levels in assays with sample- 
free buffers (MFIEmpty > mean(MFISample) + 3 × sd(MFISample)). Repli-
cated samples were also excluded before the analyses. 

Case-control analysis 

For contrasting cases versus controls, conditional logistic regression 
models considering the age- and sampling location matching of cases 
and controls were applied to normalized, Ab-filtered, and log- 
transformed proteomics data. Three models were compared. In model 
1, BMI and study entry date were included as exposure variables. Model 
2 included exposure variables for absolute area-based breast density, 
postmenopausal status (yes/no), and MHT use (yes/no) in addition to 
BMI and entry date. In model 3, smoking (packs/year), alcohol (grams/ 
week), and childbirth (yes/no) were included as exposure variables in 
addition to the variables in model 2. Due to missing values for BMI (4 
missing), area-based density (20 missing), MHT usage (5 missing), 
smoking (3 missing), alcohol (2 missing), and childbirth (1 missing), 540 
samples (181 cases, 359 controls) were analyzed in model 1, 490 sam-
ples (167 cases, 323 controls) were analyzed in model 2 and 484 (165 
cases, 319 controls) were analyzed in model 3. Statistical modeling was 
performed using the ”clogit” function of the "survival" R package 
(version 3.1.8) [26,27]. 

Unsupervised clustering 

We performed an unsupervised archetype clustering of the prote-
omics data to identify clusters of individuals with similar protein pro-
files. These profiles were subsequently associated with clinical risk 
factors and other traits. 

The quality-controlled proteomics data sets were linearly adjusted 
for BMI, entry date, and age at sampling. Clustering was performed 
using archetypal analysis where each participant can be described as a 
combination of archetypes representing extremes in the data. Arche-
typal analysis was performed using the “archetypal“ function of the 
“archetypal” R package (version 1.1.0) [28]. The "find_optimal_kappas" 
function of the package was used to determine the optimal number of 
archetypes where the benefit of using more archetypes is marginal 
(Supplementary materials and methods, Unsupervised clustering). 
After the archetypal analysis, each participant was assigned to the 
archetype they had the highest probability of belonging to. To validate 
the clusters, we tested the stability of the clusters when the data was 
changed slightly [29]. This was done by bootstrap analysis: A subset of 
patients was randomly selected and the results from clustering this 
subset was compared with the outcome when clustering the original 
data. For technical assessment of the clustering, the results of the 
archetypal analysis were used to predict the archetype coefficients of 
doubles and replicates that had been excluded from the original clus-
tering. This was done using the "predict" function of the “stats” R 
package (version 3.6.0) on an "archetypes" object of the "archetypes" R 
package (version 2.2.0.1) [30]. Further details on the clustering analysis 
can be found in the supplementary material. The protein profiles of the 
resulting clusters were visualized in a heatmap using the R packages 
"ComplexHeatmap" (version 2.2.0, [31]) and "circlize" (version 0.4.13, 
[32]). 

C.E. Thomas et al.                                                                                                                                                                                                                              

http://www.uniprot.org
http://www.proteinatlas.org


Translational Oncology 17 (2022) 101339

4

Statistical tests of cluster characteristics 

We compared the clusters to investigate how the differences in 
protein levels driving the clustering materialized at the clinical level. 
Similarly, we compared the genetic predisposition to breast cancer to 
assess if the differences in protein levels might be genetically driven. 
Details on the genetic data and calculation of polygenic risk scores 
(PRSs) are given in the supplementary material (Supplementary ma-
terials and methods, Genotyping). The Wilcoxon rank-sum test was 
used for continuous variables and Fisher’s exact test for categorical 
variables. Testing of the influence of potential genetic components be-
tween the clusters was done by the absolute values of PRS in the clusters 
as a continuous variable. All P-values were two-sided and considered 
statistically significant if <0.05. 

To rank the proteins driving a cluster, we first performed differential 
abundance analysis comparing a cluster to the remaining samples using 
a two-tailed t-test. The resulting p-values were corrected for multiple 
comparisons using Benjamini-Hochberg adjustment, resulting in false 
discovery rates (FDRs) for each protein. To shortlist representative 
proteins for a cluster, we selected the union of those with the lowest p- 
values and the highest (positive or negative) difference in relative 
abundance. 

Next, we performed pathway analysis to summarize the potential 
functions of differentially abundant circulating proteins. We began by 
applying Over-Representation Analysis (ORA) using two criteria for 
protein selection; proteins with an FDR < 0.05 and the top 50 proteins 
with the lowest p-value, using the “gost” function of the “gprofiler2” R 
package (version 0.1.8) [33]. Next, we applied Gene Set Enrichment 
Analysis (GSEA), where all proteins were included but ranked by their 
p-value and direction of differential abundance, using the “fgsea” R 
package (version 1.12.0) from Bioconductor [34]. 

The levels of the selected proteins in all participants were associated 
with the variables dense area (adjusted for BMI and age) and MHT status 
(never taken, taken before study entry, taking at entry) using linear and 
logistic regression, respectively. All data handling and statistical ana-
lyses were performed in R version 3.6.0. 

Results 

Characterizing the cohort 

The selected study population consisted of 183 cases and 366 
matched controls (Table 1), as well as 30 doubles that were sampled 
twice over time (Supplementary Table S2). Cases and controls had 
similar BMI, but cases had a higher absolute area-based breast density (p 
= 0.0045). 74.9% of cases were postmenopausal, with similar pro-
portions for controls. 48.1% of cases and 46.7% of controls had never 
taken MHT, with similar numbers for statin use. Most of the tumors were 
positive for ER (74.9%) and PR (59.6%), only a few confirmed HER2 
positive (7.7%). More than half of the tumors were invasive (54.1%) 
with histological grade ≥2 (76.5%) but without lymph node invasion 
(78.1%). Women were recruited at four centers, but no differences be-
tween sampling centers were observed at the protein level (Supple-
mentary Fig. S3). 

Identifying protein biomarkers of case-control status 

A set of 54 proteins were associated with case-control status with a 
nominal p < 0.05 in at least one of the three conditional logistic 
regression models tested (data not shown). However, none remained 
significant after adjustment for multiple testing (FDR > 0.05). 

Unsupervised clustering of participants based on their protein profiles 

Before clustering, we adjusted the proteomics data for a selected set 
of covariates. The impact of BMI, age of the women at sampling, and 

Table 1 
Overview of clinical characteristics for cases and controls, and tumor charac-
teristics for cases. P-values are from comparing cases and controls using Wil-
coxon rank-sum tests for continuous variables and Fisher’s exact tests for 
categorical variables.   

Total (N 
¼ 549) 

Cases (N 
¼ 183) 

Controls (N 
¼ 366) 

P- 
value 

Age     
Mean (SD) 59.6 (9.28) 59.6 (9.30) 59.6 (9.28) 1 
Median 

[Min, Max] 
62.0 [39.0, 
81.0] 

62.0 [39.0, 
81.0] 

62.0 [39.0, 
81.0]  

BMI     
Mean (SD) 25.6 (4.19) 25.8 (3.78) 25.5 (4.38) 0.13 
Median 

[Min, Max] 
24.9 [17.6, 
49.0] 

25.4 [18.5, 
39.2] 

24.7 [17.6, 
49.0]  

Missing 4 (0.7%) 1 (0.5%) 3 (0.8%)  
Sampling center     

Helsingborg Hospital 283 
(51.5%) 

95 (51.9%) 188 (51.4%) 0.99 

Landskrona Hospital 23 (4.2%) 7 (3.8%) 16 (4.4%)  
Skåne University 
Hospital, Lund 

20 (3.6%) 7 (3.8%) 13 (3.6%)  

Stockholm South 
General Hospital 

223 
(40.6%) 

74 (40.4%) 149 (40.7%)  

Menopausal status     
Premenopausal 130 

(23.7%) 
45 (24.6%) 85 (23.2%) 0.75 

Postmenopausal 418 
(76.1%) 

137 
(74.9%) 

281 (76.8%)  

Missing 1 (0.2%) 1 (0.5%) 0 (0%)  
Dense area (cm2)     

Mean (SD) 27.3 (24.2) 30.9 (24.1) 25.6 (24.1) 0.005 
Median [Min, Max] 20.4 [0.0, 

161.4] 
23.6 [0.1, 
113.6] 

18.7 [0.0, 
161.4]  

Missing 20 (3.6%) 14 (7.7%) 6 (1.6%)  
MHT status     

Never taken 259 
(47.2%) 

88 (48.1%) 171 (46.7%) 0.51 

Taken before 213 
(38.8%) 

74 (40.4%) 139 (38.0%)  

Taking at sampling 70 (12.8%) 19 (10.4%) 51 (13.9%)  
Missing 7 (1.3%) 2 (1.1%) 5 (1.4%)  

Statin status     
Never taken 272 

(49.5%) 
86 (47.0%) 186 (50.8%) 0.76 

Taken before 47 (8.6%) 15 (8.2%) 32 (8.7%)  
Taking at sampling 52 (9.5%) 19 (10.4%) 33 (9.0%)  
Missing 178 

(32.4%) 
63 (34.4%) 115 (31.4%)  

Smoking 
(packs per year)     
Mean (SD) 6.08 (9.57) 6.46 (9.73) 5.89 (9.50) 0.30 
Median [Min, Max] 0.950 [0, 

64.2] 
1.65 [0, 
49.3] 

0.800 [0, 
64.2]  

Missing 3 (0.5%) 3 (1.6%) 0 (0%)  
Alcohol intake 

(g per week)     
Mean (SD) 58.2 (69.9) 60.0 (70.9) 57.3 (69.5) 0.88 
Median [Min, Max] 37.0 [0, 

575] 
37.0 [0, 
292] 

37.0 [0, 575]  

Missing 2 (0.4%) 2 (1.1%) 0 (0%)  
Ever given birth     

Never given birth 78 (14.2%) 27 (14.8%) 51 (13.9%) 0.80 
Has given birth 470 

(85.6%) 
155 
(84.7%) 

315 (86.1%)  

Missing 1 (0.2%) 1 (0.5%) 0 (0%)  
ER status     

Negative – 18 (9.8%) –  
Positive – 137 

(74.9%) 
–  

Missing – 28 (15.3%) –  
PR status     

Negative – 44 (24.0%) –  
Positive – 109 

(59.6%) 
–  

Missing – 30 (16.4%) –  
HER2 status     

(continued on next page) 
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study entry date (as a proxy for sample age) on the protein data were 
analyzed by projecting the data to two dimensions using Uniform 
Manifold Approximation and Projection (UMAP) (Supplementary 
Fig. S4) and by associating protein levels with BMI, age and entry date in 
a combined linear model. The linear association resulted in significant (p 
< 0.05) associations for 305, 415, and 57 proteins for BMI, age, and 
entry date, respectively. Thus, when considering both the overall impact 
on the measured proteins and the effect on individual proteins, the age 
of the women had the strongest influence on the measured proteins, 
followed by BMI and with a limited effect of entry date. The experi-
mental proteomics data were therefore adjusted for BMI, age of the 
women, and study entry date prior to further analyses. Five individuals 
lacked information on BMI and were therefore excluded, leaving 573 
samples (181 cases, 363 controls, 29 doubles) for analysis. 552 unique 
antibodies with 552 unique targets were left after removing antibodies 
with the same target (Additional file 1). 

To identify patterns in the proteomics data that grouped individuals 
into clusters, we performed archetypal analysis. We applied the Unit 
Invariant Knee method to identify the optimal number of clusters (as 
described in the supplementary material) (Supplementary Fig. S5) that 
would balance simplicity with adequate stratification of the data. This 
resulted in 5 clusters with 19, 113, 115, 144, and 182 participants, 
respectively (Fig. 2A–D), representing 3.3%, 19.7%, 20.0%, 25.1% and 
31.8% of all tested subjects. 

The mean Jaccard index (MJI) was calculated to assess cluster sta-
bility by repeating the clustering 150 times on bootstrap samples, 
randomly resampled with replacement. The MJIs between the most 
similar clusters for each clustering were summarized by taking the mean 
(Supplementary methods, Unsupervised clustering). The MJI for 
cluster 1–5 were 0.70 ± 0.29, 0.60 ± 0.12, 0.56 ± 0.16, 0.58 ± 0.14, and 
0.61 ± 0.14 (Supplementary Table S3). To further assess the quality of 
the clustering, we determined the cluster membership of pairs of repli-
cated samples and pairs of samples collected on different occasions from 
the same individual (double samples). We observed that replicate sam-
ple pairs significantly more often belonged to the same cluster than 
double sample pairs (Supplementary Figs. S6, S7, Supplementary 
results). This is in line with the difference in measured protein levels 
between replicate sample pairs being of purely technical origin. In 

contrast, differences in measured protein levels of the double pairs can 
be of both technical and biological origin due to the time elapsed be-
tween samplings. In addition, doubles pairs belonged more often to the 
same cluster than random pairs of samples. Thus, also showing that the 
protein profiles of the individual women did not substantially change 
between samplings. Taken together, this indicated that the clustering 
captures groups of individuals with similar protein profiles. 

Clinically characterizing the clusters of participants 

Clusters of participants were defined at the protein level, and we 
proceeded to investigate how the stratification observed at the protein 
level might be reflected at the clinical level. We, therefore, contrasted a 
range of clinical variables across the clusters (Table 2 and Supple-
mentary Table S4). Women belonging to cluster 1 had distinct clinical 
characteristics. Given that cluster 1 was the most stable cluster (MJI =
0.70) and the cluster with a unique protein profile, we focused the 
remaining analyses on this cluster. Cluster 1 consisted of women of a 
higher age than clusters 2 and 4 (p < 0.05, Supplementary Fig. S8A, B), 
despite the proteomics data being adjusted for age prior to archetype 
clustering. Consequently, 18 of the 19 women (95%) in cluster 1 were 
postmenopausal, while all other clusters included 71% to 77% of post-
menopausal women. BMI and BMI-adjusted area-based breast density 
were not significantly different across clusters (Supplementary 
Fig. S8C–D). Cluster 1 had a mean and median dense area of 25.8 cm2 

and 21.2 cm2, respectively (Table 2). Though the density for women in 
cluster 1 was not significantly different than the other clusters, it was 
substantially higher than a comparative sub-group of women of the 
same age. The group used for comparison were women within the same 
age range (63–65) and the same proportion of breast cancer cases from 
the KARMA cohort [35,36]. 

There was a significantly greater proportion of breast cancer cases in 
cluster 1 compared to clusters 2, 3, and 4 (all p < 0.05, Fig. 3A). Cluster 
1 also had a significantly greater proportion of women who had taken 
MHT compared to the other clusters (all p < 0.05, Fig. 3B). Additionally, 
the proportion of women who had previously taken MHT prior to study 
entry but were not taking MHT at the time of blood sampling, was also 
significantly higher in cluster 1 (all p < 0.05, Fig. 3C). We observed no 
significant difference between clusters regarding the time from last MHT 
to study entry (Supplementary Fig. S8E). Cluster 1 contained a higher 
proportion of cases who had taken MHT ever (100% of cases) compared 
to other clusters (approximately 50% of cases) (Supplementary 
Fig. S8F). 

Given that 101 of the women were currently using or had previously 
been treated with statins and that statin use has previously been shown 
to affect the plasma proteome [37,38], we wanted to exclude this as a 
possible confounding factor. We observed no significant difference be-
tween clusters regarding statin usage, neither when delineating by statin 
type nor grouping all statins (Supplementary Fig. S9). Lastly, we 
compared PRSs across clusters and found no significant difference. Also, 
no significant differences were observed when comparing only cases in 
cluster 1 with cases in the remaining clusters. Additionally, when 
comparing the PRS of all cases to all controls, the PRS was slightly higher 
for cases. However, this difference was not statistically significant. This 
could be due to the small sample sizes. (Supplementary Fig. S10). 

Given that several cases and controls had previous cancer diagnoses, 
we reran the clinical comparison of the clusters where these individuals 
were excluded to ascertain that such previous cancer and related 
treatment was not driving the differences observed. We did not observe 
any major changes resulting from excluding these individuals (data not 
shown). Applied to only the subset of postmenopausal women, the 
archetypal analysis again found a small cluster of 16 women. This 
cluster resembled cluster 1 in terms of higher frequencies of cases and 
previous MHT users (p < 0.05; data not shown). In fact, 16 of 18 post-
menopausal women from the original cluster 1 (88% overlap) were 
grouped together again. This supports the utility of the chosen approach. 

Table 1 (continued )  

Total (N 
¼ 549) 

Cases (N 
¼ 183) 

Controls (N 
¼ 366) 

P- 
value 

Negative – 136 
(74.3%) 

–  

Positive – 14 (7.7%) –  
Missing – 33 (18.0%) –  

Invasiveness     
Invasive – 99 (54.1%) –  
Carcinoma in situ – 19 (10.4%) –  
Missing – 65 (35.5%) –  

Tumor size     
< 20 mm – 43 (23.5%) –  
>= 20 mm – 17 (9.3%) –  
Missing – 123 

(67.2%) 
–  

Lymph node metastasis     
No – 143 

(78.1%) 
–  

Yes – 15 (8.2%) –  
Missing – 25 (13.7%) –  

Nottingham Histologic 
Grade     
1 – 31 (16.9%) –  
2 – 68 (37.2%) –  
3 – 72 (39.3%) –  
Missing – 12 (6.6%) –  

Abbreviations: Body mass index (BMI), Menopausal hormone therapy (MHT), 
Estrogen receptor (ER), Progesterone receptor (PR), Human epidermal growth 
factor receptor 2 (HER2). 
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Investigating the proteomic differences between clusters of participants 

Differences in protein levels between the clusters were reflected in a 
heatmap (Fig. 3A). Distinct patterns reflecting the differences in protein 
levels can be observed for all clusters but are most apparent for cluster 1. 
The differential abundance analysis comparing the protein profiles of 
women in cluster 1 with all other individuals yielded 393 (72% of all) 
proteins with higher levels, of which 245 had an FDR < 0.05. In contrast, 
there were 159 (28% of all) proteins with lower levels, 73 of which had 
an FDR < 0.05. There were no significantly enriched pathways neither 
from the ORA over-representation analysis nor the GSEA gene set 
enrichment analysis. However, this investigation was likely biased by 
the already highly selective design to target only a particular set of 
proteins in the circulation. 

To provide insights into the proteomic signatures of cluster 1, we 
shortlisted those proteins unifying the lowest p-values and largest rela-
tive abundance differences. Compared to the rest of the participants and 
choosing the union of the 25 most significant and 25 most differentially 

abundant proteins of cluster 1 (Fig. 3B), there were 16 more abundant 
(Table 3) and 15 less abundant proteins (Table 4). The levels of PTCH1 
and ZP4 were significantly associated with adjusted breast density 
(nominal p < 0.05) and MHT status (nominal p < 0.05) when performing 
linear regression and logistic regression, respectively. CCR7, MMRN1, 
HNRNPA2B1, RBBP8, ACOX3, TJP3, and MMP15 were associated with 
adjusted breast density (nominal p < 0.05), but not MTH status (Sup-
plementary Fig. S11). MFI levels of PTCH1 and ZP4 were lower in cases 
than in controls and significantly lower if MHT had been used (Sup-
plementary Fig. S12). 

Discussion 

Applying an unsupervised analysis approach on plasma proteomic 
data from women of the KARMA breast cancer risk cohort, we identified 
a subset of individuals enriched by previous MHT users and a greater 
proportion of breast cancers. The women in this cluster were also older, 
predominantly postmenopausal, and had a larger mammographic dense 

Fig. 2. Principal component analysis (PCA) of each participant’s protein profile plotted with (A) PC1/PC2 and (B) PC1/PC3. Each dot represents one participant that 
is colored by cluster. The stacked bar plots show comparisons between the five clusters in proportions: (C) Cases and controls, where doubles were treated as controls 
as they were all cancer-free at study entry; (D) Participants who were taking MHT prior to sample collection, at time of sampling, or never. Asterisks symbolize 
Fisher’s exact test p-values (*: p<0.05, **: p<0.01) for pairwise comparisons between clusters. 
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area relative to their age. Characterization of circulating proteins 
driving the cluster found lower levels of proteins involved in cell 
adhesion and immunoregulation, and higher levels of proteins associ-
ated with DNA integrity, cell fate, metabolism, and the female repro-
ductive system. This supports their putative roles in the development of 
breast cancer or mediation of risk factors. 

At first, we attempted to use a traditional biomarker discovery 
approach to compare cases and controls. This did, however, not reveal 
any proteomic profiles to be significantly different between the two 
groups. Even though studies have suggested blood-based biomarkers for 
diagnosis, our observations are in line with previous literature reporting 
few or no protein biomarkers for overall early detection of breast cancer 
[2–4,6–9]. Likely, this reflects the already early detection possible by 
mammographic screening, the complex etiology and heterogeneity of 
the disease, and that effects from a multi-organ system contribute to the 
granularity in the circulating plasma proteome. Dedicated efforts such 
as KARMA or other trial studies, such as INSTIGO [39], present impor-
tant efforts to systematically explore the information accessible in the 
circulating proteome. Indeed, most previous attempts have identified 
putative subtype-specific markers with, at best, limited performance in 
replication and independent validation efforts. Herein, we did also not 
detect any significant subtype-specific profiles of circulating proteins 
deemed useful for early detection. 

A data-driven archetypal analysis was then used as an unsupervised 
approach to identify proteomic-based clusters. These were then linked to 
phenotypic or genotypic traits. This enabled the identification of asso-
ciations between clusters of women with similar plasma profiles and risk 
factors for breast cancer. By clustering the participants on their prote-
omics data, we found one stable cluster (MJI = 0.7). In contrast, the 
assigned members of the remaining clusters showed higher inter-
changeability when the data was perturbed (MJI ≤ 0.61). Cluster as-
signments with lower MJI scores should therefore be interpreted with 
greater caution [29]. Clearer definition criteria for these clusters could 
be achieved by applying stricter inclusion cut-offs where any unassigned 
participants are further pooled into “in-between” groups corresponding 
to individuals who do not reliably belong to single clusters. This possi-
bility is also one of the strengths of archetype analysis over more 
traditional and static clustering methods. The non-binary cluster mem-
bership offers greater flexibility to reflect the extent of the diverse 
processes of human biology. However, such investigations go beyond 
the scope of this work. Consequently, we chose to focus on the clearest 
difference observed between women in the most stable cluster 1 (MJI =
0.7) and the remaining cohort. 

In cluster 1, in which 79% of all women were previous MHT users, 
we also found an overrepresentation of breast cancers, with 58% being 
cases compared to 28–35% in the other clusters. This confirms previous 
knowledge that the use of MHT is associated with an increased 5-year 
risk of breast cancer among postmenopausal women [40]. Of note, all 
cases in cluster 1 had previously been treated with MHT, while this was 
only true for half of the cases in other clusters. The proteomic signature 
of cluster 1 was associated with MHT usage, however, this was not 
driven by the current use of MHT. This suggested that previous use of 
MHT left a mark in the circulating proteome of these women and that 
this could be detected even years after discontinuing the treatment. 
MHT has previously been shown to affect several proteins in serum using 

Table 2 
Overview of the clinical characteristics of the archetype clusters.   

1 (N ¼
19) 

2 (N ¼
113) 

3 (N ¼
115) 

4 (N ¼
144) 

5 (N ¼
182) 

Case control status      
Case 11 

(57.9%) 
32 
(28.3%) 

37 
(32.2%) 

38 
(26.4%) 

63 
(34.6%) 

Control 8 
(42.1%) 

81 
(71.7%) 

78 
(67.8%) 

106 
(73.6%) 

119 
(65.4%) 

Age      
Mean (SD) 63.7 

(6.95) 
58.7 
(9.29) 

59.7 
(9.63) 

58.5 
(9.97) 

59.1 
(9.33) 

Median 
[Min, Max] 

65.0 
[46.0, 
76.0] 

61.0 
[40.0, 
78.0] 

63.0 
[39.0, 
81.0] 

61.5 
[40.0, 
78.0] 

62.0 
[39.0, 
81.0] 

BMI      
Mean (SD) 24.2 

(4.10) 
25.5 
(3.96) 

25.6 
(3.70) 

25.6 
(4.65) 

25.3 
(4.24) 

Median 
[Min, Max] 

23.7 
[17.9, 
33.9] 

24.8 
[18.8, 
37.0] 

25.2 
[18.5, 
36.3] 

24.8 
[18.4, 
44.2] 

25.0 
[17.6, 
49.0] 

MHT status      
Never taken 4 

(21.1%) 
54 
(47.8%) 

56 
(48.7%) 

68 
(47.2%) 

89 
(48.9%) 

Taken before 14 
(73.7%) 

45 
(39.8%) 

42 
(36.5%) 

59 
(41.0%) 

64 
(35.2%) 

Taking at entry 1 
(5.3%) 

14 
(12.4%) 

15 
(13.0%) 

15 
(10.4%) 

27 
(14.8%) 

Missing 0 (0%) 0 (0%) 2 (1.7%) 2 
(1.4%) 

2 (1.1%) 

Statin status      
Never taken 12 

(63.2%) 
62 
(54.9%) 

55 
(47.8%) 

68 
(47.2%) 

93 
(51.1%) 

Taken before 1 
(5.3%) 

9 (8.0%) 8 (7.0%) 13 
(9.0%) 

17 
(9.3%) 

Taking at entry 2 
(10.5%) 

14 
(12.4%) 

9 (7.8%) 8 
(5.6%) 

19 
(10.4%) 

Missing 4 
(21.1%) 

28 
(24.8%) 

43 
(37.4%) 

55 
(38.2%) 

53 
(29.1%) 

Menopausal status      
Premenopausal 1 

(5.3%) 
33 
(29.2%) 

27 
(23.5%) 

41 
(28.5%) 

46 
(25.3%) 

Postmenopausal 18 
(94.7%) 

80 
(70.8%) 

88 
(76.5%) 

103 
(71.5%) 

136 
(74.7%) 

Dense area (cm2)      
Mean (SD) 25.8 

(20.7) 
29.0 
(27.2) 

28.6 
(28.7) 

30.0 
(26.0) 

25.6 
(20.0) 

Median 
[Min, Max] 

21.2 
[1.3, 
73.7] 

23.6 
[0.0, 
124.0] 

19.8 
[0.0, 
161.0] 

21.0 
[0.0, 
119.0] 

20.4 
[0.0, 
86.9] 

Missing 0 (0%) 10 
(8.8%) 

0 (0%) 3 
(2.1%) 

7 (3.8%) 

BMI- and age- 
adjusted dense 
area (cm2)      
Mean (SD) 20.7 

(18.3) 
21.6 
(24.7) 

22.7 
(26.6) 

23.0 
(22.0) 

18.7 
(18.4) 

Median 
[Min, Max] 

15.5 
[− 4.4, 
70.3] 

12.7 
[− 12.7, 
109.0] 

16.4 
[− 12.6, 
161.0] 

16.5 
[− 9.4, 
90.2] 

14.8 
[− 13.3, 
76.1] 

Missing 0 (0%) 10 
(8.8%) 

0 (0%) 3 
(2.1%) 

7 (3.8%) 

Smoking (packs 
per year)      
Mean (SD) 7.34 

(9.69) 
7.08 
(10.0) 

6.24 
(10.7) 

5.68 
(8.01) 

5.21 
(9.33) 

Median 
[Min, Max] 

1.50 
[0, 
29.1] 

1.50 
[0, 46.6] 

0 
[0, 49.3] 

1.50 
[0, 
42.9] 

0.450 
[0, 64.2] 

Missing 0 (0%) 1 (0.9%) 1 (0.9%) 0 (0%) 0 (0%) 
Alcohol intake 

(g per week)      
Mean (SD) 70.4 

(69.6) 
49.2 
(64.4) 

52.4 
(60.1) 

76.9 
(76.4) 

51.3 
(70.2) 

Median 
[Min, Max] 

37.0 
[0, 261] 

37.0 
[0, 362] 

37.0 
[0, 273] 

37.0 
[0, 292] 

37.0 
[0, 575] 

Missing 0 (0%) 0 (0%) 1 (0.9%) 0 (0%) 0 (0%)  

Table 2 (continued )  

1 (N ¼
19) 

2 (N ¼
113) 

3 (N ¼
115) 

4 (N ¼
144) 

5 (N ¼
182) 

Ever given birth      
Never given birth 5 

(26.3%) 
16 
(14.2%) 

17 
(14.8%) 

13 
(9.0%) 

30 
(16.5%) 

Has given birth 14 
(73.7%) 

97 
(85.8%) 

98 
(85.2%) 

131 
(91.0%) 

152 
(83.5%) 

Abbreviations: Body mass index (BMI), Menopausal hormone therapy (MHT). 
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Fig. 3. Proteomic characterization of clusters. (A) Heatmap of z-scores obtained from normalized, centered, and scaled MFI data. The dendrogram shows proteins 
(rows) in hierarchical clusters based on Euclidean distances. The participants (columns) are ordered into the archetype clusters they were assigned to. (B) Volcano 
plot of differentially abundant proteins in cluster 1 compared to samples in the remaining clusters. The x-axis represents the differences in median protein levels 
determined for each group using the normalized MFI values. Blue: A subset of 14 proteins with lower relative plasma levels were selected from the union of the 25 
proteins with the lowest p-values and the 25 proteins with the largest decrease in abundance levels. Red: A subset of 16 proteins with higher relative plasma levels 
selected from the union of the 25 proteins with the lowest p-values and the 25 proteins with the largest increase in abundance levels. 
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Fig. 3. (continued). 

Table 3 
Proteins with lower plasma levels in cluster 1 compared to the other clusters.  

Gene name ENSG ID FDR FC 

F11R ENSG00000158769 1,93E-11 3,88 
CLDN15 ENSG00000106404 4,08E-12 3,57 
EXOC2 ENSG00000112685 1,14E-11 3,41 
CYBB ENSG00000165168 1,56E-09 3,28 
NTN4 ENSG00000074527 5,14E-09 3,26 
RNASE2 ENSG00000169385 9,52E-12 3,25 
CCR10 ENSG00000184451 2,14E-09 3,25 
MET ENSG00000105976 1,14E-11 3,09 
MLH3 ENSG00000119684 6,56E-10 3,04 
ITGB7 ENSG00000139626 5,40E-09 2,96 
TIE1 ENSG00000066056 2,19E-08 2,93 
ACLY ENSG00000131473 1,56E-09 2,92 
PARD6A ENSG00000102981 1,52E-10 2,89 
IL36B ENSG00000136696 6,17E-11 2,86 
ITGAL ENSG00000005844 1,48E-09 2,75 
HTRA1 ENSG00000166033 1,78E-08 2,69 

Abbreviations: False discovery rate corrected p-value (FDR); Median fold change 
(FC). 

Table 4 
Proteins with higher levels in cluster 1 compared to the other clusters.  

Gene name ENSG ID FDR FC 

DLD ENSG00000091140 2,54E-06 − 1,86 
SUCLG1 ENSG00000163541 1,49E-07 − 1,86 
ZP4 ENSG00000116996 3,18E-05 − 1,48 
CCR7 ENSG00000126353 1,39E-04 − 1,45 
SERPINA3 ENSG00000196136 3,55E-05 − 1,42 
MMP15 ENSG00000102996 5,64E-05 − 1,37 
MMRN1 ENSG00000138722 6,12E-05 − 1,37 
ACOX3 ENSG00000087008 1,20E-06 − 1,36 
TJP3 ENSG00000105289 6,99E-08 − 1,27 
NOTCH3 ENSG00000074181 1,23E-04 − 1,26 
IL7 ENSG00000104432 5,62E-05 − 1,25 
HNRNPA2B1 ENSG00000122566 2,39E-05 − 1,24 
RBBP8 ENSG00000101773 2,54E-06 − 1,24 
RAD21 ENSG00000164754 6,45E-05 − 1,21 
PTCH1 ENSG00000185920 1,88E-05 − 1,12 

Abbreviations: False discovery rate corrected p-value (FDR); Median fold change 
(FC). 
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mass spectrometry [41,42]. These studies indicate treatments effects on 
other circulating proteins that have been noted as potential cancer 
biomarkers. The investigations were limited to a year of MHT use and 
did not include samples from subjects after treatment. Individuals in our 
cluster 1 also had a greater mammographic density relative to their age 
which is a known risk factor for breast cancer. Interestingly, MHT usage 
is known to be associated with higher mammographic density in post-
menopausal women [43–47]. In previous proteomics studies, increased 
levels of the epidermal growth factor receptor were discussed as a risk 
predictor for future breast cancer diagnosis among women using MHT 
[48]. However, to our current knowledge, no longitudinal and 
population-scaled studies have been performed to investigate the po-
tential long-term effects of MHT on density. Our results suggest that such 
studies may be warranted. It is therefore not clear if the increased 
relative density observed in cluster 1 is due to the previous MHT use or 
other factors. Interestingly, the use of statins was not seen as a major 
driver of the protein profiles despite its known effects on the plasma 
proteome [37,38]. This supported the observed effect of MHT being 
specific for this class of drugs. Additionally, no effect of genetic risk was 
observed in our data. However, this could be due to the low sample size. 

Investigating the proteins driving cluster 1, we found lower levels of 
circulating proteins regulating DNA repair/integrity (RBBP8, RAD21) 
and cell fate/replication (NOTCH3, TJP3, HNRNPA2), which play a role 
in cancer development. Concordantly, RBBP8, TJP3, and HNRNPA2 
were also significantly negatively associated with mammographic den-
sity. Individuals in cluster 1 had higher circulating levels of proteins that 
may be linked to mammographic breast density and the accompanying 
mechanical stiffness. This included the cell junction and adhesion mol-
ecules CLDN15, ITGB7, F11R, and its receptor ITGAL, which are 
potentially involved in sensing stiffness in the breast tissue and acti-
vating cellular downstream signaling pathways to maintain tissue ho-
meostasis [49–53]. These proteins were positively associated with 
mammographic density, though the associations were not significant. 
Reassuringly, we replicated positive associations between mammo-
graphic density and F11R [21]. In fact, F11R has been widely described 
in cancer development and progression, and the expression of F11R 
correlates with poor breast cancer prognosis [54,55]. Our current find-
ings validate our previous results and support our hypothesis that F11R 
plays a role in regulating mammographic density and breast tissue 
composition. 

In addition to the mentioned candidates of cluster 1, we also found 
decreased levels of proteins related to the female tissues: ZP4 and 
PTCH1. Across clusters, the two proteins were decreased for cases 
compared to controls and in MHT treated compared to untreated 
women. Both proteins are expressed in female tissues, and we found 
both proteins to be negatively associated with mammographic density. 
Interestingly, these were the only two cluster-1-specific proteins that 
were also significantly associated with MHT use. We, therefore, hy-
pothesize that MHT might negatively affect the expression in female 
tissues and thereby affect the plasma abundance of these proteins. ZP4 
was selected for inclusion in this study due to its role in the extracellular 
matrix (SBA1). It is primarily expressed by the ovary, placenta, and 
other tissues [23,56]. ZP4 is part of the extracellular matrix surrounding 
oocytes, and it has been linked to the fertilization processes [57,58]. The 
protein PTCH1 was included in this study as it has previously been 
linked to cancer (SBA3). As a protein found on the cell surface and the 
Golgi apparatus, it functions as a tumor suppressor, and mutations of the 
PTCH1 gene have been associated with poor prognosis and increased 
recurrence of breast cancer [59]. PTCH1 is expressed more widely than 
ZP4 but is among many tissues, expressed in female tissues, especially 
the cervix and endometrium [23,56]. The two proteins, ZP4 and PTCH1, 
could therefore potentially represent an unknown link between MHT 
usage, female tissues, and mammographic breast density all leading to 
increased risk of breast cancer. 

Strengths of our study reside in the utilized exploratory affinity- 
based proteomic assay. It provides novel opportunities for high- 

throughput screening for circulating proteins associated to risk factors, 
indicative for disease development in selected phenotypes. The experi-
mental design allows combining different protein assays into one mul-
tiplexed approach. The method is attractive due to its minimal 
consumption of sample volumes. The method provided us with relative 
protein quantities in plasma that allowed an in-depth comparative 
analysis across thousands of samples [60]. This complements initial 
biomarker discovery efforts using mass spectrometry to study the effects 
of MHT [61]. Even though previous efforts demonstrated the possibility 
to detect differentially abundant proteins in pre-cancer samples [48,61], 
capturing the inter-individual heterogeneity of the circulating proteome 
across many samples, as observed even in healthy subjects [10], has not 
been considered extensively. There is, however, now also a growing 
awareness about how a chosen method influences the type of informa-
tion obtained from plasma analyses [62]. As the initial case-control 
analyses provided limited insights, we had enough datapoints per 
donor to proceed with a data-driven, thus hypothesis-generating strat-
egy. Strengths also include the centralized and standardized collection 
of high-quality blood samples, which is also evident from the fact that 
we observed no systematic differences at the protein level between 
sampling centers. Women donated non-fasting blood samples during the 
mammography screening visit, thus blood was drawn at different dates 
and times of day. Even though this may carry the risk that metabolic 
effects influenced the plasma proteomes, it allowed us to assume that 
heterogeneous sampling timepoints can reduce a systematic influence of 
sampling in our study. Additionally, the centrally managed question-
naire data and mammograms obtained from all KARMA cohort partici-
pants prior to diagnosis, as well as the quantitative assessment of 
mammographic density by STRATUS [63] are strengths of this study. 

Weaknesses in our study can be seen in the low number of breast 
cancer cases available from prospective population studies. An initial 
sampling of participants was based on a classical case-control design 
with two matched controls for each breast cancer case. Therefore, the 
cohort of women included in this study was enriched for breast cancer 
cases compared to the general population. However, this enrichment of 
cases increased the chances of observing effects related to risk factors 
and case-control status where much larger numbers of participants 
would otherwise have been needed. Furthermore, we used plasma to 
identify proteomic signatures associated with breast cancer risk factors 
and early detection. As previously discussed [21], it remains to be 
ascertained how well alterations in circulating protein concentrations 
can reflect the physiological activities and changes in protein expression 
of the breast tissue. However, as we have shown here, it seems that 
several systemic processes are contributing to the physiological changes 
occurring in breast cancer patients. Since the plasma provides a window 
into processes occurring in multiple tissues in one go, the identified 
epithelial and stromal cell-specific proteins likely appear in the blood 
due to leakage or shedding. An elevated turnaround of proteins in breast 
tissue can lead to detecting these targets in the circulation. Even when 
using the very well characterized hence comprehensive KARMA cohort, 
information on tumor characteristics and risk factors was missing for 
some participants: Data specific to MHT subtypes, dosage, and duration 
of the treatment, as well as some information on tumor characteristics 
was not available. Despite previous evidence that MHT subtypes and 
dosage increase the risk for breast cancer [64,65], the proportion of 
missing data made such an analysis of different MHT drugs across 
clusters unreasonable. Exposure data in KARMA is self-reported, which 
may result in measurement bias. However, exposure data, mammo-
grams, and blood samples were collected at the same time at KARMA 
study entry, and it is not likely that the participants knew about their 
mammographic density at the time of answering the questionnaire. 
Besides, non-differential misclassification of exposures would dilute, not 
strengthen, the reported associations. Additionally, questionnaire data 
on drug usage was supplemented with data from the Swedish drug 
prescription registry. Given the expected heterogeneity of the molecular 
phenotypes, possible influence from other yet unknown factors, diet, or 
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metabolic states at the time point of sampling, a lack in power may have 
further weakened the statistical significance of our findings. Our ob-
servations prompt further validation in independent, prospective co-
horts with datasets of comparable design and depth. 

Conclusion 

Our findings suggest that the use of MHT may leave long-lasting 
fingerprints in the circulating proteome. Effects of the treatment could 
be detected in the circulating proteome even years after discontinuation. 
These effects were especially apparent for proteins associated with 
mammographic density, breast tissue composition, tumor development 
and progression, and the female reproductive system. Like previous 
studies, we did not identify immediately applicable plasma protein 
biomarkers for an early detection of breast cancer. Instead, we identified 
circulating proteins associated with previous MHT use, connecting to a 
higher frequency of women with breast tumors, greater age, and rela-
tively greater mammographic density. The findings obtained from 
profiling population samples provide novel biological insights into pu-
tative pathological processes associated with MHT usage and breast 
cancer risk. Collectively, this suggests that rather than looking for bio-
markers secreted by a developing tumor for early breast cancer detec-
tion, proteomic characterization of plasma might currently be more 
successfully aimed at identifying biomarkers that modify or explain the 
effects of known risk factors. Unsupervised analysis approaches may aid 
in this endeavor by providing novel hypotheses. Our findings need to be 
further validated in plasma and cellular assays with breast or other fe-
male tissue. Still, they convey that further integration of health and 
treatment trajectories needs to be considered when judging molecular 
phenotypes of disease. 
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