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Abstract: This paper established a microstructure-related hardness model of a polycrystalline
Ni-based superalloy GH4720Li, and the sizes and area fractions of γ’ precipitates were extracted from
scanning electron microscope (SEM) images using a deep learning method. The common method
used to obtain morphological parameters of γ’ precipitates is the thresholding method. However,
this method is not suitable for distinguishing different generations of γ’ precipitates with similar
gray values in SEM images, which needs many manual interventions. In this paper, we employ SEM
with ATLAS (AuTomated Large Area Scanning) module to automatically and quickly detect a much
wider range of microstructures. A deep learning method of U-Net is firstly applied to automatically
and accurately segment different generations of γ’ precipitates and extract their parameters from the
large-area SEM images. Then the obtained sizes and area fractions of γ’ precipitates are used to study
the precipitate stability and microstructure-related hardness of GH4720Li alloy at long-term service
temperatures. The experimental results show that primary and secondary γ’ precipitates show good
stability under long-term service temperatures. Tertiary γ’ precipitates coarsen selectively, and their
coarsening behavior can be predicted by the Lifshitz–Slyozov encounter modified (LSEM) model.
The hardness decreases as a result of γ’ coarsening. A microstructure-related hardness model for
correlating the hardness of the γ’/γ coherent structures and the microstructure is established, which
can effectively predict the hardness of the alloy with different microstructures.

Keywords: deep learning method; different generations of γ’ precipitates; large-area SEM images; γ’
coarsening; microstructure-related hardness model

1. Introduction

The strength of Ni3Al-based alloy is primarily derived from the coherent L12-γ’ precipitates,
which are embedded in a face-centered cubic (fcc) γ-Ni matrix. The morphology and distribution
of γ’ precipitates have a significant impact on the mechanical properties and hardness of Ni-based
superalloys [1–5]. As documented in numerous studies, γ’ precipitates as a main microstructural
characteristic of Ni-based superalloys are not stable at elevated temperatures [6–9]. Smaller γ’
precipitates with a large surface-area-to-volume ratio will grow to a smaller number of larger γ’
precipitates at high temperatures, in order to decrease the total energy of the system by decreasing
interfacial energy. This process is realized by the solute diffusion, and this diffusion process is referred
to as coarsening or Ostwald ripening [10,11]. With increasing the service temperature and time of
superalloys, some neighboring γ’ precipitates even coalesce to further decrease the total energy of
system [12].
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A polycrystalline Ni-based superalloy GH4720Li, with good high-temperature strength [13],
has been extensively applied to make aero-engine turbine disks working at temperatures of about
600 ◦C–750 ◦C. In this alloy, multiple generations of γ’ precipitates can be formed during heat treatment
with slow cooling rates, including the primary, secondary and tertiary γ’ precipitates. The largest
primary γ’ precipitates are present when precipitates are not completely dissolved during the subsolvus
solution heat treatment. The secondary and tertiary γ’ precipitates are formed by two nucleation bursts
during slow cooling [14]. The γ’ coarsening behaviors in this alloy have been studied extensively, and
many quantitative studies have been performed during various heat treatment processes [15,16]. The γ’
precipitates in this alloy will be largely dissolved during solution treatment at temperatures above
1140 ◦C. Their average size increases and volume fraction decrease with increasing the solutioning
temperature. The size and morphology of secondary γ’ precipitates can be significantly influenced by
the cooling rate after the solution treatment. The size of secondary γ’ precipitates increases significantly
with decreasing the cooling rate, and the morphology changes from fine spherical particles to large
irregular-shaped particles with slower cooling rates. The size of tertiary γ’ precipitates increases
during aging. However, there is few quantitative data on the precipitate stability of GH4720Li alloy
at service temperatures for a long time. For Ni-based superalloys, the γ’ precipitates strengthen the
hardness of alloys, and the morphology and distribution of γ’ precipitates have significant effects on
the hardness [17–19]. The depletion and coarsening of γ’ precipitates decrease the hardness of alloys,
whereas the recovery and recrystallization increasing the number of the γ’ precipitates increase the
alloy hardness. However, there is no hardness model which could correlate the hardness and the γ’
morphology, in order to predict the hardness of Ni-based superalloys with different microstructures.

Precise recognition and segmentation of γ’ precipitates from large quantities of scanning electron
microscope (SEM) images is the most important step for extracting morphological parameters of
γ’ precipitates to quantitatively study the precipitate stability and the related properties of alloys.
The common approach to segment γ’ precipitates is simple thresholding, which is effective when there
have obvious differences in the gray value between target and background. The quantitative parameters
of γ’ precipitates in Ni-based superalloys are obtained mostly by this approach. However, this approach
is not suitable for distinguishing different generations of γ’ precipitates in Ni-based superalloys, which
have similar gray values. It needs a lot of manual interventions during thresholding [10], resulting in
unpredicted errors. Furthermore, when there are too many SEM images or each SEM image contains
too much information, this work will take a very long time and a high labor cost. Other experimental
methods can also be applied to distinguish different phases of alloys based on the difference of their
compositions or structures in order to obtain the sizes or volume fractions of the phases, such as EDX
elemental mapping [20], X-ray diffraction (XRD). But these experimental methods will take a high cost
and the results are not accurate. Moreover, these methods are also difficult to distinguish different
generations of γ’ precipitates which are the same phase with different size distributions.

Deep learning has become a strong tool for automatic image segmentation and achieved the
state-of-the-art results. The convolutional neural networks (CNNs) use relatively little pre-processing
and automatically learn representative complex features directly from the data itself. Therefore, CNNs
have been widely applied to segment the various medical images [21,22]. However, CNNs have
size requirement for the input images, and the calculation is inefficient. Jonathan Long et al. [23]
proposed the fully convolutional networks (FCNs), which were first trained end-to-end, pixels-to-pixels
on semantic segmentation. Moreover, FCNs can be used to segment arbitrarily large images. Olaf
Ronneberger et al. [24] modified and extended the architecture of fully convolutional network and
proposed a U-Net convolutional neural network (U-Net). This strategy also allows the seamless
segmentation of arbitrarily large images. Furthermore, this strategy uses very few training images and
yields more precise segmentations.

In this study, γ’ precipitate stability and hardness of GH4720Li alloy are investigated in the
temperature range from 630 ◦C to 760 ◦C for 500–2500 h. The experimental temperatures are determined
based on the service temperature of the turbine disk. It is very difficult to accurately and quickly
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segment different generations of γ’ precipitates from massive SEM images, and the problem has not
been solved properly in open literatures. In this paper, a new strategy is proposed to apply learning
method to segment γ’ precipitates from the extremely large-area SEM images and then obtain their
sizes and area fractions. Based on the obtained data, a microstructure-related hardness model is
established, which can correlate the microstructure and the hardness of the γ’/γ coherent structures of
Ni-based alloys. To the authors’ knowledge, it is the first time to employ a deep learning algorithm
to automatically segment γ’ precipitates and extract their parameters to quantitative research, which
could greatly promote the application of deep learning in materials science.

2. Materials and Experimental Methods

The cuboid-shaped samples of GH4720Li superalloy with size of 30 mm× 5 mm× 5 mm were used
for thermal exposure tests, and the experimental parameters are shown in Table 1. The microstructure of
sample at initial condition was characterized as the data at time 0 h of the thermal exposure tests. After
the tests, the cuboid samples at initial condition and after different tests were grinded and mechanically
polished, then they were electro-etched by a solution of 15 g CrO3 + 10 mL H2SO4 + 150 mL H3PO4 with
voltage of 5 V to emerge the γ’ precipitates of the alloy. Subsequently, the γ’ evolution was observed by
Zeiss SUPRA55 field emission scanning electron microscope (Carl Zeiss, Jena, Germany) with ATLAS
(AuTomated Large Area Scanning, Carl Zeiss, Jena, (TH), Germany) integrated module, which can be
used to automatically and quickly detect a wider range of microstructures and produce high-resolution
large area images. Because of the inhomogeneous distribution of primary and secondary γ’ precipitates
in GH4720Li alloy, the large-area SEM images could ensure the statistical accuracy of parameters.
The pixel size of each large-area SEM image is 10 nm. For the digital images, the number of pixels
is usually expressed in units of K (1024 pixels) [25]. The area of each SEM image is 32 K pixels ×
32 K pixels, corresponding to 327.68 µm × 327.68 µm. Each large-area SEM image contains at least
2300 primary γ’ precipitates and at least 3500 secondary γ’ precipitates. In addition, some small SEM
images are used in this paper to show the γ’ morphologies under different test conditions.

Table 1. Experimental parameters of thermal exposure tests.

Temperature
Time

500 h 1000 h 1500 h 2000 h 2500 h

Initial - - - - -
630 ◦C -

√ √ √ √

680 ◦C -
√ √ √ √

730 ◦C
√ √ √ √

-
760 ◦C

√ √ √ √
-

After the different thermal exposure tests, the nanoindentation experiments were performed
to test the nanoindentation hardness of the γ’/γ coherent structure inside grains of the alloy.
The nanoindentation experiments were carried out using a Bruker UMT-2 nanoindenter (Bruker
Nano Inc., Campbell, CA, USA) with a load force of 50 mN. Each sample was tested 5 times at different
positions of samples, and all indentations were made in the interior of grains. The effect of carbides
can be avoided by selecting proper test positions.

3. Segmentation of γ’ Precipitates Using U-Net

The U-Net model [24] is employed to recognize and segment different generations of γ’ precipitates
from 2D SEM images. Then the morphological parameters of each γ’ precipitate including diameter
d and area Aj are calculated in order to quantitatively describe the γ’ morphology during thermal
exposure. The equivalent circular-area diameter is calculated as the diameter d of γ’ precipitate [26].
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Finally, the average diameter d and the area fraction f of different generations of γ’ precipitates are
calculated respectively using Equations (1) and (2).

d =
1
N

N∑
j=1

(2×

√
A j

π
) (1)

f =

N∑
j=1

A j

A
(2)

where N is the number of one kind of γ’ precipitates in the large-area SEM image. Aj is the area of the
j-th γ’ precipitate. A is the area of the large-area SEM image.

The U-Net architecture consists of a contracting path and an expansive path as shown in Figure 1.
There are 23 convolutional layers in the U-Net network. The contracting path is used to extract a
hierarchy of increasingly complex features from input images. The contracting path consists of the
repeated application of two 3 × 3 convolutions with stride 1, each followed by a ReLU activation
function and a 2 × 2 max pooling operation with stride 2 for downsampling. The number of feature
channels is doubled at each downsampling step. The expansive path takes the feature representation
and recovers the feature maps to the input dimensions, realizing pixel prediction in the original image.
The expansive path consists of the repeated application of a 2 × 2 deconvolution which upsamples the
feature maps and halves the number of feature channels, a concatenation with the correspondingly
cropped feature map from the contracting path to improve the prediction accuracy, and two 3 × 3
convolutions, each followed by a ReLU. Then 64-component feature vectors can be produced after
repeating these steps 4 times in the expansive path. At the final layer a 1 × 1 convolution is used to
map each output feature vector to the desired number of classes. In addition, in order to ensure the
size of input images and output images are same, this paper uses the U-Net network with padding,
and the padding value is 1 [27].
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After pixel prediction, the parameters of each γ’ precipitate can be calculated based on the
pixel size.
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4. Dataset and Training

There are 17 large-area SEM images under initial condition and different test conditions. These
large-area SEM images with the size of 32 K × 32 K pixels are used as the dataset to train and test.
Before running the program for image segmentation, each large-area SEM image is cut and resized to
512 × 512 pixels for ease of computation. These cut images as inputs are split into training (80%) and
testing (20%) data sets. The algorithm is executed based on the open code of the U-Net [28].

The input images and their corresponding segmentation maps are used to train the U-Net model.
In this model, the loss function of softmax cross-entropy loss is selected, which combines the softmax
function with the cross entropy loss function [29,30]. The softmax function is defined as Equation (3) to
calculate the predicted class score at each pixel position. Then the cross entropy is used to penalize the
deviation of predicted class scores from the true class scores at all pixel positions, which is expressed
as Equation (4). The training process is to obtain the appropriate model parameters by minimizing the
loss function.

pi(x) =
exp(ai(x))

K∑
i′=1

exp(ai′(x))
(3)

L =
∑
x∈Ω

ω(x) ×

− K∑
i=1

li(x) log(pi(x))

 = −∑
x∈Ω

ω(x) log(pl(x)(x)) (4)

where ai(x) denotes the activation in feature channel i at the pixel position x, x∈Ω. K is the number of
classes, pi(x) is the predicted class score of pixel x belong to i-th category.

∑K
i=1 pi(x) = 1. li is the true

class score of pixel x belong to i-th category. If pixel x belongs to i-th category, li = 1 and ln = 0 for n , i.
Therefore, −

∑K
i=1 li(x) log pi(x) = − log

(
pl(x)(x)

)
, l(x) is the true label of the pixel x. ω(x) is a weight of

pixel x, which is introduced to give the different importance for each pixel.
The segmented image by the U-Net model is shown in Figure 2. Red particles are primary

γ’ precipitates, and green particles are secondary γ’ precipitates. Other areas are fine tertiary γ’
precipitates and γ matrix. Figure 2 shows that primary and secondary γ’ precipitates have been
segmented accurately. The training accuracy is evaluated quantitatively by pixel accuracy (PA) [31],
which computes the proportion of the correctly classified pixels to the total pixels. The calculate
equation is expressed as Equation (5). The training process gives a high accuracy of 92.19%, and then
the trained model is used to test.

PA =

K∑
i=1

nii

K∑
i=1

ti

(5)

where K denotes the total number of categories in the image dataset, ti denotes the total number of
pixels belongs to i-th category, and nii denotes the number of pixels that belong to i-th category, and
correctly predict as i-th category.
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Figure 2. The original image (a) and segmented image (b) by the U-Net.

The U-Net algorithm is not applied to segment fine tertiaryγ’ precipitates, because their distribution
is too dense and the size is too small, leading low prediction accuracy. Therefore, the average sizes of
tertiary γ’ precipitates are calculated after labeling of 1000 tertiary γ’ precipitates.

5. Results and Discussion

5.1. Initial γ’ Morphology

The SEM images of initial γ’ morphology are shown in Figure 3. Figure 3a is the large-area SEM
image of 32 K × 32 K pixels, and Figure 3b,c are the partly enlarged images. GH4720Li superalloy
is composed of matrix (γ phase) and multiple generations of γ’ precipitates. The γ’ precipitates
include irregular primary γ’ precipitates, sphere-like secondary γ’ precipitates and spherical tertiary γ’
precipitates. The primary γ’ precipitates which remain undissolved during the solutioning stage are
mainly distributed on the grain boundaries. Secondary and tertiary γ’ precipitates which are formed
during the cooling process after solution treatment are distributed inside grains. The distribution
of secondary γ’ precipitates is sparse and inhomogeneous, while the distribution of fine tertiary γ’
precipitates is dense and relatively uniform. The total volume fraction of multiple generations of γ’
precipitates in the alloy is about 45%.
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5.2. Morphology Evolution of γ’ Precipitates

After long-term exposure for 2000 h and 2500 h at different temperatures, the γ’ morphologies
are shown in Figure 4. The morphology and distribution of primary and secondary γ’ precipitates
are not changed significantly, because the temperature is not high enough for the dissolution of γ’
precipitates and the long-range diffusion of alloying elements. The shape of secondary and tertiary γ’
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precipitates is always spherical-like during thermal exposure, because the isotropic interfacial energy
dominates over the anisotropic elastic strain energy, which contributes to maintain nearly spherical
shapes. Tertiary γ’ precipitates coarsen after long-term thermal exposure because of the short-range
diffusion of alloying elements at high temperature. The shape of some tertiary γ’ precipitates changes
from spherical to ellipsoidal during γ’ growth, and a small amount of tertiary γ’ precipitates coalesce
after 2500 h at 680 ◦C and after 2000 h at 730 ◦C, 760 ◦C.
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5.3. Variations of Average Diameter and Area Fraction of γ’ Precipitates

The average diameters and area fractions of primary, secondary and tertiary γ’ precipitates are
calculated after precipitate segmentation by the U-Net model. Figure 5 presents parameter variations of
different generations of γ’ precipitates during thermal exposure at different temperatures. The average
diameters and area fractions of primary and secondary γ’ precipitates are almost constant during
thermal exposure. The average diameter and area fraction of primary γ’ precipitates are about
2.4 µm and 14.5% respectively, as shown in Figure 5a. The corresponding parameters of secondary γ’
precipitates are about 350 nm and 2% respectively, as shown in Figure 5b. The average diameters of
tertiary γ’ precipitates gradually increase with increasing thermal exposure time and temperature, and
the shape of average diameter-time curves is similar to the parabolic shape, as shown in Figure 5c.
The coarsening rate of tertiary γ’ precipitates increases first and then decreases with increasing time.
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Tertiary γ’ precipitates coarsen because the two-phase system is not in its lowest energy state at high
temperatures due to the energy associated with γ’/γ interfaces. In such case, Ostwald ripening takes
place to decrease the total energy of system by decreasing interfacial energy. The area fraction of tertiary
γ’ precipitates is difficult to calculate accurately, because the distribution of tertiary γ’ precipitates is
very dense, and it is difficult to separate one layer for accurate statistics. Moreover, there will be no
significant change in area fraction of tertiary γ’ precipitates, because tertiary γ’ precipitates do not
coarsen severely. Therefore, the variation of area fraction of tertiary γ’ precipitates is not discussed.
The area fraction of tertiary γ’ precipitates before thermal exposure is estimated to be 30% by labeling
a lot of tertiary γ’ precipitates in the SEM image artificially, and the labeled area is 5 µm × 5 µm.
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5.4. Nanoindentation Hardness

Hardness as an important property of alloys, which can determine many technological applications
of alloys. The nanoindentation hardness of the γ’/γ coherent structures of the alloy was tested, and the
variations of the average nanoindentation hardness during thermal exposure are shown in Figure 6.
The hardness decreases with increasing thermal exposure temperature and time, and the change rate
of hardness decreases with the increase of thermal exposure time. The reason is that hardness is highly
sensitive to the microstructure of the alloy. During long-term thermal exposure, there is no obvious
change in the secondary γ’ precipitates in the interior of grains. Therefore, the hardness variation of
the γ’/γ coherent structures of the ally is caused by the coarsening of tertiary γ’ precipitates.
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6. Modeling the Coarsening Kinetics of γ’ Precipitates

The classic Lifshitz–Slyozov–Wagner (LSW) model [32,33] is the main approach to predict γ’
coarsening, but this model is strictly applicable when the volume fraction f of γ’ precipitates is small and
approaches zero. Then the Lifshitz–Slyozov encounter modified (LSEM) model was developed with
the assumption of instantaneous coalescence of γ’ particles, and this model removed the assumption
of f = 0 [34]. The LSEM model also describes a linear relationship between the cube of average
precipitate radius and the holding time at a high temperature, which express the coarsening process of
γ’ precipitate is controlled by solute diffusion through the matrix. The expression of the LSEM model
is given by

r3
t − r3

0 = KLt (6)

where t is the thermal exposure time, rt and r0 are the average radius of γ’ precipitates at time t and
initial time, respectively. KL is the coarsening rate constant of the LSEM model, which can be calculated
by equation as following

KL =
6σVmceDr3

RTγ
(7)

where σ is the surface energy associated with the precipitate-matrix interface, Vm is the molar
volume of γ’ precipitates, ce is the per mole volume fraction of solute in equilibrium, D is the
temperature-dependent diffusion coefficient. r = r− rc, where r is the average precipitate radius, and
rc is the critical radius. R is the gas constant, T is the thermodynamic temperature, γ is a constant factor.
The values of parameters r and γ are determined by the given volume fraction of γ’ precipitates.

The LSEM model is applied to modeling the coarsening kinetics of tertiary γ’ precipitates during
long-term thermal exposure. Figure 7 shows the linear relationship between the cube of average
radius of tertiary γ’ precipitates and the thermal exposure time at temperature ranging from 630 to
760 ◦C. The coarsening rate KL is 3.33 nm3/h at 630 ◦C, 10.97 nm3/h at 680 ◦C, 24.17 nm3/h at 730 ◦C
and 41.61 nm3/h at 760 ◦C. The corresponding fitting parameters R2 are 0.9956, 0.9805, 0.9992 and
0.9987, respectively, which also proves the growth of tertiary γ’ precipitate is consistent with the
matrix-diffusion-controlled coarsening mechanism.
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7. A Microstructure-Related Hardness Model

During the thermal exposure, the variations of hardness are caused by the γ’ coarsening in the alloy.
The overall nanoindentation hardness of alloys can be divided into two parts [35]. One is the matrix
hardness with the contribution by other sources rather than γ’ precipitates, including solid-solution
strengthening, grain boundary strengthening. The contribution of grain boundary strengthening can
be ignored because all indentations are made at the interior of grains. The other is the hardness due to
the precipitation strengthening. By using Tabor’s empirical relationship Hppt = 3σppt [18,36] and
σppt = Mτppt [1], where M is the Taylor factor, which is equal to three for polycrystalline fcc-base
alloys, the contributions of precipitation hardening are estimated in terms of the critical resolved shear
stress (CRSS). The overall hardness of the alloy is expressed as Equation (8).

Htot = Hmat + Hppt = Hmat+9× τppt (8)

where Htot is the overall hardness of the γ’/γ coherent structures, Hmat is the hardness which includes
the inherent hardness of the γ matrix and the solid-solution strengthening contribution. Hppt is the
hardness due to the precipitation strengthening contribution. τppt is the CRSS of the bimodal particle
system, including secondary and tertiary γ’ precipitates.

For the small γ’ precipitates, the classic precipitation strengthening models are based on the fact
that dislocations pair-up to cut through the γ’ precipitates. The leading dislocation cut through the γ’
precipitates and creates the anti-phase boundary, then the trailing dislocation glides in the same plane
to remove it. The size and distribution of γ’ precipitates affect the precipitation strengthening by strong
coupling and by weak coupling [37,38], and it is traditionally assumed that the maximum particle
strength occurs when the strong and weak pair-coupling models converge at a constant temperature.
The strong and weak-pair coupling configurations are dictated when r > rm and r < rm, respectively. rm

is the precipitate radius with maximum strength. The corresponding CRSS from these two mechanisms
is expressed as Equations (9) and (10) respectively.

τstrong = 0.5× 0.72(
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b
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where Gγ’ is the shear modulus of γ’ precipitates, and the value is 85 GPa. b is the Burgers vector,
and the value is 0.248 nm. r and f are the average radius and volume fraction of γ’ precipitates,
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and it is assumed that the volume fraction of γ’ precipitates is equal to their area fraction during
calculation. γAPB is the APB energy, and the value is 0.29 J/m2 for GH4720Li alloy [1]. When the
inter-particle spacing and the size of γ’ precipitates are sufficiently large, the Orowan mechanism can
occur [2]. However, it is generally difficult to observe the Orowan looping in polycrystalline Ni-based
superalloys [39,40]. Therefore, the CRSS of the Orowan mechanism is not considered for estimating
the precipitation strengthening in this paper.

In order to calculate the CRSS of the bimodal particle system, the bimodal γ’ size distributions
are translated into two types of unimodal γ’ size distribution. In this case, the CRSS of secondary
and tertiary γ’ precipitates can be calculated respectively as individual unimodal γ’ size distribution
using Equations (9) and (10). The CRSS of the bimodal particle system is assumed to be the simple
summation of CRSS of these two types of unimodal γ’ size distribution, τppt = τppt,s + τppt,t. τppt,s is the
CRSS of secondary γ’ precipitates, and τppt,t is the CRSS of tertiary γ’ precipitates. Figure 8 shows
the relationship between the CRSS of secondary and tertiary γ’ precipitates and the mean radius of γ’
precipitates. rm,s is the secondary precipitate radius with maximum strength, and rm,t is the tertiary
precipitate radius with maximum strength. The regions A and B represent the distribution range
of mean radius of the secondary and tertiary γ’ precipitates respectively during long-term thermal
exposure. It could be seen that mean radius of secondary γ’ precipitates is larger than rm,s, and mean
radius of tertiary γ’ precipitates is larger than rm,t. Therefore, the precipitation strengthening in the
bimodal particle system follows the strong coupling mechanism. The CRSS of secondary and tertiary
γ’ precipitates which will be calculated by Equation (9) decreases with increasing γ’ radius, so the
corresponding hardness decreases during γ’ coarsening. The microstructure-related hardness model of
GH4720Li alloy with multiple generations of γ’ precipitates can be established by inserting Equation
(9) into Equation (8), and its expression is given by Equation (11). This model can be used to predict the
hardness of GH4720Li alloy with different microstructures. During the long-term thermal exposure
at 630–760 ◦C, it is assumed that the area fractions of secondary and tertiary γ’ precipitates used in
Equation (9) keep constant, and the values are 2% and 30% respectively.
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Htot = Hmat + Hppt = Hmat+9× τppt = Hmat+9× (τstrong,s + τstrong,t) (11)

Figure 9 shows the hardness variations during coarsening of tertiary γ’ precipitates. The overall
hardness Htot includes the values predicted by above microstructure-related hardness model and tested
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by nanoindentation experiments. It could be seen that the microstructure-related hardness model
can accurately predict the hardness of GH4720Li alloy during long-term thermal exposure. Similar
trend of the hardness Htot and Hppt also indicates that the degradation of overall hardness of GH4720Li
alloy is caused by the coarsening of γ’ predictions, and the hardness Hmat is constant. Comparing the
hardness values of Htot and Hppt at different mean radii of tertiary γ’ precipitates, the value of Hmat is
about 2.3 GPa.
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8. Conclusions

In this paper, thermal exposure tests and microstructural detection were conducted to study the
precipitate stability and the microstructure related hardness of a polycrystalline Ni-based superalloy
GH4720Li during long-term thermal exposure at 630–760 ◦C. In order to accurately and automatically
derive the morphological parameters of γ’ precipitates from extremely large-area SEM images with
the size of 32 K × 32 K pixels (327.68 µm × 327.68 µm), a new strategy to segment γ’ precipitates by
deep learning method is proposed. The deep learning method of U-Net was successfully applied to
accurately and quickly segment different generations of γ’ precipitates with similar gray values in the
large-area SEM images. As far as the authors’ knowledge, this is the first time the deep learning method
has been applied to obtain the morphological parameters of γ’ precipitates for subsequent quantitative
research, which can effectively promote the application of deep learning in material sciences.

Based on the experimental results, primary and secondary γ’ precipitates show good stability
during long-term thermal exposure. On contrary, the sizes of tertiaryγ’ precipitates increase significantly
with increasing thermal exposure time and temperature, leading to the hardness degradation of the
alloy. A microstructure-related hardness model is established, and it could accurately predict the
hardness of GH4720Li alloy with different microstructures during thermal exposure. As far as our
knowledge, it is the first time the microstructure-related hardness model has been used to correlate the
γ’ morphology and the hardness of Ni-based alloys.
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