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Abstract: Particulate matter (PM) exposure and metabolic syndrome (MetSyn) are both significant
global health burdens. PM exposure has been implicated in the pathogenesis of MetSyn and
cardiopulmonary diseases. Individuals with pre-existing MetSyn may be more susceptible
to the detrimental effects of PM exposure. Our aim was to provide a narrative review of
MetSyn/PM-induced systemic inflammation in cardiopulmonary disease, with a focus on prior
studies of the World Trade Center (WTC)-exposed Fire Department of New York (FDNY). We included
studies (1) published within the last 16-years; (2) described the epidemiology of MetSyn, obstructive
airway disease (OAD), and vascular disease in PM-exposed individuals; (3) detailed the known
mechanisms of PM-induced inflammation, MetSyn and cardiopulmonary disease; and (4) focused on
the effects of PM exposure in WTC-exposed FDNY firefighters. Several investigations support
that inhalation of PM elicits pulmonary and systemic inflammation resulting in MetSyn and
cardiopulmonary disease. Furthermore, individuals with these preexisting conditions are more
sensitive to PM exposure-related inflammation, which can exacerbate their conditions and increase
their risk for hospitalization and chronic disease. Mechanistic research is required to elucidate
biologically plausible therapeutic targets of MetSyn- and PM-induced cardiopulmonary disease.

Keywords: particulate matter; systemic inflammation; metabolic syndrome; chronic obstructive
pulmonary disease; cardiovascular disease; blood pressure; World Trade Center

1. Introduction

Cardiopulmonary disease caused by ambient particulate matter exposure accounts for 7 million
deaths globally each year [1–3]. Epidemiologic associations have been documented between increased
ambient particulate matter (PM), lung disease, and cardiovascular disease (CVD) [4–11]. The aim
of this review article is to provide an up-to-date overview of the epidemiological and biological
mechanism of PM-induced systemic inflammation in MetSyn, obstructive lung disease, and CVD.
This review also discusses the contribution of PM exposure and MetSyn to cardiopulmonary disease.
A cohort of firefighters that was exposed to World Trade Center Particulate Matter (WTC-PM) has been
identified as having metabolically active biomarkers associated with the development of WTC-lung
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injury (WTC-LI) [12–18]. We also specifically discuss the relationship between PM exposure and
MetSyn in the WTC-exposed FDNY firefighters.

2. Review/Search Strategy

PubMed databases were searched in July and August of 2018. The search was also limited to
articles that were published within the last 16 years, from January 2002 to August 2018. Cohort studies,
case control studies, narrative reviews, meta-analyses, and mechanistic and statistical summaries
were retrieved. Titles, abstracts, and full texts were screened based on relevance to this review.
Keywords searched included: “obstructive airway disease”, “asthma”, “air pollution”, “particulate
matter”, “occupational exposure”, “World Trade Center”, and “chronic obstructive pulmonary disease.”
In addition, the references of many of the articles identified by the above search strategy were reviewed.

Inclusion/Exclusion Criteria and Limitations

Studies were included in our narrative review if they: (1) described the coexistence of
MetSyn, cardiopulmonary disease and PM exposure, (2) detailed the mechanisms of PM-induced
inflammation within these diseases, or (3) focused on the effects of PM-exposure in WTC-exposed
FDNY firefighters. We included (4) observational, retrospective, systematic reviews or clinical studies
that focused on: (5) providing the epidemiology and etiology of PM and associated MetSyn and
cardiopulmonary disease, or (6) the use of biomarkers to evaluate environmentally associated MetSyn
and cardiopulmonary disease.

Studies were excluded if they: (1) were not included in PubMed, (2) were published earlier than
2002, or (3) were not written in the English language. Studies included in this review were available
in their entirety online and were referenced using Endnote X8 (Thomson Reuters, Philadelphia, PA,
USA, 2016).

Limitations of this study design include: (1) use of only the PubMed database, (2) the fact that
it is not a systematic review, and therefore (3) performing a full meta-analysis of the obtained data
is limited.

3. Epidemiological Studies

3.1. Epidemiology of MetSyn and PM Exposure

MetSyn is defined as having at least three of five risk factors associated with development
of cardiovascular disease, diabetes, and stroke: abdominal obesity, insulin resistance,
hypertriglyceridemia, low HDL, and hypertension, Figure 1 [19].

PM exposure, having been linked to developing elevated blood pressure (BP), is a risk factor for
developing MetSyn characteristics, Figure 1a. PM exposure is often focused on the respirable portion
of ambient air (2.5 and 10 micrometers in size). In a recent longitudinal study, adults that resided
in locations with high ambient PM2.5 concentrations experienced significant elevations in diastolic
BP. Overweight adults living in the same area experienced increases in both systolic and diastolic BP;
however, no PM2.5-related BP changes were found in locations where ambient PM2.5 concentrations
remained low; therefore, this study suggests increased PM2.5 exposure promotes elevations in BP
among healthy and obese individuals, with the latter being more susceptible to the effects of ambient
air pollution [20].

Additional human studies have demonstrated that PM2.5 causes an increase in BP after only a
few days of exposure, and exposure over years can lead to chronic hypertension, Figure 1a,d [21]. PM
inhalation also promotes the development of insulin resistance, which has been mechanistically linked
to hypertension [22]. Insulin resistance, is considered the primary risk factor for diabetes mellitus [23].
A recent longitudinal study of 1,729,108 participants followed for a median of 8.5 years showed that
PM2.5 air pollution is significantly associated with an increased risk of diabetes, Table 1 [24].
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Table 1. Overview of the effects of PM exposure on metabolic and cardiopulmonary diseases.

Disease Study Country Study Population Significant Findings
M

ET
SY

N

Animal Studies

Brocato [1] USA Murine model PM exposure enhances the expression of genes located in pathways associated with MetSyn.

Wei [25] China Murine model Chronic exposure to PM increases the risk of MetSyn.

Sun [26] USA Murine model Long-term PM exposure exacerbates MetSyn.

Human Studies

Huang [20] China, USA Longitudinal cohort High PM2.5 exposure promotes BP elevations in healthy and overweight individuals.

Bowe [24] USA Longitudinal cohort Inhalation of PM2.5 is significantly associated with increased risk for developing diabetes mellitus (HR, 1.15; 95% CI, 1.08–1.22).

Naveed [13] USA Longitudinal cohort MetSyn biomarkers—abnormal triglycerides and HDL (OR, 3.03; 95% CI, 1.39–6.16) and elevated heart rate (OR, 2.20; 95% CI,
1.14–4.24) and leptin (OR, 3.00; 95% CI, 1.35–6.66)—are risk factors of lung function impairment after WTC PM exposure.

C
O

PD

Human Studies

Gan [27] Canada Population-based cohort Exposure to particulates in traffic-related air pollution was associated with a 6% increase in the risk of COPD hospitalization
(95% CI, 2–10%).

Dominici [10] USA Population-based cohort Increased PM exposure doubled hospital admissions for COPD exacerbations.

Vujic [28] Serbia Cross-sectional
Systemic inflammatory markers are higher in COPD patients with MetSyn than in those without MetSyn. Individuals with

MetSyn have a higher leukocyte count (OR, 1.321; 95% CI, 1.007–1.628) and C-reactive protein level (OR, 1.184; 95% CI,
1.020–1.376) compared to those without MetSyn.

Samoli [29] Europe Cross-sectional PM2.5 is positively associated with mortality due to diabetes (1.23%; 95% CI, 1.63–4.17%), cardiac causes (1.33%; 95% CI,
0.27–2.40%), COPD (2.53%; 95% CI, 0.01–5.14%), and to a lesser degree to cerebrovascular causes (1.37%; 95% CI, 1.94–4.78%).

C
V

D

Animal Studies

Tankersley [30] USA Murine model Carbon black exposure led to impaired cardiac function in senescent mice

Sun [31] USA Murine model Long-term PM exposure altered vasomotor tone, induced vascular inflammation, and potentiated atherosclerosis.

Human Studies

Devlin [32] USA Case-crossover MetSyn patients with no overt CVD experienced PM-induced cardiovascular changes.

Park [33] USA Longitudinal cohort
As a result of PM exposure, individuals with MetSyn had significantly larger decreases in heart rate variability measures than

those without MetSyn. Patients with MetSyn experienced a 2.1% decrease in the root mean square of successive differences
(95% CI, −4.2–0.0) and a 1.8% decrease in the standard deviation of normal-to-normal intervals (95% CI, −3.7–0.1).

Chang [34] Taiwan Case-crossover
Short-term PM exposure increases hospital admissions for CVD. On cool days, PM2.5 exposure was associated with a 47%

(95% CI, 39–56%), 48% (95% CI, 40–56%), 47% (95% CI, 34–61%), and 51% (95% CI, 34–70%) increase in ischemic heart disease,
stroke, congestive heart failure, and arrhythmias hospital admissions, respectively.

Miller [35] USA Prospective cohort
Long-term PM exposure was related to cardiovascular disease and mortality. Each increase of 10 microgram per cubic meter of
PM2.5 was associated with a 24% increase in the risk of cardiovascular event (HR, 1.24; 95% CI, 1.09–1.44) and a 76% increase in

the risk of death from CVD (HR, 1.76; 95% CI, 1.25–2.47).

Abbreviations: MetSyn Metabolic Syndrome; CI Confidence Interval; COPD Chronic Obstructive Pulmonary Disease; PM Particulate Matter; CVD Cardiovascular disease; HDL High
Density Protein; HR Hazards Ratio; OR Odds Ratio; USA United States of America. PM2.5 Particulate Matter <2.5µm in Aerodynamic Diameter.
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Figure 1. Schematic of biological mechanisms underlying PM-induced MetSyn, COPD, and CVD. (a) 
PM- associated Vascular Effects: PM exposure leads to the hypomethylation of TLR4, which may 
increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), as well as Alu 
hypomethylation and autonomic imbalance, which may elevate DBP. Increased SBP and DBP 
contribute to the development of hypertension, a key feature of MetSyn. (b) PM associated MetSyn 
Phenotype Development: Inhalation of PM elicits the generation of reactive oxygen species (ROS), ER 
stress, and elevated cytokine levels, such as TNF-α, and IL-6, which in turn activates signal 
transduction cascades by inducing the activity of cellular kinases (JNK, PKC, IKK). Kinase activation 
can directly lead to systemic inflammation or do so indirectly by first activating inflammatory 
pathways (AP-1, NF-κB). (c) PM-associated Lipid Changes (ATX Autotaxin; LPC 
lysophosphatidylcholine; PLA phospholipase; PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3- 
phosphocholine; SAPC 1-stearoyl-2-arachidonoyl-sn-glycero-phosphocholine; oxLDL oxidized LDL; 
PA phosphatidic acid). (d) Systemic Inflammation contributes to the development of insulin 
resistance, abdominal obesity, hypertriglyceridemia, and low HDL, all of which are defining 
characteristics of MetSyn. (e) MetSyn then increases affected individuals’ risk of developing COPD 
and CVD. Lines with no arrowhead (    ) indicate enzymatic contribution to downstream catabolic 
reactions. 

Furthermore, individuals with preexisting MetSyn are more susceptible to the inflammatory 
effects of PM exposure [2,32,36]. Chronic exposure to ambient air pollution leads to weight gain 
secondary to local and systemic inflammation, increasing the risk of developing the etiological 
components of MetSyn [37,38]. As MetSyn affects more than 30% of adults in the United States, 
patients with MetSyn represent a large percentage of the population that is especially sensitive to PM 
[2,32,39,40]. 

Figure 1. Schematic of biological mechanisms underlying PM-induced MetSyn, COPD, and
CVD. (a) PM- associated Vascular Effects: PM exposure leads to the hypomethylation of TLR4,
which may increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), as well
as Alu hypomethylation and autonomic imbalance, which may elevate DBP. Increased SBP and
DBP contribute to the development of hypertension, a key feature of MetSyn. (b) PM associated
MetSyn Phenotype Development: Inhalation of PM elicits the generation of reactive oxygen
species (ROS), ER stress, and elevated cytokine levels, such as TNF-α, and IL-6, which in turn
activates signal transduction cascades by inducing the activity of cellular kinases (JNK, PKC,
IKK). Kinase activation can directly lead to systemic inflammation or do so indirectly by first
activating inflammatory pathways (AP-1, NF-κB). (c) PM-associated Lipid Changes (ATX Autotaxin;
LPC lysophosphatidylcholine; PLA phospholipase; PAPC 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphocholine; SAPC 1-stearoyl-2-arachidonoyl-sn-glycero-phosphocholine; oxLDL oxidized LDL;
PA phosphatidic acid). (d) Systemic Inflammation contributes to the development of insulin resistance,
abdominal obesity, hypertriglyceridemia, and low HDL, all of which are defining characteristics of
MetSyn. (e) MetSyn then increases affected individuals’ risk of developing COPD and CVD. Lines with

no arrowhead (
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) indicate enzymatic contribution to downstream catabolic reactions.

Furthermore, individuals with preexisting MetSyn are more susceptible to the inflammatory
effects of PM exposure [2,32,36]. Chronic exposure to ambient air pollution leads to weight gain
secondary to local and systemic inflammation, increasing the risk of developing the etiological
components of MetSyn [37,38]. As MetSyn affects more than 30% of adults in the United States,
patients with MetSyn represent a large percentage of the population that is especially sensitive to
PM [2,32,39,40].
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3.2. Epidemiology of CVD and PM Exposure

PM exposure has been linked to an increased risk of CVD such as myocardial infarction,
ischemic heart disease, stroke, heart failure, arrhythmias, and venous thromboembolism
(Figure 1e [41]). Short-term PM exposure was associated with an increased number of hospital
admissions for CVD, and both fatal and non-fatal cardiovascular events [34]. Long-term exposure
is associated with an even greater increase of cardiovascular disease and mortality, including
postmenopausal women from U.S. metropolitan areas (Table 1 [35,41]).

3.3. Epidemiology of Chronic Obstructive Pulmonary Disease (COPD) and PM Exposure

PM exposure can elicit the development or exacerbation of COPD (Figure 1e). Black carbon,
an indicator of traffic-related fine particulate air pollution, was associated with an increased risk
for COPD hospitalization in a population-based study of 467,994 subjects [27]. An increase of
10 µg/m3 in PM2.5 nearly doubled the hospital admissions for COPD exacerbations from 1999 to
2002 in a study of Medicare billing claims from 11.5 million enrollees [10]. Similar to individuals with
preexisting MetSyn, COPD patients are more susceptible to the harmful effects of PM exposure and
often experience acute exacerbations due to bacterial and viral infections contracted in the wake of PM
exposure [42,43]. Additionally, long-term PM exposure has been implicated as a potential indicator
of increased respiratory mortality among COPD patients [43]. In a 2014 cross-sectional study, it was
determined that there was a 2.53% increase in COPD deaths per 10 µg/m3 increase of PM2.5 over a
six-day period, Table 1 [29].

4. Biological Mechanisms Underlying PM-Induced Metabolic and Cardiopulmonary Diseases

4.1. Mechanisms of PM Associated MetSyn

Air pollution has been implicated in the pathogenesis of MetSyn by causing systemic inflammation
associated with metabolic disorders [25]. This chronic inflammation is characterized by cytokine
production, and activation of a network of inflammatory signaling pathways. Adipose tissue is
involved in the inflammatory response and mediators [44]. Tumor Necrosis Factor-alpha (TNF-α) is
a pro-inflammatory cytokine that is overexpressed in the adipose tissue of obese mice and humans
after PM exposure [45,46]. Cytokines such as TNF-α and Interleukin-6 (IL-6), lipids, reactive oxygen
species (ROS), or endoplasmic reticulum (ER) stress activate various signal transduction cascades
by inducing the activity of cellular kinases, namely c-Jun N-terminal Kinase (JNK), I-kappa B kinase
(IKK), and Protein Kinase C (PKC) (Figure 1b [36,44]). These kinase phosphorylate serine residues of
insulin receptor substrate-1 and -2 in order to block insulin action. JNK and IKK also promote further
inflammatory gene expression by activating the two principal inflammatory pathways: activator
protein 1 (AP-1) and nuclear factor kappa-B (NF-κB), respectively [44]. Adipocyte hypertrophy in
response to fat consumption and accumulation can induce cellular rupture, attracting macrophages to
reinforce the inflammatory response. In this context, hypertrophied adipocytes rupture frequently,
leading to the deposition of fat in organs other than adipose tissue, Figure 1b [36].

In animal models, air pollution has been linked to hypertension, alterations in blood lipids, insulin
resistance, and obesity, all of which contribute to the low-grade systemic inflammation of MetSyn
(Figure 1d). Pregnant rats exposed to unfiltered Beijing air for 19 days (starting on gestational day 1),
starting on their first day of gestation, were heavier at the end of their pregnancy compared to those
who were exposed to filtered air. Additionally, 8-week-old pups who were prenatally and postnatally
exposed to unfiltered air were significantly heavier than those who were exposed to filtered air. The
PM-exposed pups also demonstrated significantly lower levels of Glucagon-like Peptide 1 (GLP-1),
an incretin hormone that enhances insulin secretion and has anti-inflammatory properties within
adipose tissue. Both the previously pregnant rats and the 8-week-old pups displayed perivascular
and peribronchial inflammation in the lungs. Particulate matter caused PM-exposed rats to experience
weight gain secondary to systemic inflammation, increased insulin resistance and lung inflammation,
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which are etiological components of MetSyn. This study suggests that chronic exposure to particulate
matter increases the risk of developing MetSyn [25]. In a murine model, exposure to PM10 showed
elevated neutrophil concentrations and upregulated TNF-α and IL-6 levels, all of which indicate an
inflammatory response. Additionally, mice exposed to PM experienced an upregulation of genes
related to inflammation, cholesterol and lipids, Figure 1a [1]. In another murine model, mice that were
fed high-fat chow for 10 weeks and exposed to 72.7 µg/m3 of PM2.5 for 6 h/day, 5 days/week over
24 weeks experienced exaggerated insulin resistance, systemic inflammation, and visceral adiposity
demonstrated by elevated TNF-α, IL-6 and PKC expression, Figure 1b [26,37].

In humans, ambient PM has also been found to induce DNA hypomethylation, which is associated
with increases in BP, Figure 1a. Hypomethylation gives rise to vascular smooth muscle proliferation
and lipid deposition due to mutations, causing the formation of fibrocellular lesions and subsequent
increases in BP [47]. Autonomic imbalance has also been suggested as a possible mechanism through
which PM increases diastolic BP, a component of MetSyn, Figure 1a [19,21,48]. Exposure to PM2.5

lowers repetitive element Arthrobacter luteus (Alu) methylation, while exposure to PM2.5–10 lowers
toll-like receptor 4 (TLR4) methylation. Both Alu and TLR4 hypomethylation are associated with
increased diastolic BP, while only TLR4 hypomethylation is associated with increased systolic BP,
Figure 1a [47].

4.2. PM Exposure and COPD

Inflammation and tissue remodeling are key features of airflow obstruction in asthma and
obstructive airways disease (OAD), as discussed in two reviews [49,50]. PM exposure leads to the
pathogenesis of COPD by inducing pulmonary and systemic inflammation (Figure 1e). Chronic
exposure to air pollution can prevent clearance of PM from the lung, resulting in particle accumulation
in lung tissues. The accumulation of PM in the respiratory tract induces the production of
pro-inflammatory mediators, namely TNF-α and IL-6, by alveolar macrophages and lung epithelial
cells (Figure 1b [43]).

Inflammatory cytokines that increase in sputum and bronchoalveolar lavage fluid are also elevated
in COPD patients, suggesting inflammatory mediators elicit both a local inflammatory response in
the lung tissues and secondary systemic inflammatory response [51]. The inflammatory response is
characterized by tissue proliferation in the small airways and tissue destruction in the lung parenchyma,
causing subsequent airway obstruction, leading to the development of COPD [43].

4.3. PM Exposure and CVD

Recent studies have associated systemic vascular dysfunction with lung disease (the vascular
hypothesis) and prospective studies have demonstrated an association between impaired lung
function and central arterial stiffness even before the development of CVD [52–56]. Hallmarks of PM
exposure include vascular endothelial dysfunction, systemic inflammation, and subsequent end-organ
damage [13,57–63].

In a murine model, the effects of long-term PM exposure on atherosclerosis potentiation,
vasomotor tone alteration, and vascular inflammation were evaluated. This study found that
PM-exposed and high-fat chow fed mice exhibited significant plaque burden, compared to PM-exposed
mice with a normal chow diet [31]. Another murine study demonstrated that acute carbon black
exposure led to impaired cardiac function in senescent mice through cardiac changes such as
diminished myocardial contractibility, elevated right atrial and pulmonary vascular pressures,
and increased pulmonary vascular resistance [30].

In humans, three PM-related pathways have been linked to adverse cardiovascular health effects:
(1) the generation of systemic inflammation through the release of circulating pro-inflammatory and
pro-oxidative mediators from PM-stimulated lung cells (Figure 1b), (2) alterations in cardiac autonomic
function induced by PM interactions with lung receptors (Figure 1a), and (3) the translocation of PM
into the bloodstream [33,41,64]. PM inhalation triggers local and systemic inflammation through these



Toxics 2019, 7, 6 7 of 13

biological mechanisms depending on the size of the PM. Both coarse (PM10–2.5) and fine (PM2.5) PM
can trigger the release of inflammatory mediators that spread to general circulation, where they elicit
systemic inflammation [41]. Generation of ROS is also involved in the PM-induced pro-inflammatory
pathway as demonstrated by elevated ROS in rat lung and heart after PM exposure (Figure 1b [65]).
ROS have been linked to atherosclerosis, vascular dysfunction, cardiac arrhythmias, and myocardial
injury [66]. Coarse and fine particles also cause impairment of the autonomic control of the heart,
by enhancing sympathetic tone and decreasing heart rate variability (Figure 1a [41,67]). Both decreased
heart rate variability, an indicator of poor cardiovascular prognosis, and elevated sympathetic tone
predispose individuals to arrhythmia-associated cardiac death [66,67]. Ultrafine particles (PM < 0.1 µm)
can translocate into the bloodstream, where they promote events by enhancing platelet aggregation
and endothelial cell activation [41]. Furthermore, not only does PM exposure put individuals at risk
for the development of CVD, but that MetSyn phenotypes also influence these pathways’ differential
response to PM exposure.

5. MetSyn as a Risk Factor for COPD and CVD

PM-induced systemic inflammation and co-existing MetSyn have been implicated in the
development and progression of cardiopulmonary diseases, Figure 1e [33,37,38,60,68,69]. Individuals
with MetSyn are predisposed to systemic inflammation, a key feature of COPD [28], and nearly half of
COPD patients have coexisting MetSyn [68,70,71]. A cross-sectional study demonstrated that systemic
inflammatory markers were elevated in COPD patients with preexisting MetSyn, compared to those
without MetSyn [28]. This study suggests that systemic inflammation is more severe in patients with
coexisting COPD and MetSyn than in healthy individuals [28,72]. Additionally, systemic inflammation
contributes to the development of cardiovascular disease, reaffirming that the concurrence of MetSyn
and COPD increases the risk of cardiovascular morbidity and mortality [28].

Individuals with MetSyn are especially susceptible to the cardiovascular effects of air
pollution [73]. Exposed individuals with MetSyn experience increased oxidative stress, which is further
elevated by aromatic hydrogen and metal nanoparticle components of air pollution. Consequently,
an oxidative stress cascade is activated, leading to CVD (Figure 1b,c [38]). In a case-crossover
study, MetSyn individuals with no preexisting CVD who were exposed to ambient ultrafine particles
experienced PM-induced cardiovascular effects, demonstrated by changes in heart rate variability and
cardiac repolarization [32]. Similarly, a population-based study reported that, after PM2.5 exposure,
those with MetSyn exhibited substantial decreases in heart rate variability relative to those without
MetSyn; therefore, PM exposure increases cardiovascular risk among MetSyn patients with or without
cardiovascular disease [33].

6. Cardiopulmonary Effects of WTC-PM-Exposure

Our group has developed leadership in pathophysiologic investigation of WTC-associated
disease [16–18]. FDNY rescue/recovery workers exposed to WTC-PM developed respiratory
symptoms and were diagnosed with chronic pulmonary diseases, including OAD and airway
hyperreactivity [15,39,74–85]. Induced sputum drawn from WTC-exposed FDNY firefighters
10-months post exposure showed elevated levels of PM and evidence of continuing inflammation
due to abnormal accumulation of pro-inflammatory cells [84,86]. The WTC-exposed FDNY cohort
experienced significant decreases in Forced Expiratory Volume in 1 second (FEV1) [51,87].

In addition to the pulmonary effects of WTC exposure, there was an increase in the risk for
CVD-related hospitalizations post WTC exposure [88,89]. CVD symptoms such as chest pain were
found in 8% of WTC-exposed workers and volunteers between 2002 and 2004 [90]. Furthermore,
pulmonary arteriopathy was present in 58% of lung biopsies from a small group of WTC-exposed
individuals [91].

Biomarkers of MetSyn, traditionally seen as risk factors for CVD, predict WTC-associated
OAD [13,14,92]. Specifically, BMI-adjusted triglycerides, HDL, heart rate, and leptin were significantly
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elevated, indicating that metabolic risk factors held key roles in the inflammatory cascade from PM
exposure [13]. Also, our study of computed tomography scans of WTC firefighters showed that
elevated Pulmonary-Artery-to-Aorta diameters ratio (PA/A) is correlated with future development
of FEV1 [12].

Our investigation of the metabolome of WTC-associated OAD has identified prominent
pathways involving lipids in the same exposed firefighters [12]. Pathological imbalances in
lipid metabolism are well-defined initiators of systemic inflammation, triglyceridemia, CVD,
and OAD. Aspects of our cohort’s lipid metabolome that have been correlated with OAD
include arachidonic acid, lysophosphatidic acid (LPA), lysolipids, phospholipids, polyunsaturated
fatty acids, and phosphatidylcholines (1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine
and 1-stearoyl-2-arachidonoyl-sn-glycero-phosphocholine) [12]. Studies have connected these
intermediates to a cascade initiated by ROS production, and culminating in triglyceride production and
systemic inflammation, Figure 1c [12]. The association of ROS production and lipid imbalance yields a
PM-initiated pathway of catabolism, resulting in lipid-mediated inflammation, CVD, and COPD [12].

Our recent work has focused on the receptor for an advanced glycation end products (RAGE)/LPA
axis [12]. Our collaborators have identified a ligand-receptor interaction between LPA and the
advanced glycation end-product receptor (RAGE), a cytoplasmic IgG receptor localized to alveolar
macrophages, alveolar endothelium, and smooth muscle within lung tissue [12]. Specifically, we have
shown that elevated soluble RAGE and LPA are associated with WTC-LI in firefighters exposed to
WTC-PM and mice are deficient in RAGE are protected from the adverse pulmonary effects [12].

7. Conclusions and Future Investigations

Overall, we found that exposure to particulate matter elicits pulmonary and systemic
inflammation. Systemic inflammation leads to the development of MetSyn and cardiopulmonary
disease, such as COPD and CVD. Individuals with these preexisting conditions are more susceptible to
the inflammatory effects of PM exposure, which can further exacerbate their conditions. Additionally,
MetSyn predisposes individuals to PM-induced pathogenesis of COPD and CVD; therefore,
further research is required to discover and elucidate therapeutic targets of these comorbidities.
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