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Abstract

Human endogenous retrovirus type K (HERV-K) transcripts are upregulated in the plasma of HIV-infected individuals and
have been considered as targets for an HIV vaccine. We evaluated cynomolgus macaque endogenous retrovirus (CyERV)
mRNA expression by RT-qPCR in PBMCs isolated from a cohort of animals previously utilized in a live attenuated SIV vaccine
trial. CyERV env transcript levels decreased following vaccination (control and vaccine groups) and CyERV env and gag
mRNA expression was decreased following acute SIV-infection, whereas during chronic SIV infection, CyERV transcript levels
were indistinguishable from baseline. Reduced susceptibility to initial SIV infection, as measured by the number of SIV
challenges required for infection, was associated with increased CyERV transcript levels in PBMCs. In vitro analysis revealed
that SIV infection of purified CD4+ T-cells did not alter CyERV gene expression. This study represents the first evaluation of
ERV expression in cynomolgus macaques following SIV infection, in an effort to assess the utility of cynomolgus macaques
as an animal model to evaluate ERVs as a target for an HIV/SIV vaccine. This non-human primate model system does not
recapitulate what has been observed to date in the plasma of HIV-infected humans suggesting that further investigation at
the cellular level is required to elucidate the impact of HIV/SIV infection on endogenous retrovirus expression.
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Introduction

Despite major advances in antiretroviral therapy, the HIV/

AIDS epidemic continues to spread. Researchers are striving to

prevent HIV acquisition through vaccination, however the very

nature of HIV poses significant challenges to the development of

a successful HIV vaccine. HIV rapidly mutates and recombines

under immune selection pressure leading to extreme antigenic

diversity and hypervariability (reviewed in [1,2]). Conventional

vaccine approaches have been largely ineffective against this

degree of viral diversity. One unique approach under investigation

is to examine HIV-infected cells to determine if the virus causes

changes to cellular proteins that may act as surrogate markers for

HIV infection and thus represent novel vaccine targets. Recently,

human endogenous retroviruses (HERVs) have emerged as

potential alternative cellular targets for this type of HIV vaccine

strategy [3,4].

HERVs are remnants of ancient retroviral infections, fixed in

our genome and transmitted vertically [5]. Integration of HERVs

has occurred over millions of years and over time they have

acquired point mutations rendering them unable to produce

infectious virions [6,7]. The youngest retrovirus in the HERV

family is the betaretrovirus HERV-K (HML-2), which was the most

recent HERV to integrate into the genome and thus has the

highest degree of transcriptional activity [8]. Furthermore, of the

31 defined HERV families [9], the sequence of HERV-K is the

most homologous to HIV and is the most widely examined HERV

in the field of HIV [10]. The relationship between HERV-K and

HIV emerged from initial reports demonstrating that antibodies

against HERV-K (HML-2) were found in 70% of HIV-positive

patients compared with only 3% of HIV-naı̈ve individuals [6,11].

Furthermore, it has been shown that HERV-K RNA titers are

elevated in the plasma of HIV-infected individuals in comparison

with seronegative individuals [3,12,13,14]. Most intriguing for

vaccine design is a recent study demonstrating elevated and

functional T-cell responses in HIV-positive patients against

cellular protein targets derived from HERV-K [3]. Given that

HERVs are encoded in the germ-line, it is hypothesized that they

are not subjected to the same degree of cytotoxic T lymphocyte

(CTL) immune pressure and subsequent immune escape as HIV

antigens. In addition, plasma HERV-K RNA titers are inversely

correlated with the degree of HIV suppression following highly

active antiretroviral therapy (HAART) suggesting that HERV-K

may be a predictor of HIV replication [12], although the

mechanism by which HIV impacts HERV-K transcriptional

processes is not well understood.

Many studies have examined HERV-K expression in the

plasma of HIV-infected patients; however, little work has been
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done to determine if HERV-K is activated at the cellular level. It is

known that peripheral blood mononuclear cells (PBMCs) express

HERV-K gag and pol RNA [15]. The limitations of many human

in vivo studies are that these findings are derived from independent

cross-sectional samples. A longitudinal study using a non-human

primate model will allow for endogenous retrovirus (ERV)

expression to be assessed pre- and post-SIV infection from

dependent samples, providing a precise measurement of changes

in ERV expression as a result of viral infection.

Cynomolgus macaques (Macaca fascicularis) are a widely utilized

non-human primate model for preclinical biomedical research

[16]. This species of macaques is susceptible to pathogenic simian

immunodeficiency virus (SIV) infection and ultimately succumbs

to simian AIDS (SAIDS). Although the duration of SIV

pathogenesis and progression to SAIDS is shorter in macaques

than in humans [17], cynomolgus macaques closely recapitulate

HIV disease progression and thus are a practical model to assess

endogenous retrovirus expression. In this study, we evaluated

cynomolgus macaque endogenous retrovirus (CyERV) expression

in PBMCs following SIV infection. Here we show the character-

ization of CyERV genes and the effect of vaccination and SIV

infection on CyERV expression levels in PBMCs.

Results

Isolation and Genetic Characterization of CyERV Genes
Full-length CyERV envelope and gag genes were PCR-

amplified and sequenced to examine the diversity between

CyERVs as well as to determine if cynomolgus macaque

endogenous retroviruses encode intact open reading frames

(ORFs). With respect to nucleotide identity, the isolated CyERV

clones showed a high degree intra-animal homology for env (avg.

98% identity) and gag (avg. 94% identity), and inter-animal

homology for env (91% identity; n = 5) and gag (81% identity;

n = 4). A BLAST search of the CyERV env and gag sequences

revealed homology to HERV-K, while homology to other known

HERV families was not observed. The amino acid length (avg.

695 aa) and molecular weight (avg. 75 kDa) of the CyERV genes

were comparable to HERV-K genes (env 694 aa, 78 kDa and

gag 666 aa, 74 kDa) [18]. The majority of the CyERV env and

gag amino acid sequences contained multiple stop codons likely

as a result of acquired point mutations. In this regard, the

CyERV env clones were of two distinct genotypes. Of the 10

CyERV env clones (2 clones/animal) isolated, half represented

genotype 1 (19 stop codons; 696 aa) and half represented

genotype 2 (29 stop codons; 691 aa), while each genotype shared

99.4% nucleotide identity between clones. From our analysis,

these stop codons are likely the result of point mutations with

genotype 1 resulting from 7 indels and 4 substitutions while

genotype 2 was derived from 9 indels and 5 substitutions. To

evaluate the amino acid identity between CyERV env and

HERV-K env (GenBank: CAA76886), we resolved the indels/

substitutions in the CyERV sequence and determined that

genotypes 1 and 2 share 86.5% and 87.9% amino acid identity,

respectively, with HERV-K env. The CyERV gag isolates

contained an average of 27 stop codons (range: 0–47), however

one isolate encoded a complete CyERV gag ORF (GenBank:

JN985533) with 695 amino acids and a predicted molecular

weight of 77.7 kDa. This complete CyERV gag clone shares

77.4% identity with HERV-K102 gag (GenBank: P63130) at the

amino acid level (Fig. 1). The discovery of an intact CyERV gag

ORF supports previous documentation that cynomolgus maca-

ques may have retained the capacity to produce full-length

CyERV gag proteins [19].

Impact of Vaccination on CyERV Transcript Expression
Levels in PBMCs
The SIV vaccine trial was comprised of two vaccine groups (D5-

CMV and D6-CCI) and one control group (mock-immunized),

and followed a prime-boost-boost immunization regimen. The

animals in the vaccine groups were immunized with highly

attenuated SIVmac239 viral constructs, as described in the

Materials/Methods and Figure 2 [20]. To assess the impact of

vaccination on CyERV gene expression levels, we extracted RNA

from PBMCs isolated at baseline and post-vaccination timepoints

to quantify CyERV env and gag gene expression by RT-qPCR.

The post-vaccination timepoint is derived from samples taken at

either week 114 or 116. No significant differences were observed

between the two sampling weeks and as such these post-

vaccination samples were grouped. There were no observed

differences in CyERV env and gag expression between the three

vaccine groups (controls, D5-CMV, and D6-CCI). In comparison

with baseline expression (log10 23.30), CyERV env transcript

levels were significantly lower following vaccination (log10 24.03;

n = 6; P= 0.01) (Fig. 3A), with a less pronounced decrease in

CyERV gag expression between baseline (log10 22.53) and post-

vaccination (log10 23.04; n = 6; P= 0.33) (Fig. 3B).

Downregulation of CyERV Transcript Levels Following SIV
Infection in PBMCs
Following vaccination, the animals were challenged weekly with

a multi-low-dose SIVmac239 intrarectal challenge regimen until

productive plasma infection was detected by RT-qPCR [20]. We

examined CyERV env and gag gene expression at two timepoints

representing acute [avg. 6 weeks post-infection (wpi); range: 4–

10 wpi] and chronic (avg. 79 wpi; range: 25–98 wpi) SIV infection

(Fig. 2). CyERV gene expression was significantly decreased

during acute SIV infection and returned to baseline levels during

chronic SIV infection (Fig. 3). At the acute timepoint, the mean

CyERV env expression level (log10 24.74) was lower than baseline

(log10 23.24; n= 8; P,0.001) (Fig. 3A). CyERV env transcript

expression increased during chronic SIV infection compared with

post-vaccination (log10 23.65 versus log10 23.96; n= 10; P= 0.05)

and acute SIV infection (log10 23.61 versus log10 24.55; n= 11;

P= 0.01). Mean CyERV gag expression decreased following acute

SIV infection (log10 23.40) compared with baseline levels (log10
22.40; n = 7, P= 0.02) and was comparable with baseline during

chronic SIV infection (Fig. 3B). Of note, when the above data was

normalized with respect to CD4+ T-cell counts, CyERV gene

expression patterns were analogous (data not shown).

Susceptibility to SIV Infection was Associated with CyERV
Expression Levels in PBMCs
Susceptibility to SIV infection was determined based on the

number of SIVmac239 challenges required to infect the

cynomolgus macaques during the challenge phase of the trial

[20]. Consistent with the grouping assigned by Willer et al. [20],

the groups were based on the number of SIV challenges (,15 vs.

$15 challenges) to infection, irrespective of vaccination or control

group. CyERV env gene expression levels in the animals that

required $15 SIV challenges (n = 5) to establish infection were

elevated across all timepoints compared with the animals that were

infected with SIV in ,15 challenges (n = 7) (Fig. 4A), although

there was no statistically significant difference between the two

groups. Likewise, CyERV gag expression in the animals that

required $15 SIV challenges to establish infection was increased

across all timepoints except during chronic SIV infection where

gag expression levels were slightly lower compared with animals

Evaluation of CyERV Expression Post-SIV Infection
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that were infected with SIV in ,15 challenges (Fig. 4B). CyERV

gag transcript levels were significantly higher at the post-

vaccination timepoint in the animals that were less susceptible to

SIV infection (log10 22.23) compared with those that were more

susceptible (log10 23.47; P= 0.02).

CyERV Gene Expression Associates with CD4+ T-cell
Counts and SIV Viral Load
Given that acute SIV infection had the most significant impact

on CyERV expression levels, we examined the relationship

between CyERV expression and clinical markers of disease status

using CD4+ T-cell counts (CD4+ T-cells/ml of PBMCs) and SIV

viral load (log10 viral load/mL), previously determined during the

vaccination study [20]. CyERV gene expression negatively

correlated with CD4+ T-cell counts during acute SIV infection

for env (r =20.54; n = 11; P = 0.08) and gag (r =20.74; n= 10;

P= 0.02) (Fig. 5A-B). Additional correlations were performed

using the percent CD4+ T-cells of total lymphocytes and the results

were comparable to the absolute counts (data not shown). With

respect to SIV viral load, CyERV env and gag gene expression did

Figure 1. Amino acid alignment of CyERV gag with HERV-K102 gag. The protein sequence of CyERV gag (GenBank: JN985533) was aligned
with HERV-K102 (GenBank: P63130) using ClustalW and shaded using Geneious Pro 5.4.6 [31]. HERV-K102 is annotated with the matrix protein
(Gag_p10) and the nucleocapsid protein (Gag_p24). Black shading indicates identical residues found at both sites amongst the aligned proteins and
grey shading indicates similar amino acid residues.
doi:10.1371/journal.pone.0040158.g001

Figure 2. Vaccination schedule. Baseline PBMC samples were obtained prior to any vaccinations (week 0). The animals were primed at weeks
0 and 9 with viral constructs (D5-CMV, D6-CCI) or medium only (control group). Animals were boosted with a DNA plasmid (D5-CMV, D6-CCI or
control) at weeks 79 and 87. A second boost comprised of both virus and plasmid accompanied by a CpG adjuvant was given at week 114. Post-
vaccination PBMCs were isolated at week 116 and intrarectal SIVmac239 challenge was initiated at week 118. PBMCs were isolated during acute SIV
infection (mean 6 weeks post-infection (wpi); range: 4–10 wpi) and during chronic SIV infection (mean 79 wpi; range 25–98 wpi) [20].
doi:10.1371/journal.pone.0040158.g002

Evaluation of CyERV Expression Post-SIV Infection
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not significantly correlate with acute SIV viral load. CyERV Env

expression (r =20.17; n= 9; P= 0.67) showed a trend towards

a negative association (Fig. 5C) in comparison with gag expression

(r = 0.11; n = 8; P= 0.80), which displayed a trend towards

a positive association (Fig. 5D). A similar analysis of CyERV

expression was conducted during chronic SIV infection with no

significant correlations observed with respect to either CD4+ T-cell

counts or SIV viral load (data not shown).

CyERV Transcript Expression in in vitro SIV-infected CD4+

T-cells
To examine CyERV gene expression in a single population of

cells, CD4+ T-cells were enriched from cynomolgus macaque

PBMCs and mock- or SIV-infected (SIVmac239) by magnetofec-

tion [21]. Total RNA was isolated from the mock- or SIV-infected

cells to quantify CyERV env and gag expression by RT-qPCR.

Although, hypothetically, all cell types have the potential to

produce CyERVs, we specifically examined CD4+ T-cells since

they are the cell type that is preferentially infected by SIV. CyERV

transcript levels were examined in mock- and SIV-infected CD4+

T-cells to evaluate the effect of SIV infection on CyERV gene

expression. CyERV env expression was not significantly altered in

SIV-infected CD4+ T-cells compared with the mock-infected

CD4+ T-cells (n = 5; P = 0.16) (Fig. 6A). Eighty percent (4/5) of the

animals showed an increase in CyERV gag expression following

SIV infection; however, no statistically significant difference was

observed between mock- and SIV-infected CD4+ T-cells (n = 5;

P= 0.31) (Fig. 6B). No correlation was observed between CyERV

expression and the number of SIV-infected CD4+ T-cells (data not

shown).

Discussion

It is unclear how many CyERV proviruses have been

incorporated into the cynomolgus macaque genome and whether

they remain intact. The rhesus macaque (Macaca mulatta) genome

contains nineteen complete proviruses of rhesus macaque endo-

Figure 3. CyERV gene expression in peripheral blood mononuclear cells. CyERV envelope and gag RNA was isolated from PBMCs and
quantified using RT-qPCR. Log transformed CyERV envelope (A) and gag (B) gene expression levels relative to GAPDH were compared across all
timepoints (baseline, post-vaccination, acute and chronic SIV infection). Post-vaccination PBMCs are comprised of samples from both week 114 and
116. Vaccine groups include controls, D5-CMV group, and D6-CCI group. Paired-samples t-tests (2-tailed) were performed to determine statistical
significance, bars represent the mean.
doi:10.1371/journal.pone.0040158.g003

Figure 4. CyERV gene expression is associated with decreased susceptibility to SIV infection. A comparison between animals that
required $15 challenges with SIV (range: 15–25, mean: 19.2) to become infected versus animals that required ,15 SIV challenges (range: 2–9, mean:
4.9). A) Animals that were less susceptible ($15 SIV challenges) had higher CyERV envelope expression levels at all timepoints. There was no
statistically significant difference between the two groups. B) Animals that were less susceptible ($15 SIV challenges) had higher CyERV gag
expression levels at baseline, post-vaccination and acute SIV infection. At the post-vaccination timepoint, there was a statistically significant
difference between the two groups (p = 0.02). Independent-samples t-tests (2-tailed) were performed to determine the statistical significance
between groups. Data points represent the mean CyERV values for each group.
doi:10.1371/journal.pone.0040158.g004

Evaluation of CyERV Expression Post-SIV Infection
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genous retrovirus-K (RhERV-K) [22]; however, a similar analysis

has yet to be performed in the two recently sequenced cynomolgus

macaque genomes [23,24]. Given that these Old World monkeys

(OWMs) evolved from a common ancestor after the integration of

HERV-K [25,26], we would expect cynomolgus macaques to

harbor a similar number of CyERV-K proviruses in their genome.

Figure 5. CyERV gene expression negatively associated with CD4+ T-cell counts and SIV viral load. During acute SIV infection, CyERV
envelope (n = 11) and gag (n = 10) gene expression levels negatively correlated with CD4+ T-cell counts (CD4+ T-cells/ul of PBMCs) (A-B) and
negatively associated with acute SIV viral load for CyERV envelope (n = 9) (C). CyERV gag (n = 8) expression showed a slight trend towards a positive
association with acute SIV viral load (D). Bivariate correlations were performed using Pearson’s correlation coefficient (r), statistical significance values
(p) are shown.
doi:10.1371/journal.pone.0040158.g005

Figure 6. CyERV gene expression levels in CD4+ T-cells following in vitro SIV infection. CyERV gene expression was quantitated by RT-
qPCR using RNA isolated from mock- and SIV-infected CD4+ T-cells. CyERV envelope (A) and gag (B) gene expression levels relative to GAPDH are
compared between in vitromock- and SIV-infected CD4+ T-cells. Paired-samples t-tests (2-tailed) were performed to determine statistical significance.
doi:10.1371/journal.pone.0040158.g006

Evaluation of CyERV Expression Post-SIV Infection
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Furthermore, after the divergence of hominoids and OWMs 25

million years ago, there have been at least 2750 OWM-specific

ERV sequences identified and it is possible that these insertions

may be more active [26]. A study examining the CyERV families

and the number of proviruses present in the cynomolgus macaque

genome would aid in elucidating the full CyERV complement and

direct future CyERV-based SIV/HIV vaccine approaches. It is

currently unclear if SIV selectively alters CyERV gene expression

in certain families or if the phenomenon is universal. Our

documentation of a full-length CyERV gag ORF (Fig. 1) indicates

that cynomolgus macaques have retained the capacity to produce

CyERV gag proteins, as previously described in a study examining

gag sequences in OWMs [19]. Although we sequenced a number

of CyERV env clones we were unable to isolate an intact ORF,

supporting previous observations by Mayer et al. [19]; however,

we cannot rule out the potential for full-length ORFs to be present.

Our analysis was directed at characterizing CyERV env and gag,

therefore it is possible that other intact CyERV ORFs (such as pol)

are present in the cynomolgus macaque genome.

In the current study, CyERV expression levels were evaluated

in PBMCs from a cohort of cynomolgus macaques utilized in a live

attenuated SIV vaccine trial. As a protracted immunization was

employed [20], we examined its impact on CyERV gene

expression. Our results indicated that following the vaccination

protocol there was a significant decrease in CyERV env expression

levels and a marginal decrease in CyERV gag expression (Fig. 3).

This was consistent between vaccinees and controls suggesting that

perhaps a vaccine component(s) delivered to all groups (such as the

DNA plasmid backbone) may have been responsible for the

alterations in CyERV gene expression. In a recent study

examining CyERV expression in the brains of cynomolgus

macaques infected with bovine spongiform encephalopathy

(BSE), the authors suggested that the observed decrease in

macaque ERV-K (HML-2) gag RNA and protein expression

may have been attributed, at least partially, to the inoculation

procedure [27]. Ideally, to assess the impact of SIV infection on

CyERV gene expression, a cohort of naı̈ve animals that have not

previously been vaccinated would be the preferred model. Of note,

a comparison of CyERV gene expression levels with respect to the

use of CpG as an adjuvant showed no effect on CyERV gene

expression levels (data not shown). As such, it is possible that

innate immune responses, although not mediated through CpG,

may be playing a role in downregulating CyERV gene expression.

During acute SIV infection, CyERV env and gag gene

expression levels were the lowest in comparison with all other

timepoints (Fig. 3). If innate immunity is involved, maximal

increase in innate immune activation during acute SIV infection

could be contributing to the decrease in CyERV transcript levels.

Preliminary data from our group examining the effects of Varicella

Zoster Virus (VZV) infection on CyERV transcript expression

showed similar results with decreased CyERV env and gag

expression levels during acute VZV infection and a return to

baseline levels during chronic VZV infection (unpublished data),

further suggesting that the strong innate immune response during

acute infection may be involved in decreasing CyERV gene

expression.

Our observations that demonstrated disparate expression levels

with respect to SIV susceptibility may be explained by a concept

examined by Garrison et al. [3] in which they suggest that HERV-

K-specific T-cells may cross-react with HIV-specific epitopes. In

a separate study, they showed HERV-K-specific T-cells might be

involved in the control of HIV during chronic infection [4]. In our

study, animals that required a greater number of challenges with

SIV to establish infection had higher CyERV env and gag

transcript levels prior to SIV challenge and during acute SIV

infection (Fig. 4). Thus, the positive association between CyERV

expression levels and reduced susceptibility to SIV infection might

imply that CyERV-specific cytotoxic CD8+ T-cells recognize SIV-

specific epitopes thereby killing SIV-infected cells and contributing

to the prevention of SIV infection. However, once SIV infection

occurs our results show a trend towards a negative association

between CyERV env expression levels and SIV viral load (Fig. 5C).

This challenges the hypothesis that CyERV gene expression

increases in SIV-infected cells. Furthermore, a negative correlation

was observed between CyERV env and gag expression and CD4+

T-cell counts during acute SIV infection (Fig. 5A-B); whereas,

during chronic SIV infection there was a trend towards a positive

association between CyERV gene expression and CD4+ T-cell

counts. Considering that CD4+ T-cells are a major target for SIV

infection, we would expect to see the most robust effect of SIV

infection on CyERV transcript levels in this subset of cells.

We examined in vitro SIV-infected cynomolgus macaque CD4+

T-cells to evaluate whether CyERV expressions was modulated by

SIV infection. SIV infection had no impact on CyERV env

expression; however, four out of five animals showed increased

CyERV gag expression in the SIV-infected CD4+ T-cells (Fig. 6).

Recently, Lefebvre et al. [28] used next-generation sequencing to

examine cellular transcription of HERVs in an HIV-infected T-

cell line and showed an insignificant increase in HERV-K

transcription in the HIV-infected cells. Although the methodolo-

gies differed and their analysis was not specific to any one

particular HERV protein, these similar results would suggest that

intracellular endogenous retrovirus transcriptional events do not

parallel the degree of upregulation observed by others examining

HERV-K expression in HIV-infected plasma samples. Although

plasma samples from this study were not available, matched sets of

plasma and PBMCs would be useful in delineating any differences

in HERV expression between the two sources.

Our findings from the evaluation of CyERV expression in

PBMCs isolated from SIV-infected cynomolgus macaques were

not consistent with what has been observed for HERV-K

expression in the plasma of HIV-infected humans. During acute

SIV infection, CyERV transcript levels were decreased and

negatively associated with CD4+ T-cell counts. Future examina-

tion of CyERV expression in plasma and tissue samples would

assist in further explaining whether these findings are unique to

macaques or if this is a cellular phenomenon that has yet to be

fully investigated in humans. Based on the results from this non-

human primate study, an investigation into the direct effects innate

immune activation and SIV infection on CyERV expression will

be required before CyERVs can be evaluated as SIV vaccine

targets.

Materials and Methods

Ethics Statement
The samples in this study are historical samples derived from

a previous SIV vaccine trial [20] and no further samples were

collected for the current study. All animal work for the original

SIV vaccine trial was for research purposes and was approved in

accordance with the Health Canada Institutional Animal Care

Committee (protocol#2010–001), which met the ethical, scientific

and social responsibility criteria set out by the Canadian Council

on Animal Care (http://www.ccac.ca/Documents/Standards/

Guidelines/Protocol_Review.pdf). For the SIV vaccine trial study,

adult male colony-bred cynomolgus macaques (Macaca fascicularis)

of Philippine origin were housed at the Animal Resources Division

at the St. Frederick Banting Research Center (Ottawa, Canada).

Evaluation of CyERV Expression Post-SIV Infection
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The veterinary staff monitored the animals daily for food intake,

stool consistency and general welfare. The animals were

anesthetized with ketamine (10 mg/kg) during all inoculations,

viral challenges and sampling procedures. Any abnormal obser-

vation found during regular clinical evaluations was brought to the

attention of veterinary staff. In situations of multiple systemic

consequences, coupled with complete anorexia for more than

three days resulting in weight loss of more than twenty percent,

euthanasia was elected while the animal was under palliative care/

feeding. The decision to euthanize the animal was always to ensure

the animal would not suffer, and at no time was death considered

an acceptable endpoint. Animals had large single cages exceeding

the minimum requirements with areas of both privacy and visual

social interaction with other animals. Animals were given a daily

comprehensive program of environmental enrichment to prevent

abnormal behavior and minimize stress. On alternate days,

animals were given access to a large exercise area.

Animals and Vaccine Constructs
All samples in this study are derived from a previous SIV

vaccine trial [20], in which twelve adult male cynomolgus

macaques of Philippine origin were randomly assigned into two

experimental groups and one control group (4 animals in each

group). Two highly attenuated vaccine constructs (D5-CMV and

D6-CCI), derived from SIVmac239 [29,30], were employed in the

SIV vaccine trial. The vaccination schedule followed a prime-

boost-boost regimen in which the animals were primed with viral

constructs (D5-CMV or D6-CCI) or medium only (control

animals), and subsequently boosted with plasmid DNA (D5-
CMV, D6-CCI or control). For the second boost, the animals were

given their respective viral and plasmid constructs (D5-CMV or

D6-CCI), while the controls received medium alone and control

plasmid DNA. All animals received a B-class CpG oligodeox-

ynucleotides (ODN) adjuvant with their viral construct and/or

plasmid DNA during the second boost [20]. SIV inoculations were

repeated weekly until a detectable SIV infection was established.

Peripheral blood mononuclear cells (PBMCs) were isolated using

routine methods [20] at various stages throughout the trial and

stored at 2150uC. Samples from the following timepoints were

used for the current study: baseline (pre-vaccination), post-

vaccination (2–4 weeks prior to challenge), acute SIV infection

(mean 6 weeks post-infection (wpi); range 4–10 wpi) and chronic

SIV infection (mean 79 wpi; range 25–98 wpi) (Fig. 2).

Isolation of Cynomolgus Macaque Endogenous
Retrovirus (CyERV) Genes
CyERV envelope and gag were isolated from PBMCs of five

cynomolgus macaques (C09-001M, C09-002M, C09-005M, C09-

008M, C09-009M) using a DNeasy Blood & Tissue Kit (Qiagen).

CyERV env and gag genes were PCR amplified using published

primer sequences based on HERV-K10 [19], forward primer

(T7envFOR) 59-ATGAACCCATCAGAGATGCA-39 and re-

verse primer (envREV) 59-AACAGAATCTCAAGGCA-

GAAGA-39 for env; and forward primer (T7gagFOR) 59-

ATGGGGCAAACTAAAAGT-39 and reverse primer (gagREV)

59-CAGGCAGTGGGCCATATAC-39 for gag. The PCR condi-

tions were as follows: 95uC for 7 mins, 30 cycles of 95uC for 30 s,

52uC for 30 s, 72uC for 50 s and one cycle of 72uC for 7 mins.

PCR amplicons were gel-purified with GENECLEAN II (MP

Biomedicals), cloned into the pCR-Blunt II-TOPO vector

(Invitrogen) and transformed with chemically competent cells

(Invitrogen). The full-length gene inserts were confirmed by

Sanger sequencing. Sequences were aligned by ClustalW align-

ment and shaded using Geneious Pro 5.4.6 [31].

CD4+ T-cell Enrichment and in vitro SIV Infection
CD4+ T-cells were enriched from cynomolgus macaque (n= 5)

PBMCs using a custom EasySep negative selection kit (StemCell

Technologies). Enriched CD4+ T-cells were resuspended in R15–

100 buffer (RPMI 1640 plus 15% FBS, L-glutamine, antibiotic/

antimycotic) supplemented with 100 IU/ml rIL-2 and 5 mg/ml

concanavalin A and cultured in vitro for 3–6 days. The CD4+ T-

cells were either mock- or SIV-infected (SIVmac239) by magne-

tofection [21] for 48 hrs and stained with SIVmac p27 antibody

(NIH AIDS Research and Reference Reagents Program) to

evaluate SIV infection by FACS. Total RNA was isolated from the

cell pellets.

RNA Isolation
PBMCs were thawed at 37uC, washed with DMEM (Sigma-

Aldrich) supplemented with 10% FBS (Wisent Bioproducts),

100 U/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich),

and subsequently washed with 1X Dulbecco’s phosphate buffered

saline (Invitrogen). Total RNA was purified from the cell pellets

using RNeasy Plus Mini kit (Qiagen) and eluted in 30 ml of RNase-

free water, as per manufacturer’s protocol. The RNA was treated

with 2 U TURBO DNase (Ambion) to remove any contaminating

genomic DNA.

Standard Curve Plasmid Cloning
A control plasmid for quantitative polymerase chain reaction

(qPCR) was generated by incorporating the amplicons of CyERV

env and gag, in conjunction with a reference gene, cynomolgus

macaque glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Restriction sites were incorporated by PCR to facilitate cloning of

the genes into pMECA cloning vector (GenBank: AF017063).

CyERV env primers were designed in regions conserved between

the two clones of CyERV env, to amplify a 166 bp amplicon, FP

59- ACGTGCGGCCGCTACCTGGCCCCACAGATGAC-39

(NotI underlined) and RP 59-ACGTCCATGGTACTTCTAC-

CAACCAATTTTG-39 (NcoI underlined). CyERV gag primers

were designed in conserved regions between the two clones of

CyERV gag, to amplify a 301 bp amplicon, FP 59- ACGTG-

GATCCGGGCCTGGGAGAAAATCCAAG-39 (BamHI under-

lined) and RP 59-ACGTAGATCTTGCATAGCTCCTC-

CAATTCCATC-39 (Bgl II underlined). The GAPDH primers

were designed from a known Macaca fascicularis mRNA partial

coding sequence (GenBank: DQ464111). PCR primers (FP 59-

ACTGGCATGCTGACCTGCCGTCTGGAAAA-39 [SphI un-

derlined] and RP 59-ACGTGCTAGCCTCC-

GACGCCTGCTTCA-39 [NheI underlined]) were designed to

amplify an 80 bp region of GAPDH from cynomolgus macaque

PBMCs. All gene fragments were cloned into pMECA (CyERV

env; CyERV gag; GAPDH) and confirmed by Sanger sequencing.

Serial dilutions of the plasmid were prepared to achieve a linear

range of 8 logs (5 to 57 copies/ml) and single use aliquots were

stored at 280uC.

Reverse Transcription-quantitative Polymerase Chain
Reaction (RT-qPCR)
CyERV mRNA transcript levels were assessed by RT-qPCR.

Total RNA (avg. 324 ng) was reverse transcribed to complemen-

tary DNA (cDNA) using SuperScript III First-Strand Synthesis

SuperMix (Invitrogen) as per manufacturer’s protocol. Reverse-

transcription negative controls and no template controls were

included for each sample. All samples were loaded as technical

triplicates. Thermal cycling conditions were: 95uC for 10 mins, 40

cycles of 95uC for 15 s, 60uC for 1 min followed by a dissociation

Evaluation of CyERV Expression Post-SIV Infection

PLoS ONE | www.plosone.org 7 June 2012 | Volume 7 | Issue 6 | e40158



stage of 95uC for 15 s, 60uC for 15 s and 95uC for 15 s. The

primer sequences and amplicon sizes of each gene are listed in

Table 1. Representative qPCR amplicons were analyzed by gel

electrophoresis on a 2% agarose gel to confirm the size and purity

of the products. In addition, select qPCR products were sequenced

to confirm the transcripts. The RT-qPCR assay consistently

demonstrated high efficiency and linearity for each gene (Table 1).

The standard curve was used to enumerate CyERV mRNA

expression. Sequence Detection System v2.4 (Applied Biosystems)

was used for gene expression analysis with CyERV expression

levels being standardized to 1 mg of RNA, normalized to the

GAPDH reference gene and log transformed. Values represent the

mean of the three technical replicates. Threshold cycle values or

quantitative values that were deemed outliers based on Grubbs’

test (Z$1.15) were excluded.

Statistical Analysis
Oneway ANOVA tests were performed to compare the mean

differences between the vaccine groups (D5-CMV, D6-CCI,
control). Paired-samples t-tests (2-tailed) were performed to

determine the statistical significance across various timepoints

(dependent samples). For inter-group comparisons, independent-

samples t-tests (2-tailed) were applied to determine the statistical

significance. Bivariate correlations were performed using Pearson’s

correlation coefficient (2-tailed). Statistical analysis was completed

using SPSS for Macintosh (Rel. 19.0.0. 2010. SPSS Inc.).
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