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SIRT6 belongs to the nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylases and has established diverse roles in aging, metabolism and disease. Its
function is similar to the Silent Information Regulator 2 (SIR2), which prolongs lifespan
and regulates genomic stability, telomere integrity, transcription, and DNA repair. It
has been demonstrated that increasing the sirtuin level through genetic manipulation
extends the lifespan of yeast, nematodes and flies. Deficiency of SIRT6 induces chronic
inflammation, autophagy disorder and telomere instability. Also, these cellular processes
can lead to the occurrence and progression of cardiovascular diseases (CVDs), such as
atherosclerosis, hypertrophic cardiomyopathy and heart failure. Herein, we discuss the
implications of SIRT6 regulates multiple cellular processes in cell senescence and aging-
related CVDs, and we summarize clinical application of SIRT6 agonists and possible
therapeutic interventions in aging-related CVDs.
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INTRODUCTION

Population ageing is a global phenomenon. Virtually every country in the world is experiencing
growth in the size and proportion of older persons in their population (United Nations, 2019).
With the growing of aged population, the incidence of aging related cardiovascular diseases (CVDs)
is increasing. According to a report from the American Heart Association, CVDs (comprising
coronary heart disease, heart failure, stroke, and hypertension) currently claims more lives each
year than cancer and chronic lung disease combined, and the prevalence of CVD in adults ≥ 20
years of age is 48.0% overall and increases with age in both males and females (Virani et al., 2020).
Therefore, aging is an independent risk factor associated with the progressive degeneration of the
heart, making them more vulnerable to stressors and contributing to increased morbidity and
mortality (Chiao and Rabinovitch, 2015).

It has been probably 20 years since the Silent Information Regulator 2 (SIR2) gene was found
to extend the lifespan of yeast (Kaeberlein et al., 1999). From that time on, it sparked efforts in
many institutions to realize more SIR2-like genes, known as sirtuins, and elucidate their potential
to delay the onset of age-related diseases. Sirtuins are a family of histone deacetylases (HDACs)
that catalyze deacetylation of both histone and non-histone lysine residues. Their requirement for
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nicotinamide adenine dinucleotide distinguishes sirtuins from
other HDAC classes and defines them as class III HDACs (Winnik
et al., 2015). Mammals contain seven sirtuins (Figure 1), SIRT1-
7, which are categorized by their different subcellular localization,
unique binding substrates and diverse enzymatic activities
(Haigis and Sinclair, 2010). These members share a conserved
catalytic domain spanning 250 amino acids. The catalytic core
comprises an NAD+-binding domain and four structural zinc-
binding domains. Catalysis occurs in a hydrophobic cleft or
pocket situated between these two kinds of domains and the
hydrophobic cleft or pocket often provides binding sites for
modulators. Additionally, sirtuins contain diverse N and C
terminal extensions that can direct cellular localization and
protein-protein interactions.

The member SIRT6 is widely expressed in all mammalian
organs and regulates multiple senescence associated biological
processes, including oxidative stress, glucose and fat homeostasis
(Mostoslavsky et al., 2006; Zhong et al., 2010; Tao et al., 2013a),
inflammatory responses, autophagy, genome integrity, and
telomeres homeostasis (Papamichos-Chronakis and Peterson,
2013; Kugel and Mostoslavsky, 2014; Miller and Sadeh, 2014;
Lasry and Ben-Neriah, 2015; Tasselli et al., 2017; Abdellatif
et al., 2018; De Meyer et al., 2018). Therefore, SIRT6 is
involved in many kinds of aging related disease such as
neurodegenerative disease, cancer, CVDs. For instance, recent
study demonstrated that SIRT6−deficient cynomolgus monkeys
exhibit developmental retardation (Zhang W. et al., 2018).
However, in Alzheimer’s disease (AD) patients, SIRT6 plays

AD−protective function via maintaining genomic stability
and preventing DNA damage in brain (Jung et al., 2016;
Kaluski et al., 2017). It not only reveals a pivotal role
in brain development, but also shows a close relationship
between the aberration of SIRT6 with human neurodegenerative
diseases. In the context of cancer, SIRT6 was considered as
a double−edged sword due to its dual role of both tumor
suppression and promotion, depending on the type of tumors
(Desantis et al., 2017). It protects against tumor growth through
the functions of controlling DNA damage repair, genomic
stability, cellular metabolic homeostasis, and apoptosis, while
it also associated with the poor clinical outcomes by its
enzyme activity regulating cancer pathways in cancers such as
hepatocellular and colon cancers (Sebastian et al., 2012; Vitiello
et al., 2017; Khan R. I. et al., 2018). In the cardiovascular
system, SIRT6 plays a protective function by improving vascular
endothelial dysfunction to some extent, delaying the formation
of atherosclerotic plaques and inhibiting cardiac hypertrophy
and heart failure (Sundaresan et al., 2012; Liu et al., 2016).
In addition, several studies showed that SIRT6 is a principal
regulator of glucose metabolism homeostasis (Zhong et al.,
2010; Xiong et al., 2016). Targeting it may be a promising
strategy for attenuating diabetic cardiomyopathy (DCM) and
reducing myocardial vulnerability to ischemia-reperfusion injury
in diabetic patients (Yu et al., 2021).

In this review, we chiefly interrogate the role of SIRT6
in cell senescence, the main CVDs involved in cell
senescence induced by SIRT6 dysfunction, and possible

FIGURE 1 | Domain architecture, subcellular localization, and enzymatic activity of human sirtuin family of Class III NAD+-dependent histone deacetylases.
Schematics represent the domain structure of human sirtuins. Amino acid positions are noted above each schematic. The domains are represented in different
colors. Adapted from UniProt Universal Protein Resource Database.
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clinical application of SIRT6 functional regulatory drugs
in CVDs.

SIRT6 AND SENESCENCE

Senescence is a multi-factor process involving the regulation of
different age-related molecular and cellular events, including
oxidative stress and neurodegeneration, glucose and fat
homeostasis (Mostoslavsky et al., 2006; Zhong et al., 2010; Tao
et al., 2013a), inflammatory responses, autophagy, genome
integrity, and telomeres shorten (Papamichos-Chronakis and
Peterson, 2013; Miller and Sadeh, 2014; Lasry and Ben-Neriah,
2015; Abdellatif et al., 2018; De Meyer et al., 2018). The role
of sirtuins in senescence was discovered in budding yeast,
where overexpression of SIR2 increases replicative lifespan.
Subsequently, It was reported that elevated sirtuin levels increase
lifespan in the nematode C. elegans (Tissenbaum and Guarente,
2001) and the fruitfly Drosophila (Rogina and Helfand, 2004),
indicating an evolutionarily ancient role of sirtuins in longevity
assurance. However, despite recently there have debates about
the direct role of SIR2 in aging and lifespan extension, especially
in budding yeast and C. elegans (Kaeberlein, 2010; Kenyon,
2010), the overwhelming majority of significant results still
support a potential role for SIRT6 in regulating mammalian
lifespan (Yuan et al., 2009; Burnett et al., 2011; Kanfi et al.,
2012). SIRT6 was shown to extend lifespan in mammals, while
deficiency of SIRT6 was associated with progeria, an accelerated
aging disorder (Liao and Kennedy, 2012, 2014). Studies have
confirmed the important roles for SIRT6 in protecting against
aging and disease pathologies: SIRT6-deficient mice are small
and have severe metabolic defects, and by 2–3 weeks of age, they
develop abnormalities that are usually associated with aging
(Mostoslavsky et al., 2006). SIRT6-deficient monkeys die hours
after birth and exhibit severe prenatal developmental retardation
(Zhang W. et al., 2018). However, SIRT6 overexpression led
to an increase in lifespan in male mice (Kanfi et al., 2012).
Mechanistically, SIRT6, being a deacetylase at the specific site
of histone H3K9 H3K56 H3K18 (Michishita et al., 2008, 2009;
Tasselli et al., 2016), inhibits the transcription of transcription
factors related to senescence, maintains the structure of telomere
chromatin, prevents genomic instability after DNA damage, and
protects cells from senescence (Tennen and Chua, 2011; Kugel
and Mostoslavsky, 2014). Here, we summarized the function of
SIRT6 in age-related cellular events (Figure 2).

SIRT6 and Oxidative Stress
Based on the free radical theory, aging is triggered by a
long-term cumulative damage of toxic free radicals and
reactive oxygen species (ROS) to sensitive targets with
biologically significance. Moreover, early studies revealed
that the accumulation of ROS is closely related to the poor
prognosis of CVDs (Griendling and FitzGerald, 2003). It is
known to all that the maintenance of the heart’s pumping
action requires functional and morphological integrity of
mitochondria to ensure an uninterrupted energy supply.
Meanwhile, mitochondria, as heart’s energy providers, also

can generate ROS as a by-product. Recent study indicated that
an increase in mitochondrial ROS followed by ultrastructural
alterations in the mitochondrial cristae lead to cardiomyocyte
damage and, ultimately, cell death (Acin-Perez et al., 2018).
Treatment of primary fibroblasts with medium, non-lethal
doses of exogenous hydrogen peroxide can activate rapid,
senescence-like growth arrest (Chen and Ames, 1994).
Analogously, cells grown in the company of high oxygen
concentrations exhibit a reduced lifespan and show telomeres
shorten (von Zglinicki et al., 1995).

Reports indicate that SIRT6 is highly sensitive to cellular redox
state and counteracts the effect of ROS (D’Onofrio et al., 2018).
As recently revealed, in response to oxidative stress, SIRT6 is
phosphorylated by c-Jun N-terminal kinase (JNK) at residue
serine10 and that this modification is necessary for efficient
recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to
DNA break sites and for efficient repair of DSBs (Van Meter
et al., 2016). Moreover, it provides the relationship between
oxidative stress and DNA repair that is critical for hormetic
response and age-related diseases. Furthermore, SIRT6-deficient
human mesenchymal stem cells (hMSCs) exhibited accelerated
functional decay, a feature predominately characterized by
dysregulated redox metabolism and increased sensitivity to the
oxidative stress. In addition, SIRT6 could help assemble nuclear
factor erythroid 2-related factor 2 (Nrf2)-RNA polymerase II
transcription complex, which was required for the transactivation
of Nrf2-regulated antioxidant genes (Pan et al., 2016). SIRT6 has
been shown to suppress oxidative stress in the ischemic brain and
non-alcoholic fatty liver via regulation of Nrf2 (Ka et al., 2017;
Zhang W. et al., 2017).

Nrf2 is an evolutionarily conserved redox-sensitive
transcription factor that coordinates antioxidant responses,
including enzymes that up-regulate detoxification and repair
macromolecular damage induced by ROS (Suh et al., 2004;
Ungvari et al., 2011a,b,c). It binds to the antioxidant response
elements (AREs) and activates the transcription of many
antioxidant genes, including gluthatione S-transferases (GSTs),
heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductase 1
(NQO1), thioredoxin, thioredoxin reductase, as well as proteins
involved in scavenging reactive oxygen species (ROS) (Kovac
et al., 2015) and glutathione (GSH) biosynthesis and regeneration
(Gorrini et al., 2013; Rezazadeh et al., 2019). More importantly,
recent advances have identified that the decline in Nrf2-ARE
activity is observed in aged cells, which account for that
SIRT6 mediated deacetylation of H3K56 is a crucial event
safeguarding age-related cells from oxidative stress-associated
functional decay (Bailey-Downs et al., 2012; Valcarcel-Ares et al.,
2012; Pan et al., 2016). Interestingly, another result indicated
that SIRT6 mono-ADP-ribosylation of BAF170, a subunit of
BRG/BRM associated factor (BAF) chromatin remodeling
complex, is required for activation of a subset Nrf2 responsive
genes upon oxidative stress (Rezazadeh et al., 2019). Anyway,
these findings showed that SIRT6 serves as an activator of
Nrf2-dependent gene transcription. In cardiovascular studies,
especially in ischemia/reperfusion injury and vascular endothelial
dysfunction, Nrf2 pathway is the major target of SIRT6 to exert
antioxidant effects.
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FIGURE 2 | Model for the function of SIRT6 in age-related cellular events. SIRT6 directly binds to Mtf1 to promote the expression of metallothionein Mt1 and Mt2.
SIRT6 recruits BAF170 and RNA polymerase II to promote the expression of Nrf2 and downstream genes to participate in antioxidant stress. SIRT6 inhibits the
activity of c-JUN, the transcription of Notch1 and Notch4 signals and the phosphorylation of Akt signal via epigenetic regulation. These upregulate the expression of
pro-inflammatory cytokines IL-1 β, IL-6, and TNF-α and downregulate anti-inflammatory cytokines IL-10 to attenuates the effect of inflammation. SIRT6 inhibites the
activity of Akt-mTOR pathway thus promotes FOXO3-dependent autophagy. Both single and double strand break trigger the recruitment of SIRT6 and activation of
PARP1 at the damage sites and promote PARP1 mediated DNA repair. SIRT6 also recruits repair factors 53BP1, BRCA1, and RPA at double-strand breakpoint for
damage repair. SIRT6 recruits and interacts with CHD4 to render the relaxation of chromatin required for DNA repair. And CHD4 replaces HP1 in histone H3K9
further promoting homologous recombination. SIRT6 binds to and deacetylate CtIP to promote terminal excision. SIRT6 keeps the low physiological level of H3K9
acetylation and preserves the telomere position effect to maintain normal function of telomere.

In addition, as an adaptive response to the oxidative
stress environment, metal transcription factor (MTF) has been
previously shown to be the key transcription factor for the
induction of metallothionein (Mt) to participate in antioxidant
stress (Ghoshal and Jacob, 2001; Laity and Andrews, 2007).
The antioxidant stress function of MT in heart prevents
cardiomyocytes from diabetic cardiomyopathy and myocardial
infarction (Gu et al., 2017; Xue et al., 2019). Recently study
revealed that SIRT6 can promote the expression of Mt1 and Mt2.
Indeed, both Mt1 and Mt2 promoters were activated by SIRT6.
Moreover, SIRT6 can physically interact with MTF1 to have a
synergistic effect on those Mt gene promoters (Kim et al., 2019).

Overall, SIRT6 is involved in the regulation of oxidative
stress in a variety of tissue cells. And a series of studies have
provided compelling evidence demonstrating the pathogenic
effect of oxidative stress in CVDs (Zhao et al., 2015; Förstermann
et al., 2017; van der Pol et al., 2019). Therefore, targeting SIRT6
to inhibit the generation of ROS and promote the activation
of antioxidants represent reasonable therapeutic strategies for
CVDs in the future.

SIRT6 and Inflammation
Inflammation is a complex biophysical response of the body
to pathogen infection and tissue damage. Although acute
inflammation was considered protective, chronic inflammation
was linked to numerous diseases (Xiao et al., 2012). For instance,

the occurrence of human aging-related diseases is related to
chronic low-grade inflammation, which is characterized by
increased levels of circulating IL-6 and C-reactive protein (CRP)
(Ferrucci et al., 2005; Wikby et al., 2006). A considerable number
of elderly people showed the activation of inflammatory bodies
and elevated levels of IL-1 β, which are associated with the
risk of chronic aging diseases (Franceschi and Campisi, 2014;
Furman et al., 2017). This phenomenon has also been confirmed
in elderly rodents and primates, where pro-inflammatory changes
have occurred in gene expression profiles of vascular endothelial
cells and smooth muscle cells, including upregulated expression
of inflammatory cytokines [such as IL-6, IL-1 β, tumor necrosis
factor-α (TNF-α)], chemokines, adhesion molecules, inducible
nitric oxide synthase and other pro-inflammatory mediators.
Moreover, it increases the risk of CVDs, including atherosclerotic
visceral diseases (Csiszar et al., 2002, 2003, 2004; Ungvari et al.,
2007; Song et al., 2012). In addition, according to the data and
the hypotheses presented in the study (Ferrucci and Fabbri,
2018), modulating inflammation is a promising approach not
only to prevent CVD but also to slow the decline of health that
occurs with aging.

Within the past few years, sirtuins have been identified as
novel regulators of the immune system (Yang et al., 2007;
Csiszar et al., 2008; Yoshizaki et al., 2009), and several studies
show that SIRT6 can suppress inflammation in different tissues
(Kawahara et al., 2009, 2011; Zhang N. et al., 2016). One of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 March 2021 | Volume 9 | Article 641315

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-641315 March 22, 2021 Time: 13:50 # 5

Li et al. SIRT6 in Aging-Related Cardiovascular Diseases

the master regulators of both adaptive and innate immunity is
the NF-κB, which forms complexes with many other proteins,
including Rel family members (RelA/p65, c-Rel, and RelB).
The NF-κB complexes can translocate from the cytoplasm
into the nucleus to trigger expression of target genes that
are largely pro-inflammatory. It has been demonstrated that
SIRT6, as a potent inhibitor of the NF-κB system, providing
a mechanistic link between inflammation and aging (Kawahara
et al., 2009; Zhang N. et al., 2016). A study revealed that SIRT6
promoted microRNA-21 expression, this reduced the expression
of TGF-β2 and IL-1α and decreased the production of type I
collagen and fibroblast proliferation (Fan et al., 2016). Besides,
it has been found that SIRT6 restrained TGF-β signaling by
deacetylation of H3K9 and H3K56. SIRT6 haploinsufficiency
was sufficient for enhancing myofibroblast generation, leading
to multiorgan fibrosis and cardiac dysfunction in mice during
aging (Maity et al., 2020). Furthermore, recent report unveiled
that overexpression of SIRT6 blocked the expression of NF-
κB downstream regulators, such as interleukin (IL)-1β, IL-
6, and matrix metalloproteinase 9 (MMP-9), all of which
promoted fibroblast differentiation in TAC-induced cardiac
fibrosis (Zhang et al., 2019).

In mouse liver, SIRT6 deacetylates H3K9 on the promoters
of pro-inflammatory gene IL-6 and monocyte chemoattractant
protein MCP-1 by inhibiting the transcriptional activity of c-JUN.
After SIRT6 gene knockout, the expression of pro-inflammatory
cytokines IL-1 β, IL-6, and TNF-α was upregulated significantly,
while anti-inflammatory cytokines IL-10 was significantly down-
regulated, causing chronic inflammation and fibrosis of the
liver (Xiao et al., 2012; Kim et al., 2019). In addition,
studies have found that SIRT6 also promotes the production
and secretion of inflammatory cytokines (Van Gool et al.,
2009; Bauer et al., 2012; Jiang et al., 2013, 2016), leading to
chronic inflammation, which is the basis of neuronal death
in Parkinson’s disease and other neurodegenerative diseases
(Nicholatos et al., 2018). Therefore, it is worthy of detailed
investigation of the relationship between SIRT6 and other aging-
related diseases. In mouse glomerular podocytes, SIRT6 inhibits
the transcription of Notch1 and Notch4 signals via epigenetic
regulation, lowers the expression of inflammatory cytokines IL-
1 β, IL-6, and TNF-α, protects podocytes from inflammatory
damage, and effectively reduces the occurrence of chronic
proteinuria nephropathy (Liu et al., 2017). In the adventitia
inflammation induced by TNF-α, SIRT6 attenuates vascular
inflammation by inhibiting the phosphorylation of Akt signal and
the expression of monocyte chemoattractant proteins MCP-1 and
IL-6 (He Y. et al., 2017).

SIRT6 and Autophagy
Autophagy refers to the cellular process of degradation
and recycling of long-lived or damaged organelles and
proteins. This includes microautophagy (invagination
of lysosomal membrane), molecular chaperone-mediated
autophagy (transport of soluble proteins to lysosomes through
molecular chaperones and lysosomal membrane receptors)
and macroautophagy (where impurities are swallowed by
double-membrane autophagosomes before lysosome fusion)

(Shirakabe et al., 2016; Delbridge et al., 2017; Nakamura and
Yoshimori, 2018; Zhang Y. et al., 2018). Autophagy is initiated
by class III phosphatidylinositol-3 kinase (PI-3K) and Beclin-1.
Autophagosomes undergo prolongation, microtubule light
chain-3 (LC3) recruitment, LC3 proteolysis (lipolysis) to form
autophagy lysosomes (fusion of autophagosomes and lysosomes),
which regulate cell survival and senescence. Accumulating
evidence suggested that autophagy is an essential mechanism
for maintenance of tissue homeostasis in the heart during the
aging process (Levine and Kroemer, 2008; Rubinsztein et al.,
2011; Gatica et al., 2015). Mitophagy is an autophagic response
that definitely targets damaged mitochondria. It was critical for
the bioenergetics of the cardiovascular system, and mitophagy
disorder could develop cardiac dysfunction (Bravo-San Pedro
et al., 2017; Nicolas-Avila et al., 2020). Numerous studies have
indicated that activate autophagy increase the healthy lifespan
of animals, a positive effect that is generally associated with
decelerated cardiovascular senescence (Zaglia et al., 2014; Gong
et al., 2015; Eisenberg et al., 2016).

The two primary regulatory signal mechanisms implicated
in autophagy disorders include inhibition of AMP-dependent
protein kinase (AMPK) activation and up-regulation of class I
PI-3K/Akt signal, resulting in excessive activation of rapamycin
target (mTOR) signal and autophagy disorder (Kennedy and
Lamming, 2016). Evidence has emerged that SIRT6 plays critical
roles in the process of controlling autophagic degradation (Ng
and Tang, 2013). Autophagy could be a harmful process to
accelerate aging in some conditions. In a study of human
bronchial epithelial cells, it was found that SIRT6 protects human
bronchial epithelial cells from senescence by inhibiting insulin-
like growth factor signaling-induced autophagy and regulating
mTOR signaling (Shao et al., 2016).

However, in cardiovascular cells, autophagy mainly acts as
beneficial process to maintain cellular homeostasis and delay
aging. In macrophage foam cell from atherosclerosis model,
SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1)
had been observed significantly and the overexpression of SIRT6
markedly reduced foam cell formation by inducing autophagy.
The silencing of the key autophagy initiation gene ATG5 reversed
the autophagy-promoting effect of SIRT6 with an increase in
foam cells, which implied an autophagy-dependent pathway of
SIRT6 in protecting against atherosclerosis by reducing foam cell
formation (He J. et al., 2017).

Moreover, it has been found that Isoproterenol (ISO)-caused
cardiac hypertrophy accompanying with a significant decrease
in autophagy activity in primary neonatal rat cardiomyocytes
(NRCMs). SIRT6 overexpression enhanced autophagy in
NRCMs, whereas knockdown of SIRT6 by RNA interference
led to suppression of cardiomyocyte autophagy (Lu et al.,
2016). In terms of mechanism, SIRT6 activates FOXO3-
dependent autophagy by reducing the level of Akt protein and
phosphorylation, thereby enhancing the formation of LC3-II
and down-regulating the expression of p62 (Lu et al., 2016).
These results are consistent with the previous study that SIRT6
inhibit the transcription of IGF/Akt pathway genes via H3K9
deacetylation, which contributes to suppression of cardiac
hypertrophy (Sundaresan et al., 2012).

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 641315

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-641315 March 22, 2021 Time: 13:50 # 6

Li et al. SIRT6 in Aging-Related Cardiovascular Diseases

SIRT6, Genome Stability, and DNA
Damage Repair
During the progression of aging, DNA, RNA, and proteins
are constantly subjected to chemical alterations that impair
their function (Ou and Schumacher, 2018). However, the
consequences of DNA damage are much more widespread as
DNA contains the information for all RNA and proteins a
cell produces. It was considered that thousands of damaging
events occur each day in every single one of our cells (De
Bont, 2004). Persistent DNA damage can block transcription and
replication thus hampering cellular functionality and promoting
cellular senescence (Ou and Schumacher, 2018). To counteract
the destructive effect of these actions and to maintain genomic
integrity, it triggers a DNA damage response (DDR), which
ensures efficient repair of all types of damage, including
individual DNA base lesions and breaks (Ciccia and Elledge,
2010). The defects in DNA damage response further increases
the burden of DNA damage, blocks cell cycle progression and
causes the senescence of organs (Niedernhofer et al., 2018). Both
endogenous and exogenous factors trigger DNA damage. The
endogenous factors are the products of normal cell metabolism,
resulting in oxidation, nitrification, and alkylation of DNA
(Niedernhofer et al., 2018). On the other hand, exogenous
factors, including ionizing radiation, ultraviolet radiation, and
alkylating agents trigger DNA single-strand or double-strand
breaks, which further causes an increase of inflammatory
cytokines and accelerates the aging of the body (Rodier et al.,
2009). Many repair mechanisms exist to ensure that nearly
all the daily DNA damage is repaired, including base excision
repair (BER), nucleotide excision repair (NER), non-homologous
end connection (NHEJ), and homologous recombination (HR).
Besides, each pathway identifies and repairs specific types of DNA
damage to address most DNA damage, but not all DNA damage.
It has been discovered that SIRT6 binds closely to chromatin
and is an NAD+-dependent deacetylase of H3K9 and H3K56.
Histone deacetylation is related to chromatin conformational
closure and decreased chromatin accessibility. Therefore, the
discovery of this enzyme activity confirmed the role of SIRT6
in regulating the dynamic binding of DNA damage repair and
chromatin and gene expression (Michishita et al., 2008, 2009;
Yang et al., 2014).

DNA damage is linked to several human diseases, including
cancer, neurodegeneration, aging and CVDs (Madabhushi
et al., 2014; Ou and Schumacher, 2018; Nakada et al.,
2019; Reisländer et al., 2020). In the early stage of DNA
damage, SIRT6 recruited SNF2H (an ATP-dependent chromatin
remodeling) to DNA double-stranded breakpoint (DSB), to
prevent genomic instability via local deacetylation of H3K56,
and effectively recruited repair factors 53BP1, BRCA1, and
RPA for damage repair (Toiber et al., 2013). In mammalian
cells subjected to oxidative stress, SIRT6 was recruited to the
DSB to bind to poly (ADP ribose) polymerase 1 (PARP1)
and stimulated its activation by catalyzing the ADP ribose
glycosylation of the K521 residue of PARP1, thus promoting
the repair of DNA damage by connecting with non-homologous
ends and HR (Mao et al., 2011). However, overactivation

of PARP depletes the level of NAD content (Bürkle, 2001;
Jagtap and Szabo, 2005), which is essential for the activity
of sirtuins. It is critical to limit the overactivation of
PARP1 in the heart to optimize its cardioprotective effect
(Liu et al., 2014).

Further, reports indicate that stress-activated protein kinase
JNK phosphorylates SIRT6 on serine 10 to promote DNA double-
strand break (DSB) repair in response to oxidative stress. This
post-translational modification helps to mobilize SIRT6 to the
DNA damage site, effectively recruit PARP1 to the DNA cleavage
site and promote repair factors 53BP1 and NBS1 to repair
effectively (Van Meter et al., 2016). Chromatin relaxation is
a prerequisite for the repair of DNA damage. Recent studies
suggest that during DNA damage, SIRT6 rapidly shifts to
the site of DNA damage, interacts with chromatin remover
CHD4, and recruits CHD4, to promote the repair of DNA
damage caused by chromatin relaxation. Once the damage site
is reached, CHD4 replaces heterochromatin protein 1 (HP1)
in histone H3K9 trimethylation (H3K9me3), whereas CHD4-
dependent chromatin relaxation and H3K9me3 competition for
the release of HP1, in damaged chromatin, are both necessary
for precise HR (Hou et al., 2020). When repairing DNA damage
via homologous recombination pathway, SIRT6 binds to DSB
excision protein CtIP (carboxyl-terminal binding protein acting
protein) and deacetylate CtIP to promote terminal excision
(Kaidi et al., 2010). Highly unstable genomes were found in
patients with multiple myeloma. A high level of SIRT6 promotes
the repair of Chk1 DNA damage by triggering ERK2/p90RSK
signal inactivation and offering resistance to DNA damage.
The deletion of the SIRT6 gene enhances the sensitivity to
DNA damage (Cea et al., 2016). It has been found that SIRT6
will be located at the damage site of single-strand breaks in
a PARP1-dependent manner, and downstream repair factors
will be recruited to promote base excision and repair of
BER. In addition, the efficiency of BER decreased significantly
with the increase of age, and overexpression of SIRT6 in
senescent cells could significantly improve the efficiency of BER
(Xu et al., 2015).

SIRT6 and Telomere Homeostasis
Mammalian telomeres are the terminal structures of
chromosomes, which comprise TTAGGG tandem repeats
and associated protein complexes (protegerins). This complex
protects chromosomes from end-to-end fusion and degradation
by forming a special tring-like structure to avoid the ends of
chromosomes being identified as double-stranded DNA breaks
(Griffith et al., 1999; de Lange, 2005; Palm and de Lange, 2008).
With each round of cell division, telomeres become shorter
and when the shortened telomeres reach the critical length,
it would trigger a sustained DDR and cell senescence (Shay,
2016). To escape senescence, cells might active or up-regulate
telomerase, a cellular reverse transcriptase that adds new DNA
to telomeres at the end of chromosomes. However, most normal
human cells lack the telomerase that maintains telomeres (Baur,
2001). Therefore, telomere length is widely considered as a
marker of biological aging, although this parameter does not
strictly satisfy the criteria of cell senescence by the American
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Federation for Aging Research (Mather et al., 2011; De Meyer
et al., 2018). The most factors that can modulate telomere
length are also cardiovascular risk factors. In clinical studies, an
association between short leukocyte telomere length (LTL) and
cardiovascular disorders, including atherosclerosis, myocardial
infarction, heart failure, and hypertension, has been repeatedly
shown (Nowak et al., 2002; Samani and van der Harst, 2008).

In human fibroblasts with specific knockout of the SIRT6
gene, an apparent end-to-end fusion of chromosomes and
premature senescence were observed, which could be effectively
reversed by ectopic expression of telomerase, suggesting that
SIRT6 is implicated in maintaining telomere stability. The lack
of SIRT6 caused the excessive acetylation of H3K9, thus leading
to telomere dysfunction (Michishita et al., 2008). Furthermore,
the function of SIRT6 in maintaining telomere to protect
from senescence is also proved in other tissues including
vascular smooth muscle cells (VSMCs) (Cardus et al., 2013;
Grootaert et al., 2021).

The deficiency of SIRT6 not only causes telomere damage,
but also destroys the closed chromatin environment near the
telomere and triggers telomere position effect (TPE) dysfunction
(Tennen et al., 2011). TPE refers to the epigenetic silencing
of proximal telomere genes (Aparicio et al., 1991; Buck and
Shore, 1995; Ng et al., 2002; Altaf et al., 2007) and the intensity
of telomere silencing enhances with the increase of telomere
length (Kyrion et al., 1993; Buck and Shore, 1995). It has
been found that the depletion of SIRT6 in human cells elicits
TPE dysfunction, while the restoration of SIRT6 expression
is sufficient to reconstruct the silencing of the telomere gene
(Tennen et al., 2011). Together, these findings establish new
roles for SIRT6 in regulating an aging-associated epigenetic
silencing process and provide new mechanistic insights into
chromatin silencing at telomeres (Baur, 2001; Tennen et al., 2011;
Robin et al., 2014).

In addition, telomere repeat binding factor 2 (TRF2), as a
significant regulator of telomere integrity, it exerts telomere
protection by blocking ATM signal and non-homologous
terminal connection to (NHEJ) and promoting telomere
replication (van Steensel et al., 1998; Denchi and de Lange,
2007; Ye et al., 2010). Early research confirmed that plaque
VSMCs senescence associated with the loss of TRF2 that
plays a critical role in process of atherosclerosis (Wang et al.,
2015). Interestingly, recent study reveals a novel molecular
mechanism that SIRT6 specifically interacts with TRF2 and
promotes TRF2 degradation in response to DNA damage
(Rizzo et al., 2017).

Taken together, we reviewed the implication of SIRT6 in
maintaining the telomere stability. However, recent studies
uncover a telomere-dependent control of sirtuins expression
and raise the possibility of a feed forward loop whereby
damaged telomeres decrease sirtuins expression, which could
further impair telomere integrity, leading to a progressive
deterioration (Amano et al., 2019). Telomere dysfunction and
sirtuins repression, independently, are highly associated with
susceptibility to CVDs, accelerated aging, and lifespan reduction,
and these two pathways are closely intertwined and cooperate
to drive disease.

SIRT6 AND AGING RELATED
CARDIOVASCULAR DISEASES

Mounting evidence indicates that activation of SIRT6 can have
beneficial effects in CVDs, including atherosclerosis (Zhang Z.
et al., 2016; Wang et al., 2020; Grootaert et al., 2021), cardiac
hypertrophy (Sundaresan et al., 2012; Lu et al., 2016; Zhang X.
et al., 2016), hypertension (Guo et al., 2019), and heart failure (Li
et al., 2017; Table 1).

It has been established as a significant factor and regulates
essential molecular pathways in multiple pathological conditions.
In addition, cardiocytes with SIRT6 specific knockout show
accumulation of lactate, indicating compromised mitochondrial
oxidation. The mechanism involves the activation of FOXO1-
mediated transcription of PDK4 to modulate cardiac glucose
metabolism (Khan D. et al., 2018). Furthermore, it is important
for pancreatic beta cells to improve insulin secretion through
the activation of SIRT6. Therefore, pharmacological activation
of SIRT6 may be useful to enhance insulin secretion and
it has potential for the development of effective drugs to
treat diabetic cardiomyopathy (Xiong et al., 2016). When
subjected to prolonged hypoxia, cardiomyocytes from transgenic
mice with overexpression of SIRT6 showed the improved
survival owing to the block of necrosis/apoptosis pathways
(Maksin-Matveev et al., 2015).

SIRT6 and Atherosclerosis
Atherosclerosis is the primary trigger of vascular diseases
across the globe with ischemic heart disease being one of
its major complications (Herrington et al., 2016). Several
studies have shown that endothelial cell dysfunction, abnormal
lipid metabolism, and other factors are implicated in the
occurrence of atherosclerosis (Gimbrone and García-Cardeña,
2016; Musunuru and Kathiresan, 2016). Vascular smooth muscle
cells (VSMCs) comprise a major cellular component of the
atherosclerotic plaque. VSMCs in human atherosclerotic plaques
are characterized by apoptosis, DNA damage, inflammation
and an altered energy metabolism (Grootaert et al., 2018).
Furthermore, VSMCs from human atherosclerotic plaques
undergo senescence and it promotes atherosclerosis and plaque
instability (Wang et al., 2015), while removal of senescent cells
can reduce atherosclerosis (Childs et al., 2016). Recent study has
demonstrated that SIRT6 protein (but not mRNA) expression is
declined in VSMCs in human and mouse atherosclerotic plaques
(Grootaert et al., 2021). Besides, VSMC-specific overexpression of
SIRT6 restrains atherogenesis and decreases tissue markers of cell
senescence and inflammation, dependent upon its deacetylase
activity. This indicates that endogenous levels of SIRT6 is a
critical regulator of VSMC senescence and reveals a therapeutic
potential of SIRT6 in atherosclerosis.

SIRT6 and Endothelial Dysfunction
Early study has revealed that vascular endothelial maintains
vascular tension, inhibits atherosclerosis, and forms a barrier
to control the migration of various substances between blood
vessels and tissues (Galley and Webster, 2004). It is an important
locus of critical regulatory nodes to retain the homeostasis of the
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TABLE 1 | SIRT6 is directly involved in the regulation of cardiovascular diseases.

SIRT6-linked CVD Targets SIRT6-linked
cellular function

Species References

Atherosclerosis H3K9 Telomere
homeostasis

Human/mouse Grootaert et al., 2021

H3K9/H3K56 NKG2D ligands Zhang Z. et al., 2016

Autophagy Mouse Wang et al., 2020

Msr1 Mouse Arsiwala et al., 2020

Inflammation Diabetic patients Balestrieri et al., 2015

Cardiac fibrosis H3K9/H3K56 TGF-β Mouse Maity et al., 2020

AMPK-ACE2 Rats Zhang Z. Z. et al., 2017

NF-κB Rats Tian et al., 2015

Cardiac hypertrophy H3K9 c-JUNIGF-AKT Human/mouse Sundaresan et al., 2012

Autophagy Rats Lu et al., 2016

NF-κB PI3K/Akt Rats Shen et al., 2016

STAT3 Rats Zhang X. et al., 2016

NF-κB Rats Yu et al., 2013

NFATc4 Rats Li et al., 2018

Cardiac glucose metabolism FOXO1/PDK4 Mouse Khan D. et al., 2018

Cardioprotection against
apoptosis

TIP60-GATA4 Mouse Peng et al., 2020

Cardioprotection against
hypoxia

pAMPKα/NF-κB Mouse Maksin-Matveev et al., 2015

Heart failure Telomere
homeostasis

Mouse Li et al., 2017

Hypertension H3K9 Nkx3.2-GATA5 Mouse Guo et al., 2019

Coronary artery disease Two tagSNPs rs352493 and
rs3760908 within SIRT6 Gene

Chinese Han population Tang et al., 2016

Myocardial infarction Two tagSNPs rs3760905 and
rs4359565 within SIRT6 Gene

– MI patients Wang et al., 2016

cardiovascular system. Endothelial cell dysfunction encompasses
a constellation of various non-adaptive alterations in functional
phenotype, which have important implications for the regulation
of hemostasis and thrombosis, local vascular tone and redox
balance, and the orchestration of acute and chronic inflammatory
reactions within the arterial wall (Gimbrone and García-Cardeña,
2016). Therefore, it is significant to point out that endothelial
cell dysfunction is involved in many disease processes, including
atherosclerosis, pulmonary arterial hypertension and sepsis
(Gimbrone and García-Cardeña, 2016; Joffre et al., 2020; Evans
et al., 2021). Here we focus on the involvement of SIRT6 in
atherosclerosis and endothelial cell dysfunction.

In the process of atherosclerosis, there exist several factors of
endothelial cell dysfunction, including endothelial vasodilation
damage, endothelial cell injury and repair disorder, abnormal
expression of endothelial adhesion molecules as well as cytokines.
Endothelial cell dysfunction manifested in lesion-prone areas of
the arterial vasculature results in the earliest detectable changes
in the life history of an atherosclerotic lesion (Stary, 2000;
Virmani et al., 2000).

SIRT6 is expressed in endothelial-rich tissues including the
aorta, lung, and brain. In SIRT6 gene knockout mice and
endothelium-specific knockout mice, endothelium-dependent
vasodilation of aorta to acetylcholine (Ach) was significantly
impaired (Xu et al., 2017). To prevent atherosclerosis, maintain

the health of endothelial cells, and slow down the aging process
of endothelial cells, it is significantly vital to repair damaged
endothelial cells (Lappas, 2012). SIRT6 protects endothelial
cells from telomere and DNA damage, prevents premature
senility, and maintains the ability of cell replication and
angiogenesis in vitro, all of which are known to inhibit
the development of endothelial dysfunction (Cardus et al.,
2013). Endothelial cell adhesion molecules, including vascular
cell adhesion molecule (VCAM-1), play an important role in
atherosclerosis by promoting the adhesion of monocytes to
inflammatory endothelium (Libby et al., 2009, 2011). The role of
SIRT6 in monocyte adhesion to endothelial cells was evaluated by
transfecting SIRT6 into human umbilical vein endothelial cells
or interfering with its expression. It has been shown that SIRT6
inhibited monocyte adhesion by lowering the expression of
VCAM-1 in endothelial cells induced by TNF-α (Xu et al., 2017).

Also, the abnormal expression of endothelial inflammatory
factors regulated by SIRT6 is implicated in the formation of
atherosclerosis. Damaged vascular cells (endothelium and
smooth muscle) are active in secreting cytokines including IL-1,
monocyte chemoattractant protein-1 (MCP-1) and granulocyte-
monocyte stimulating factor (GM-CSF). These cytokines
produce local intercellular autocrine and paracrine signal rings
in the vascular wall to promote the progression of atherosclerosis
(Pober and Sessa, 2007; Gimbrone and García-Cardeña, 2016).
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In the progression of atherogenesis, NF-κB signal tends to play
a central role in the pro-inflammatory activation of endothelial
cells by regulating the expression of many downstream
molecules such as VCAM-1 and MCP-1 (Collins and Cybulsky,
2001). Noteworthy, SIRT6 interacts with NF-κB RELA subunits
and deacetylates H3K9 on the promoter of NF-κB target gene
to attenuate NF-κB signal (Kawahara et al., 2009). Furthermore,
recent studies found that the activation of NF-κB might
trigger fundamental changes in the chromatin structure of
endothelial cells via the formation of super-enhancer complexes,
hence, regulating the epigenetic level of the phenotype of pro-
inflammatory endothelial cells in the process of atherosclerosis
(Brown et al., 2014).

Recent reports argued that the epigenetic regulation of
NKG2D ligands is also involved in atherosclerosis of SIRT6
heterozygous mice. The down-regulation of SIRT6 up-regulates
the expression of NKG2D ligand and causes an increased
expression of inflammatory cytokines, which could be nearly
completely blocked by NKG2D ligand inhibition (Zhang Z.
et al., 2016). Notably, Tumor necrosis factor superfamily member
4 (TNFSF4) is a gene affecting atherosclerosis susceptibility
and encodes OX40 ligand. SIRT6 inhibits atherosclerosis by
deacetylating H3K9 on the promoter of the TNFSF4 gene (Wang
et al., 2005). Studies have found trace cholesterol crystals (CCs) in
atherosclerotic plaques, which represent one of the mechanisms
causing endothelial dysfunction. In HUVECs, SIRT6 significantly
promotes eNOS activity and down-regulates the expression
of intercellular adhesion molecules (ICAM-1) and VCAM1
by activating Nrf2, thereby alleviating endothelial dysfunction
induced by CCs (Jin et al., 2020). In SIRT6 knockout mice,
atherosclerotic plaque was enlarged, plaque vulnerability was
enhanced, and the expression of ICAM-1 in aortic endothelial
cells was significantly up-regulated, implying that SIRT6 is
the primary negative regulator of endothelial dysfunction and
atherosclerotic development (Liu et al., 2016).

SIRT6 and Lipid Metabolism
Sources of evidence from clinical studies suggest that low-
density lipoprotein-cholesterol causes atherosclerosis-related
CVDs (Ference et al., 2017). As such, regulating homeostasis
of LDL- cholesterol is significantly critical to body health.
Further, additional evidence asserts that proprotein converting
enzyme subtilin/Kexin 9 (PCSK9) binds to liver low-density
lipoprotein receptor (LDLR) and promotes its degradation
in lysosomes, causing a decrease in LDL uptake and an
increase in LDL cholesterol concentration (Bergeron et al.,
2015). Besides, overexpression of the SIRT6 gene could reduce
the level of LDL- cholesterol in hepatocytes of mice fed
with a high-fat diet. It has been confirmed that SIRT6
could be recruited by FOXO3 to the promoter region of the
PCSK9 gene and inhibit its expression through deacetylation
of H3K9 and H3K56, thereby reducing the level of LDL-
cholesterol. SIRT6 deficiency can lead to an upregulated
expression of the PCSK9 gene and an increase of LDL-
cholesterol (Tao et al., 2013a). Also, sterol regulatory element-
binding protein (SREBP)-2, which controls the expression of
cholesterol biosynthesis rate-limiting enzyme HMG-CoA, is a

vital regulator of cholesterol biosynthesis. At the mechanism
level, SIRT6 was also recruited to the (SREBP)-2 gene
promoter by FOXO3 to inhibit its expression and reduce
cholesterol biosynthesis via deacetylation of H3K9 and H3K56
(Tao et al., 2013b).

Additionally, the formation of macrophage foam cells is a
typical pathological change of early atherosclerotic (AS), which
is primarily due to the imbalance between cholesterol inflow and
efflux in mononuclear macrophages and the accumulation of
cholesterol ester (CE) in cytoplasmic lipid droplets (LDs) (Moore
and Tabas, 2011). Moreover, oxidized low-density lipoprotein
cholesterol (ox-LDL), which binds to scavenger receptor (Sr)
and accumulates in the cytoplasm has been reported to play a
pathogenic role in the occurrence and development of AS (Mitra
et al., 2011). Under the condition of ox-LDL, SIRT6 inhibits the
expression of miR-33 (an mRNA that negatively regulates ABCA1
and ABCG1), promotes autophagy and cholesterol efflux, and
reduces the formation of macrophage foam cells, thereby delaying
the progress of AS. SIRT6 gene knockout promotes the formation
of macrophage foam cells, hence promoting the formation of
atherosclerosis (He J. et al., 2017). Generally, these findings
suggest that SIRT6 plays a vital role in low-density lipoprotein
cholesterol metabolism, potentially counteracting the formation
of atherosclerosis.

SIRT6, Myocardial Hypertrophy, and
Heart Failure
After birth, cardiomyocytes withdraw from the cell cycle
and become terminally differentiated cells. In adult hearts,
compensatory cardiac hypertrophy develops into cardiac
hypertrophy by increasing the size of individual cardiomyocytes
rather than the number of cardiomyocytes to cope with increased
workload. This compensatory mechanism is accompanied by
an increase in the size of cardiomyocytes, and the imbalance
of fetal genetic programming as well as an increase of protein
synthesis (Rohini et al., 2010). Hypertrophy is initially an
adaptive response to physiological and pathological stimuli,
however, pathological hypertrophy usually progresses to heart
failure under the regulation of different cellular signaling
pathways (Nakamura and Sadoshima, 2018). The incidence of
cardiac hypertrophy sharply increases with age, implying that
aging-related mechanisms might play a key role in the molecular
regulation of myocardial hypertrophy (Lakatta and Levy, 2003).
Reports have confirmed that SIRT6 plays a negative regulatory
role in cardiac hypertrophy. SIRT6 knockout mice have cardiac
hypertrophy and heart failure, while SIRT6 transgenic mice
are not influenced by hypertrophy (Sundaresan et al., 2012).
In addition to myocardial hypertrophy, studies have shown
that the progression of heart failure is also related to extensive
fibrosis, abnormal activation of insulin-like growth factor (IGF)-
Akt signal, cardiac hyperstress mediated by β-adrenoceptor,
and damage of autophagy (Tian et al., 2015; Lu et al., 2016;
Zhang W. et al., 2016).

In the model of hypertrophic cardiomyocytes induced by
angiotensin II and coarctation of the abdominal aorta, SIRT6
inhibits the transcriptional activity of NF-κB by deacetylating
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H3K9, thereby inhibiting cardiac hypertrophy (Yu et al., 2013).
In addition, in cardiac fibroblasts stimulated by angiotensin II
and rat myocardium treated with coarctation of the abdominal
aorta, it was further confirmed that SIRT6 inhibited the
transcriptional activity of NF-κB via deacetylation of H3K9, and
inhibited cardiac fibroblasts differentiation into myofibroblasts,
thus inhibiting cardiac fibrosis. In SIRT6 knockout cardiac
fibroblasts, extracellular matrix deposition and α-SMA increase
promote the transformation into myofibroblasts and trigger
extensive cardiac fibrosis (Tian et al., 2015).

Additionally, the level of intracellular NAD plays a crucial
role in cardiomyocyte hypertrophy. The expression of Nmnat2
(central enzyme of NAD biosynthesis) is down-regulated in
hypertrophic cardiomyocytes induced by angiotensin II and
constriction of abdominal aorta. Overexpression of Nmnat2
promotes the activation of SIRT6 and blocks angiotensin II-
induced cardiac hypertrophy (Cai et al., 2012). Increasing
evidence reveals that overactivation of PARP-1 plays a key role
in the pathogenesis of cardiac hypertrophy and heart failure.
Nonetheless, excessive activation of PARP-1 depletes its substrate
NAD and causes cell death. Being a new PARP-1 inhibitor,
AG-690/11026014 protects cardiomyocytes from angiotensin II-
induced hypertrophy by restoring the NAD level and SIRT6
activity (Liu et al., 2014). The abnormal activation of insulin-
like growth factor (IGF)-Akt signal is closely linked to the
occurrence and development of numerous diseases including
heart failure. Studies on the hearts of mice confirmed that
SIRT6 inhibits the activation of the IGF-Akt signal by inhibiting
c-Jun transcriptional activity and deacetylation in H3K9, thereby
blocking cardiac hypertrophy. Nonetheless, SIRT6 knocked-
out mice promotes the over-activation of multiple IGF signal-
related genes, leading to cardiac hypertrophy and heart failure
(Sundaresan et al., 2012).

Elsewhere, studies found that the activation of signal
transducer and activator of transcription 3 (STAT3) is critical
in β-adrenergic receptor-mediated pathological remodeling and
heart failure. In phenylephrine (PE)-induced hypertrophic
cardiomyocyte model and isoproterenol (ISO) induced
hypertrophic rat model, the mRNA and protein expression
of STAT3 and phosphorylation level (P-STAT3) was significantly
upregulated, while the hypertrophic biomarkers including ANF
and BNP increased. In contrast, the deacetylase activity of SIRT6
decreased, while the effect of PE-induced hypertrophy could be
eliminated by overexpression of the SIRT6 gene. Similarly, the
up-regulation of ANP and BNP caused by SIRT6 gene knockout
can be reversed by silencing of STAT3. Besides, SIRT6 has
been suggested to protect cardiomyocytes from hypertrophy by
preventing PE-induced STAT3 activation (Zhang X. et al., 2016).

In the heart, autophagy promotes survival primarily by
clearing misfolded protein aggregates and damaged organelles
accumulated in cardiomyocytes during cellular stress and
nutritional deprivation. While long-term up-regulation of
autophagy triggers self-destruction and leads to heart failure
(De Meyer and Martinet, 2009). After treatment of primary
neonatal rat cardiomyocytes with ISO, apparent hypertrophy
and autophagy damage were observed. Also, it was confirmed
that SIRT6 could protect cardiomyocytes from hypertrophy

by inhibiting the Akt signal, thus, promoting the activation
of FOXO3 transcription factor, and enhancing autophagy
(Lu et al., 2016).

In addition, compensatory hypertrophy of cardiomyocytes is
related to the increase of protein synthesis. One of the master
regulators of protein synthesis inside the cell is the nutrient and
energy sensor kinase mechanistic target of rapamycin (mTOR)
(Laplante and Sabatini, 2009; Saxton and Sabatini, 2017). It has
been found that SIRT6 acts as a key regulator of cellular protein
synthesis by transcriptionally regulating the mTOR signaling in
partnership with the transcription factor Sp1, and the whole
process independent of its deacetylase activity (Ravi et al.,
2019). Besides, in the hypertrophic heart induced by ISO, the
expression of SIRT6 was down-regulated, while the inhibition
of mTOR restored cardiac function in muscle-specific SIRT6
knockout mice, which spontaneously developed into cardiac
hypertrophy (Saxton and Sabatini, 2017; Ravi et al., 2019). Taken
together these data establish a critical connection between SIRT6,
mTOR signaling, protein synthesis and cardiac hypertrophy.
It will contribute toward understanding and treating diverse
pathologies associated with aging.

CLINICAL APPLICATION PROSPECT IN
AGING AND CVDs

Given the advantaged effects of SIRT6 in regulating cell
senescence and CVDs, targeted activation of SIRT6 and its
downstream mechanism signals will be a potential way of
delaying aging and treating CVDs. Here, we mainly discuss the
activators of SIRT6 in the existing or potential clinical application
in aging and CVDs.

Caloric restriction (CR), the significant decrease in calorie
intake, is a strategy for improving health and increasing lifespan
(Madeo et al., 2019). It has been shown to improve heart function,
suppress markers of inflammation and reduce the risk of CVDs
and diabetes in humans (Caristia et al., 2020; Kirkham et al.,
2020). The beneficial effects of CR occur through an extreme
wide range of molecular mechanisms, largely overlapping with
epigenetic factors like sirtuins (Gensous et al., 2019) and
the promotion of autophagy process (Abdellatif et al., 2018).
However, CR has been shown to increase risk of diminishing
muscle strength, aerobic capacity, and bone mineral density
(Mattison et al., 2012). Therefore, proper exercise in addition to
a CR diet is crucial. Resent study found that calorie restriction
and physical exercise effectively regulate the activity of sirtuins.
For instance, exercise training can effectively regulate the activity
of SIRT6 in the skeletal muscle of aged rats and delay the
aging process (Koltai et al., 2010). Moreover, caloric restriction
significantly improved the renal insufficiency of aged rats,
enhanced the expression of SIRT6 and inhibited the transduction
of NF-κB signal (Koltai et al., 2010; Zhang N. et al., 2016). These
findings suggested that CR was a beneficial life habit that can
delay the aging process by regulating SIRT6, which is worthy of
the attention of patients with aging-related diseases.

So far, the compounds that can specifically regulate the
activity of SIRT6 in CVDs are still limited. The Chinese herbal
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medicine, icariin, widely used in eastern countries to treat specific
age-related diseases, including CVDs and the improvement of
neurological function, has been proved to be an activator of
SIRT6. In an in vitro cell model, it was discovered that 10−16–
10−8mol/L icariin could effectively activate the expression of
SIRT6 protein and delay cell senescence by inhibiting NF-
κB signal transduction (inhibiting the expression of TNF-α,
ICAM-1, IL-2, and IL-6). In the future, we need to supplement
the clinical research of icariin in the treatment of CVDs
(Chen et al., 2015).

As a water-soluble natural amino acid, ergothioneine (Egt)
exists widely in animals and plants. It accumulates a high
concentration in some tissues via food chain intake (Halliwell
et al., 2018). Several lines of evidence show that it has the effect
of anti-oxidation and anti-cell aging, including the protective
effect on CVDs and chronic inflammatory injury (D’Onofrio
et al., 2016; Servillo et al., 2017). Moreover, it has been found
that Egt inhibits the aging process by activating the expression
of SIRT1 and SIRT6 protein in endothelial cells, thus reducing
the production of ROS and suppressing the downstream NF-
κB pathway (Tang et al., 2015). Nonetheless, so far, while
acknowledging the absence of toxicity in the range of millimoles
of intracellular concentration, the number of clinical studies to
evaluate the efficacy and safety of dietary supplementation of
Egt is still limited. As such, enriching additional studies on the
treatment of CVDs with large samples of Egt is critical.

Other activators of SIRT6 have the biological function of anti-
cancer, while the potential effect of these activators in CVDs
needs further studies. UBCS039 directly binds to SIRT6 at the
hydrophobic pocket and induces H3K9 and H3K56 deacetylation
in breast cancer and colorectal cancer cells (Iachettini et al.,
2018). Quinoline-4-carboxamides is an excellent selective SIRT6
activator with the function of antiviability and antiproliferation
activities in pancreatic ductal adenocarcinoma (PDAC) cells
through decreased acetylation leved of H3K9, H3K18, and
H3K56 (Chen et al., 2020). Moreover, recent studies have
identified allosteric SIRT6 activators, MDL-800, MDL-801, and
MDL-811, which bound to the surface allosteric site of SIRT6 and
activate SIRT6 deacetylation by promoting the binding affinity
of acetylated substrates to cofactor. They also exert a tumor
suppressor effect by reducing the acetylation level of H3K9
and H3K56, thus leading to cell cycle arrest in hepatocellular
carcinoma, colorectal cancer and non-small cell lung cancer
(Huang et al., 2018). We predict that MDL-800 could reduce the
Ischemia reperfusion injury in cardiomyocytes, direct evidence

of the function of MDL-800 in heart has yet to be reported.
Given the importance of deacetylation of histones in CVDs
more in-depth studies on these SIRT6 activators in CVDs are
essential in the future.

In conclusion, existing studies have shown that SIRT6
is an endogenous regulatory molecule for the inhibition of
cell senescence and the prevention and treatment of CVDs.
Specifically, SIRT6 performs its different cellular functions via
acetyl and long-chain fatty acyl deacetylation as well as ADP-
ribosylation, maintains genomic stability by regulating DNA
repair and telomere homeostasis. Moreover, it inhibits cell aging
by regulating oxidative stress and inflammatory autophagy, plays
a profound role in CVDs by regulating triglyceride synthesis
and (LDL) cholesterol homeostasis. Therefore, the regulation
of SIRT6 activity might influence various human diseases and
prolong life. Nonetheless, the molecular mechanism of regulating
the activity and function of SIRT6 in the process of anti-
aging as well as prevention and treatment of CVDs warrants
deeper understanding. With a better understanding of biology,
novel clinical treatments can also be designed to activate SIRT6.
Additional biological targets are likely to be discovered in the
future, laying a basis for understanding the importance of SIRT6
in human aging and CVDs.
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