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Abstract: Porous materials are widely used in many heat transfer applications. Modeling porous
materials at the microscopic level can accurately incorporate the detailed structure and substance
parameters and thus provides valuable information for the complex heat transfer processes in
such media. In this study, we use the generalized periodic boundary condition for pore-scale
simulations of thermal flows in porous materials. A two-dimensional porous model consisting
of circular solid domains is considered, and comprehensive simulations are performed to study
the influences on macroscopic thermal conductivity from several microscopic system parameters,
including the porosity, Reynolds number, and periodic unit aspect ratio and the thermal conductance
at the solid–fluid interface. Our results show that, even at the same porosity and Reynolds number,
the aspect ratio of the periodic unit and the interfacial thermal conductance can significantly affect
the macroscopic thermal behaviors of porous materials. Qualitative analysis is also provided to
relate the apparent thermal conductivity to the complex flow and temperature distributions in the
microscopic porous structure. The method, findings and discussions presented in this paper could
be useful for fundamental studies, material development, and engineering applications of porous
thermal flow systems.

Keywords: heat transfer; porous media; pore-scale modeling; boundary condition; thermal conduc-
tivity; porosity; conjugate interface; aspect ratio

1. Introduction

Fluid flows and the associated heat transfer in porous materials have attracted great
interest over the decades for their scientific and practical importance. With the large
contact area between the solid matrix and the coolant fluid, heat transfer performance
is significantly enhanced in such porous materials. Relevant applications can be found
in various industrial areas, including catalytic beds for chemical reactions, water treat-
ment, nanofluids, heat exchangers, heat sinks and thermal energy storage systems [1–8].
Extensive experimental and theoretical investigations have been conducted to study the

heat transfer performance in porous materials [9–11]. In addition to the high cost and long
time duration, experimental studies are not able to reveal the flow and temperature distri-
butions in the complex microscopic porous geometry, while such information is crucial for
understanding the mechanism and relationships among various factors involved. On the
other hand, theoretical analysis is limited to simple geometry structures and idealized flow
situations, and such conditions can hardly be satisfied in realistic systems. Fortunately,
with the advances in computer and software technologies, numerical simulations have
been proved to be useful for various complex systems, including flows and heat transfer in
porous media [12–16]. In the literature, there exist two typical approaches for modeling the
flow and heat transfer in porous media: the continuum and the pore-scale approaches. The
first method treats the porous materials as continuum media and solves the macroscopic
flow and energy equations with apparent parameters [17,18]. Despite the model’s simplic-
ity and computational efficiency, this approach relies on the accuracy of those apparent
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parameters and also cannot incorporate the specific microscopic structure and material
thermophysical properties in the porous media. On the other hand, the pore-scale method
solves the flow and energy equations with the microscopic structure and properties of the
matrix material considered explicitly [19,20]. Pore-scale simulations can provide detailed
flow and thermal fields at the microscopic level, and apparent properties can be obtained
from these microscopic distributions for macroscopic analysis [21–23]. In recent years,
the lattice Boltzmann method (LBM) has become especially popular in such simulations,
mainly for its convenience in dealing with complex boundary geometry [22–25].

With the microscopic porous structure modeled explicitly, the physical scale of pore-
scale simulations is limited to small sizes due to the large computation demand. For
this reason, pore-scale simulations typically work with a small unit and assume that
such identical units are repeated in space. To solve the flow and energy equations in a
periodic unit, appropriate boundary conditions are necessary on the side surfaces of this
computational unit. Such side surfaces are simply for computational convenience and they
are not physical surfaces or boundaries; therefore, definite conditions on such surfaces
are not available. To create a thermal gradient, previous studies are usually assigned
constant temperatures on two opposite unit surfaces and assumed adiabatic (no heat
flux) conditions on other side walls [24–27]. This treatment has been examined recently
and significant concerns have been raised in terms of its validity and accuracy [28]. Few
studies treated the unit surface conditions more reasonably by considering the periodic
relations of temperature, however, the temperature or heat flux on the fluid-solid interface
was fixed at constant values [29–31]. Clearly this is physically not true: the thermal
condition (temperature and heat flux) at the microscopic fluid-solid interface is determined
by the particular local flow and thermal situations and it cannot be specified in advance.
The interfacial thermal resistance may also exist at the fluid-solid interface in porous
materials [32] or the constituent interface in composite materials [33], and this feature has
typically been neglected in previous studies. Furthermore, previous studies usually only
considered situations with the flow along the temperature gradient direction [22,25,30],
whereas in many experimental setups and industrial applications the temperature gradient
is mainly in the orthogonal plane to the fluid flow [34–36].

In this paper, we study the convective heat transfer in porous materials using the
recent generalized periodic boundary method for thermal flows by Jbeili and Zhang [28].
This boundary method was established with rigorous mathematical justifications and
validated by carefully designed numerical tests. Using this method, extensive simulations
are conducted based on a two-dimensional (2D) porous model of circular solid particles.
Unlike previous studies usually focusing on the porosity and Reynolds number effects,
we also investigate the influences of the unit aspect ratio and the interface conductance
on the macroscopic thermal performances of porous flows. Our results show that, even
with the same porosity and Reynolds number, the unit aspect ratio can greatly affect the
apparent thermal conductivity at the microscopic level. It is also interesting to observe that
a weaker interfacial conductance can reduce the tortuosity conductivity but increase the
dispersion conductivity, and that the dispersion conductivity can respond to the porosity
change in a non-monotonic fashion. In addition, qualitative discussions are provided to
relate the macroscopic conductivity coefficients to the microscopic flow and thermal fields
for a better understanding of the complex nature of porous thermal flows.

2. Governing Equations and Boundary Conditions for Periodic Unit

For simplicity and clarity, in this study we consider the 2D porous model with circular
solid domains as shown in Figure 1a. The fluid flows vertically from the bottom to the
top, while the thermal gradient is imposed in the horizontal direction. The governing
equations for this thermal flow system include the continuity equation, Equation (1), and
the Navier–Stokes equation Equation (2) for the fluid domain Ω0:

∇ · u = 0, (1)
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ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u + f; (2)

and the energy equation

∂Tf

∂t
+ u · ∇Tf = α f∇2Tf , in Ω0,

∂Ts

∂t
= αs∇2Ts, in Ω1, (3)

for the fluid (Ω0) and solid (Ω1) domains, respectively [37]. In these equations, ρ represents
the fluid density, u is the fluid velocity, p is the pressure, µ is the dynamic viscosity of fluid,
f is the body force on the fluid, T is the temperature, and α is the thermal diffusivity. The
subscripts f and s for T and α denote the fluid and solid domains respectively. On the
fluid-solid interface Γ, the no-slip boundary condition is applied for the fluid flow

u = 0, on Γ, (4)

to incorporate the possible thermal resistance and therefore the temperature discontinuity at
the solid–fluid interface Γ, a general conjugate condition for temperature is given as [38–40]:

q = C
(

Tf − Ts

)
= Ks

∂Ts

∂n
= K f

∂Tf

∂n
, on Γ. (5)

Here, q is the heat flux along the local normal direction n, which points from Domain
Ω1 toward Domain Ω0 (Figure 1). C is the interface conductance, and K f and Ks are the
thermal conductivities of the fluid and solid substances, respectively.
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Figure 1. Schematic representations of the 2D porous model used in this study (a) and one periodic
unit considered in pore-scale simulations (the dashed box in (a), and with more details in (b). The
key parameters involved in the model description are also labeled, and more details can be found in
the text.

In the pore-scale approach, only one periodic unit of the porous material is considered
in the simulation (Figure 1). To solve the governing equations in this periodic unit, appro-
priate boundary conditions are required for the side boundaries of the periodic unit. These
side boundaries are virtual but not real surfaces, and thus physical constraints on such
boundaries are not directly available. For flows in such periodic structures with negligible
fluid property changes, it has been well recognized that the flow field would be identical
in each periodic unit [21,41–43]:

u(x + ml, y + nh) = u(x, y), (6)
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where l and h are the unit length and height (Figure 1), and m and n are arbitrary integers.
Based on previous practices in periodic thermal flow simulations [28,41–45], the following
relationship is proposed for the temperature field among periodic units in Figure 1a:

T(x + ml, y + nh) = T(x, y) + mlT′g. (7)

Here, T′g is the global thermal gradient in the horizontal direction, and it can be obtained
from the temperature difference TH − TL and the distance L between the locations where
these two temperatures TL and TH are imposed (see Figure 1a) as T′g = (TH − TL)/L.

Assume u(x, y) and T(x, y) are the correct flow and temperature solutions in one
periodic unit (0 ≤ x ≤ l and 0 ≤ y ≤ h), it can be readily shown that the velocity from
Equation (6) and temperature from Equation (7) satisfy all the governing equations and
boundary conditions given in Equations (1)–(5), and thus they are the correct solutions for
the unit of ml ≤ x ≤ (m + 1)l and nh ≤ y ≤ (n + 1)h. Therefore, in pore-scale simulations,
one can simulate the flow and thermal fields in one periodic unit as shown in Figure 1b,
and the solutions can be extended to other units according to Equations (6) and (7). These
relations can then be used to establish correct boundary conditions for the side surfaces
of the periodic unit. For example, the right boundary x = l for the unit shown in
Figure 1b actually is also the left boundary of the next unit on its right. According to
Equations (6) and (7) with m = 1 and n = 0, we have the left-right boundary relations for
the periodic unit as:

u(l, y) = u(0, y), T(l, y) = T(0, y) + lT′g. (8)

Similarly, the top-bottom boundary relations for flow and temperature are expressed as:

u(x, h) = u(x, 0), T(x, h) = T(x, 0). (9)

These relations are similar to those used by Kuwahara et al. [21]; however, no mathe-
matical justifications and numerical validations were provided there. In addition to these
boundary relations, due to the linearity and homogeneity of the governing equations and
boundary conditions, extra anchoring conditions are necessary to ensure the numerical
convergence [39,41,42]. For our current system in Figure 1a, the following conditions are
adopted in our next simulations:

1
l

∫ l

0
u(x, 0)dx = U0,

1
h

∫ h

0
T(0, y)dy = T0; (10)

where U0 is the mean velocity through the porous medium and T0 is the mean temperature
at the left unit boundary. The mean velocity U0 is related to the Reynolds number Re of the
system (to be defined later), while the mean temperature T0 can be set at an arbitrary value
and it has no impact on the result analysis and interpretation.

3. Numerical Validation of the Periodic Relations among Units

To further verify the flow and temperature relations among units given in
Equations (6) and (7), we conduct a direct numerical simulation for the system in Figure 1a.
This simulation is also helpful to illustrate our concerns with the periodic unit bound-
ary treatments used in previous studies. The diameter of the solid domains is D = 50
and they are arranged as a square array with l = h = 2D. The porosity of this model
medium is thus ε = π/16. The rectangular simulation domain has a length of L = 20D
in the horizontal direction and a hight of H = 10D in the vertical direction, and thus the
simulation domain consists 10× 5 = 50 identical periodic units as shown in Figure 1b.
Constant temperatures are imposed on the left and right boundaries: TL = 0 at x = 0
and TH = 1 at x = L, resulting a global thermal gradient of T′g = (TH − TL)/L = 10−3.
The classical periodic condition is imposed on the top and bottom boundaries for both
flow velocity and temperature, and on the left and right boundaries for the fluid flow:
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u(0, y) = u(L, y), u(x, 0) = u(x, H), and T(x, 0) = T(x, H). Please note that the temper-
ature relation Equation (7) is not involved in this validation simulation. A body force f
in the upward direction is utilized to generate the flow, and its magnitude is adjusted to
obtain the Reynolds number Re = ρU0

√
lh/µ = 50. Here we use the geometric mean

value of the periodic unit length l and height h for the Reynolds number Re, and this
choice is made for our convenience in examining the effect of the aspect ratio β = h/l in
Section 4.1. The Prandtl number of the fluid is 0.7. The thermal conductivities are set as
K f = 0.2 for fluid and Ks = 10K f = 2 for solid. A relatively large interface conductance
value C = 10 is adopted to minimize the temperature discontinuity across the interface.
The lattice Boltzmann method (LBM) with the D2Q9 (2D and with nine lattice velocities)
lattice structure is used to solve the flow and thermal fields [44,46–48] for all calculations
in this paper, and the counter-extrapolation method [49] is adopted for the conjugate
thermal condition on domain interfaces. As in general LBM studies [16,22,31,48–50], all
quantities provided above and in the later result presentation are non-dimensional based
on LBM simulation units (for example, length in the lattice grid resolution, and time in the
simulation time step).

The calculated flow and temperature fields from this direct simulation are displayed
in Figure 2. The flow pattern in Figure 2a appears identical in each periodic unit. For the
temperature in Figure 2b, it can be seen that the temperature increases in general along
the horizontal direction, agreeing with the global thermal gradient generated from the two
boundary temperatures TL = 0 at the left and TH = 1 at the right. In Figure 2b, neither
the temperature nor the heat flux are constant along the solid–fluid interface (edges of
the circular patches), meaning that the constant temperature or flux assumptions for the
interfaces in previous studies [22,30,31] are not valid. The wider gaps between isotherm
contours in the solid domain imply smaller temperature gradients there, and this is con-
sistent with the larger solid conductivity used in this simulation. With a relatively larger
conductance value for the solid–fluid interface, no apparent discontinuity in temperature
can be observed across the interfaces.

Figure 2. Flow (a) and temperature (b) distributions obtained from the direct simulation for the 2D
porous model system in Figure 1a.

The apparently linear increase in temperature and the similarity in local isotherm
contours in Figure 2b appear rational according to the temperature relation Equation (7).
Moreover, T ∼ y profiles at six horizontal locations are plotted in Figure 3, one in each panel
from the left and with the x positions labeled on top. These horizontal positions are selected
at the same relative locations to the nearby solid columns (0.4D to the left of the patch
centers). The flat segments on these curves occur in the solid domains, and they are due to
the vertical isotherm lines there. The strong variations in these profiles clearly show that
in general one should not assign constant temperatures on the periodic unit boundaries,
as done in [24–26]. According to Equation (7), these temperature profiles should have
the same variation features along the vertical direction, except different offset values.
This is apparently true by looking at these individual profiles. For a more quantitative
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confirmation, we then shift each profile by its mean temperature Tm, and the six shifted
profiles are plotted in the last panel on the right in Figure 3. These six shifted profiles
overlap with each other perfectly and we only see one single curve there. These identical
shifted profiles precisely confirm that the temperature values at same relative positions
in individual periodic units are only different in respective mean temperatures and the
variation fashion is identical. Furthermore, the mean temperature values calculated along
these six profiles are listed in Table 1. According to Equation (7), these mean temperatures
can be related to the mean value at x/D = 0.6 by

Tm(xi) = Tm(x = 0.6D) + (xi − 0.6D)T′g , (11)

with xi = 0.6D, 2.6D, 6.6D, 10.6D, 14.6D and 18.6D for the six profiles in Figure 3 (from left
to right). The predicted values from this equation are also provided in Table 1 for compar-
ison, and the excellent agreement convincingly confirms the validity of the temperature
relation Equation (7) for such porous thermal flows.

0.03 0.04 0.05

T
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10

y
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T
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Figure 3. Temperature profiles along the vertical direction at different horizontal positions (labeled
on top) from the direct simulation results in Figure 2b. The last panel on the right collects all the
temperature profiles in other panels, however shifted by their individual mean temperatures. These
six shifted profiles become identical and completely overlap each other, confirming the thermal
relation Equation (7) among periodic units along the horizontal direction.

Table 1. Comparison of the mean temperature values at different horizontal positions obtained from
the simulation and predicted by Equation (11).

x/D Calculated from Simulation Results Predicted from Equation (11)

0.6 0.03847 -
2.6 0.13857 0.13847
6.6 0.33872 0.33847

10.6 0.53881 0.53847
14.6 0.73878 0.73847
18.6 0.93860 0.93847

4. Simulation Results and Discussion

The enhanced heat transfer performance in porous flow systems, in principle, benefits
from the large solid–fluid contact area and the long, twisted flow path as the fluid passes
through the microscopic porous structure. At the macroscopic, practical level, the apparent
thermal conductivity is often used to quantify the overall thermal behaviors. The volume
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averaging analysis [21,51–53] can be applied to obtain the effective conductive tensor from
the microscopic flow and thermal fields. Kuwahara et al. [21] further decomposed this
conductivity tensor K into three parts

K = KeI + Ktor + Kdis, (12)

where Ke is the stagnant conductivity, which is simply the volume average of the fluid and
solid conductivities based on the porosity ε:

Ke = εK f + (1− ε)Ks. (13)

Please note that the expression for Ke in Equation (13) is simply the coefficient for the
isotropic part of the conductivity matrix K from the volume average analysis [21,51–53];
and that there are no assumptions involved on the microscopic porous structures. Ktor
and Kdis are called the tortuosity and dispersion conductivity tensors, respectively. When
the mean flow direction is along one of the coordinate directions, only diagonal elements
are nonzero; and obviously the primary concerns are the diagonal elements in the global
thermal gradient direction [21,53,54]. For the setup in Figure 1, we simply use Ktor and Kdis
to denote the xx components of tensors Ktor and Kdis; and they can be calculated from the
simulated flow and temperature distributions in one periodic unit by [21,53]

Ktor = −
Ks − K f

hlT′g

∫
Γ

nxTf dΓ, (14)

Kdis = −
ρcp f

hlT′g

∫
Ω0

(T − T̄)(u− ū f )xdΩ; (15)

where cp f is the fluid specific heat, and the volume average temperature T̄ and the intrinsic
average velocity ū f are given by:

T̄ =
1
lh

(∫
Ω0

Tf dΩ +
∫

Ω1

TsdΩ
)

, ū f =
1

εlh

∫
Ω0

udΩ. (16)

The subscript x denotes the x component of the corresponding vector.
In this section, we apply the boundary conditions in Section 2 to the periodic unit

shown in Figure 1b, and examine the effects on the effective macroscopic conductivity
coefficients Ktor and Kdis from several microscopic parameters, including the aspect ratio
β = h/l, the Reynolds number Re = ρ

√
hlU0/µ, the interfacial thermal conductance C, and

the porosity ε = 1− πD2/4hl. We keep the unit area lh = 90, 000 constant in our next sim-
ulations, so that the Reynolds number Re is directly proportional to the mean flow velocity
U0, and the porosity ε depends purely on the solid diameter D and not affected by the
aspect ratio β. The mean temperature at x = 0 is set as T0 = −0.05 and the global thermal
gradient is T′g = 0.1/l. Please note that, due to the linearity and homogeneity of the energy
equation Equation (3) and the associated thermal boundary conditions, the particular
values of T0 and T′g used in the simulations do not affect the calculated conductivities Ktor
and Kdis from Equations (14) and (15). To make this point clear, we consider a periodic unit
under two situations: Situation (a) with mean inlet temperature T0,a and thermal gradient
T′g,a; and Situation (b) with mean inlet temperature T0,b and thermal gradient T′g,b. If Ta(x, y)
is the solution in the periodic unit with Situation (a), the temperature field for Situation

(b) should be Tb(x, y) = T0,b +
T′g,b
T′g,a

[Ta(x, y)− T0,a]. Clearly, Tb(x, y) satisfies the energy

equation Equation (3) and all temperature conditions in Equations(5), (8), (9), (10), . Substi-
tuting this expression of Tb(x, y) in Equations (14) and (15) and considering

∫
Γ uxdΓ = 0

for periodic structures, one can find that the Ktor and Kdis values remain the same for
Situations (a) and (b). Other simulation parameters are kept the same as given in Section 3,
unless otherwise mentioned. As for the initial state, we start simulations with a linear
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transition from T0 at the inlet to T0 + T′gl at the outlet for the temperature, and zero velocity
for the flow. The results are taken when steady or quasi-steady states are established. The
computer code for this work has been developed based on our programs used in previous
publications [28,38,44,49,55,56], and all important elements involved in our simulations,
including the LBM algorithms for flow and heat transfer, the no-slip boundary and conju-
gate interface treatments, as well as the mesh resolution selection, have been validated and
confirmed in these previous studies.

4.1. Effects of the Aspect Ratio β and Reynolds Number Re

We start with simulations to study the effect of the aspect ratio β on the macroscopic
thermal conductivity, which has not been well addressed in previous investigations. Here
we set the porosity ε = 0.85, and accordingly the solid domain diameter is D = 131.11.
Following previous studies [29,57,58], two representative Reynolds number values, Re = 50
and 100, are considered in this section. Higher Reynolds numbers are possible for gas
flows through porous media [59,60]. Our simulations cover a range of 0.25∼4 for the aspect
ratio β; further increasing (>4) or decreasing (<0.25) of the β value will make the gap
between the solid surfaces too small for accuracy and stable computations. The flows
are always steady for all tested β values at Re = 50 and for β ≤ 1 at Re = 100; however,
the flow becomes unsteady for β > 1 and Re = 100. This transition is reasonable, since
for a larger β, the gap between the solid surfaces becomes narrower, and the fluid velocity
through this gap increases accordingly. This situation is similar to a flow jet coming out
from a small opening shooting into a relatively large space. Compared to the condition
with the same mean flow velocity (same Reynolds number) but a smaller aspect ratio β,
the reduction in flow passage width is less significant (a wider gap between solid surfaces)
and the fluid space after the gap is relatively limited. Figure 4 shows the streamlines and
temperature distributions for two representative aspect ratios, β = 0.44 and 1.44 at Re = 50
and 100. For steady flows in Figure 4a–c, we see smooth and symmetric streamlines and
isotherm contours. On the other hand, when the flow become unsteady in Figure 4d,
these lines are distorted and less organized. Both for the steady and unsteady cases,
thermal features discussed in Section 3 are noticed as well, including the relatively uniform
temperature distributions inside the solid domains (due to the high solid conductivity
Ks) and the smooth temperature transition across the solid–fluid interface (due to the
large interface conductance C). Moreover, we see significant temperature variations along
the unit boundaries for the unsteady system in Figure 4d. The variation fashions are
similar on opposite edges. More specific, the temperature variations along the top and
bottom boundaries appear identical, whereas the temperature is low on the left and high
on the right. All these observations are consistent with the thermal boundary conditions in
Equations (8) and (9).

For unsteady flow situations, the mean flow velocity U0 and Reynolds number Re
both vary with time, and it is difficult to achieve the time-averaged Reynolds number
exactly at 100. For such situations, we accept the simulation results when the Re variation
is limited in the range of 95 ∼ 105. The unsteady flow certainly affects the thermal field,
and accordingly, the tortuosity and dispersion conductivities Ktor and Kdis calculated from
Equations (14) and (15) also vary with time. Figure 5 displays the temporal oscillations
of Re, Ktor and Kdis for Re = 100 and β = 1.44. The oscillation periods for Ktor and Kdis
appear to be identical, as twice that for Re. In our next analysis, we use the average values
over a variation period for the tortuosity and dispersion conductivities Ktor and Kdis.

Figure 6 plots the apparent conductivities Ktor and Kdis changing with the aspect ratio β
and Reynolds number Re. Clearly, even under the same porosity ε = 0.85, the macroscopic
conductivities can be greatly affected by the aspect ratio β, and the influence can be enhanced
with a higher Reynolds number Re. The tortuosity conductivity Ktor decreases with β in
Figure 6a, which can be explained by looking at the Ktor definition Equation (14) and the
temperature distributions in Figure 4. Equation (14) can be interpreted as a weighted
sum of the fluid temperature over the solid–fluid interface Γ, with nx, the x-component



Micromachines 2021, 12, 1369 9 of 16

of the normal vector n, as the weighting factor. For the system considered here, the left
surface has nx > 0 and the right surface has nx < 0. On each semicircular surface,
the portion around the horizontal centerline (the surface is approximately aligned in the
vertical direction and thus it has a larger |nx| value) plays a more determinant role than
the portions near the unit edges (the surface is approximately aligned in the horizontal
and thus |nx| ≈ 0). Therefore, by comparing the temperatures on the parts around the
horizontal centerline of the two semicircular surfaces in Figure 4, we can have a qualitative
understanding of the Ktor dependence on β: For a large β, the two semicircular surfaces
are closer and the temperature difference on the closest portions becomes smaller, and this
smaller temperature difference results in a smaller tortuosity conductivity, as observed in
Figure 6a. The Reynolds number Re appears to be less influential on Ktor, except for the
highly unsteady case with β = 4. The weak influence of Re on Ktor is consistent with that
observed in Ref. [21].

Figure 4. Simulation results of the flow streamlines and temperature distributions for β = 0.44 (a,b)
and β = 1.44 (c,d) at Re = 50 (a,c) and 100 (b,d).

Unlike the tortuosity conductivity Ktor, the dispersion conductivity Kdis increases
by orders with β in Figure 6b. Similarly, we attempt to interpret this observation by
examining the Kdis definition Equation (15) and flow and thermal fields in Figure 4. Clearly,
Equation (15) represents the disorder level of the flow and thermal distributions in the
periodic unit, since the integrand is simply the product of the temperature fluctuation
T − T̄ and the flow fluctuation (u− ū f )x. Therefore, the more disordered the flow and
temperature distributions in the periodic unit, the larger Kdis value will be obtained. This
analysis is consistent with our general understanding of the thermal dispersion process and
it explains the increasing trend of Kdis with β and Re in Figure 6b as well. The similarity in
flow and thermal fields between Re = 50 and 100 for β ≤ 1 steady systems suggests that
Kdis does not change much with Re there; however, for β > 1, the Re = 100 systems become
unsteady and the flow and temperature distributions become significantly disordered,
resulting in an abrupt increase in Kdis. We also notice that only the x-component of the
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flow fluctuation is involved in Equation (15). For the steady flows at β ≤ 1, the nonzero x
fluid velocity is limited in the small circulation areas near the four unit corners, whereas for
large β values, the circulation region is large. The high Reynolds number Re = 100 is also
helpful in increasing the circulation size, and it can even make the x velocity component
nonzero over almost the entire fluid domain for the unsteady flows with β > 1. This is the
reason that we see the Kdis increase with β and Re by orders for β > 1 in Figure 6b.
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Figure 5. Variations of Re (a), Ktor (b) and Kdis (c) with time for the unsteady system with β = 1.44
and Re ≈ 100. The simulation time is normalized based on the mean velocity U0 and solid cylinder
diameter D.
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Figure 6. Plots of Ktor (a) and Kdis (b) changing with the aspect ratio β at two Reynolds numbers
Re = 50 (black squares) and 100 (blue circles).

4.2. Effect of the Interfacial Conductance C

Next we shift our attention to the influence of the interfacial thermal conductance C
on the apparent conductivities. Again this is an important topic [32,33], however, it has not
been investigated adequately. In this part, we fix the porosity ε = 0.85 and the Reynolds
number Re = 50 for simplicity, and test three interfacial conductance values C = 10
(virtually no thermal resistance at the solid–fluid interface as observed in Figures 2b and 4),
5× 10−4, and 5× 10−5. Figure 7 displays the flow and thermal distributions at these three
conductance values with two aspect ratios β = 0.44 and 1.44; and Figure 8 collects the
calculated Ktor and Kdis conductivities in our simulations. The analysis in the previous
section on the relationships between macroscopic conductivities and microscopic flow
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and thermal situations can still be applied here. Please note the change in interfacial
conductance C does not affect the flow field and thus we can focus on the temperature
response to different C values in Figure 7. As conductance C decreases, the solid domains
become more insulated, resulting in a nearly constant temperature in each solid patch (i.e.,
the same colors and no isotherm contours in solid domains). With the solid part being
insulated and thus its high-conductivity influence reduced, the fluid temperature around
the solid domains exhibits a faster change along the thermal gradient direction. For example,
the fluid temperatures near the solid surfaces at the narrowest gap location in Figure 7a
are −0.0471 (left) vs. 0.0473 (right) for C = 10, −0.0364 vs. 0.0366 for C = 5 × 10−4,
and −0.0251 vs. 0.0254 for C = 5× 10−5. As discussed in the previous section, the large
temperature difference at C = 10 introduces a larger tortuosity conductivity Ktor, and vise
versa, as shown in Figure 8a. On the other hand, the dispersion conductivity Kdis increases
as we reduce the interfacial conductance C, and the C influence becomes negligible for large
aspect ratios. This change should be attributed to the temperature change in circulation
areas; however, due to the complexity in flow structures and temperature changes with
C in Figure 7, we are not able to provide a direct qualitative explanation here. Overall,
the influence of the interface conductance C on the apparent conductivities is less dramatic
in Figure 8 than that from the unit aspect ratio β in Figure 6, but it cannot be neglected for
accurate analysis.

Figure 7. Simulation results of the flow streamlines (first column) and temperature distributions for
different interfacial conductances C = 10 (second column), 5× 10−4 (third column), and 5× 10−5

(last column) with the aspect ratios β = 0.44 ((a) in the top row) and 1.44 ((b) in the bottom row) at
Re = 50.

4.3. Effect of the Porosity ε

Unlike the effects of aspect ratio β and the interfacial conductance C, extensive studies
have been conducted for the influence of the porosity ε on the macroscopic thermal
behaviors of porous materials [21,61,62]. As mentioned in Section 1, previous pore-scale
simulations usually set isothermal conditions on a pair of unit boundaries to create the
thermal gradient and applied adiabatic conditions on other unit side surfaces [24,27].
Such artificial, unphysical treatments interfere with the natural heat transfer processes
among microscopic periodic units, and the results from such boundary methods could be
inaccurate or misleading [28]. In this section, we use the generalized periodic condition
Equation (7) to examine the porosity effect on macroscopic conductivities Ktor and Kdis.
Our next simulations cover a range of porosity of ε = 0.5∼0.99 for aspect ratios β = 0.69
and 1, and ε = 0.65∼0.99 for and β = 1.44. The Reynolds number is set at Re = 50
and the interfacial conductance is fixed at C = 10. Further reducing ε will increase the
solid cylinder diameter D and thus make the gap between the solid surfaces very narrow
(Figure 9). As discussed in Section 4.1, such a narrow gap may turn the flow unsteady for
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the large aspect ratio β = 1.44, and also a finer spacial resolution is required to accurately
capture the flow and thermal variations in the gap regions.
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Figure 8. Plots of Ktor (a) and Kdis (b) changing with the aspect ratio β at three interfacial conductance
values: C = 10 (black squares), 5× 10−4 (blue circles), and 5× 10−5 (red triangles). The Reynolds
number is Re = 50.

1− ǫ = 0.05 1− ǫ = 0.1 1− ǫ = 0.15 1− ǫ = 0.2 1− ǫ = 0.351− ǫ = 0.01

Figure 9. Simulation results of the flow streamlines (first and third rows) and temperature distri-
butions (second and last rows) for different porosity values (labeled on top of each column) with
interfacial conductance C = 10 and Reynolds number Re = 50.

Results from this set of simulations are collected in Figure 9 for the flow and tempera-
ture distributions and Figure 10 for the calculated conductivities Ktor and Kdis at different
porosity values. Please note that these figures are plotted in terms of the solid fraction
1− ε as in Ref. [21]. With the solid diameter D increase (from left to right in Figure 9),
a pair of circulation vortices are developed in the wake region above the solid cylinder,
and the vortex size grows gradually till it completely fills the vertical space between two
cylinders. Meanwhile, the original relatively organized temperature field is gradually
distorted by the increasing size of the solid domain. Such changes in the flow and ther-
mal patterns therefore affect the macroscopic thermal behaviors as characterized by the
tortuosity (Ktor) and dispersion (Kdis) conductivities (Figure 10). The continuous increase
in Ktor with the solid fraction 1− ε is mainly because of the larger area (length in our
2D system) of the solid–fluid interface Γ (see Equation (14)). This trend is similar to that
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observed in Ref. [21]; however, the Ktor magnitude is smaller here. This can be attributed
to the different solid domain shapes: For the same porosity, compared to the circular shape
in this work, the square solid domain shape in Ref. [21] yields a longer interface length,
and more profoundly, half of the interface has the local normal direction aligned the x
direction. All these are favorable for a larger Ktor according to its definition in Equation (14).
As for the dispersion conductivity Kdis in Figure 10b, in general, Kdis increases with the
solid fraction 1− ε; however, unlike the monotonic growth in Ref. [21], local maximum
and minimum states are observed here. Due to the complexity in flow and temperature
fields as well as their involvement in the Kdis calculation, it is difficult to provide detailed
insights and mechanism for the Kdis variations. Nevertheless, this could be an interesting
topic to explore in the future. The general increasing trend can be qualitatively related to
the increasing size of the circulation region, which is the major contributor to Kdis via the
large x velocity component in this region. A similar analysis can be applied for the gentle
variation and slow recovery of Kdis for 1− ε = 0.2∼0.5 at β = 0.69 in Figure 10b, since the
flow pattern remains almost unchanged in these systems (see the subplots for 1− ε = 0.2
and 0.35 at β = 0.69 in Figure 9). Finally, for the three curves with different aspect ratios,
we see Ktor is smaller but Kdis is larger for a higher aspect ratio β. This agrees well with
our findings and discussions for the aspect ratio effect on conductivity in Section 4.1 (see
Figure 6).
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Figure 10. Plots of Ktor (a) and Kdis (b) changing with the solid fraction 1− ε at three aspect ratio
values: β = 0.69 (black squares), 1 (blue circles), and 1.44 (red triangles). The Reynolds number is
Re = 50.

5. Summary

In this study, we have first justified and validated the generalized periodic condi-
tion [21,28] for pore-scale simulations of thermal flows in porous media. Extensive simu-
lations have then been carried out using a 2D porous model to investigate the influence
of several microscopic parameters on macroscopic thermal conductivity. Among them,
the effects of the aspect ratio of the periodic unit and the thermal conductance at the
pore surface have not been addressed adequately in previous studies. Our results show
that these microscopic properties can dramatically change the flow and thermal fields in
the microscopic porous structure, and affect the apparent thermal performances of the
porous materials at the macroscopic level. Therefore, these microscopic factors need to be
considered carefully for more accurate and reliable simulation results, which are crucial for
both fundamental research and practical applications. In addition, thorough discussions
are attempted to qualitatively explore the relationship between the apparent conductivity
at the macroscopic level and the complex thermal flow situations in the microscopic porous
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structure, and our analysis and findings could be helpful for a better understanding of the
underlying thermal processes.

We are aware that several serious limitations exist for this study and one should not
over interpret the results obtained from a specific system. The simple 2D porous model
and the relatively low Reynolds numbers considered here may appear less realistic for
practical systems; however, they are helpful for understanding the micro–macro relations
and fundamental mechanisms involved in the complex thermal flow processes in porous
materials. We have fixed the solid and fluid substance properties (conductivity, diffusivity,
and the Prandtl number), which can certainly affect the apparent thermal behaviors as
well. The 2D unit geometry adopted in this work is also symmetric along both the flow and
thermal gradient directions; and the anisotropic effects could be an interesting topic for
future research. The periodic conditions Equations (8) and (9) utilized in these calculations
require the flow and thermal fields to be fully developed and thus they are not applicable
to the entrance and development regions [63,64]. Moreover, in our simulations, we
have assumed that the material properties are constant in the flow and heat transfer
processes and thus steady or quasi-steady states can be established. In some situations,
the microscopic porous structure may undergo a dynamic change due to swelling and
erosion [65]; and caution must be taken for applying results from this study to such systems.
Nevertheless, the boundary method, simulation results, and analysis discussions can be
useful for the research and applications of porous thermal flows. The generalized periodic
boundary condition, although presented in 2D, can be readily applied to three-dimensional
pore-scale thermal flow simulations.
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