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Background: The carcinogenesis and progression of colon adenocarcinoma (COAD) are intensively 
related to the abnormal expression of the zinc finger (ZNF) protein genes. We aimed to employ these genes 
to provide a reliable prognosis and treatment stratification tool for COAD patients.
Methods: Cox and the least absolute shrinkage and selection operator (LASSO) regression analysis 
were applied, utilizing The Cancer Genome Atlas (TCGA) metadata, to build a ZNF protein gene-based 
prognostic model. Using this model, patients in the training cohort and testing cohort (GSE17537) were 
labelled as either high or low risk. Kaplan-Meier (KM) survival analysis and time-dependent receiver 
operating characteristic (ROC) curve analysis were performed in the patients with opposite risk status to 
assess the predictive ability in each cohort. The potentiality of the mechanism was explored by the estimation 
of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE), single-sample 
gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), Gene Ontology (GO), and 
Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the degrees of expression of model genes 
were validated by immunohistochemistry (IHC).
Results: The prognostic model consisting of INSM1, PHF21B, RNF138, SYTL4, WRNIP1, ZNF585B, 
and ZNF514, classified patients into opposite risk statuses. Patients in the high-risk subset had a considerably 
lower chance of surviving compared to those in the low-risk subset. There is a high probability that these 
model genes were attached to immune-related biological processes, which can be confirmed by the results 
of the above mechanistic methods. Moreover, patients in the low-risk subset also significantly outperformed 
the patients in the high-risk subset when calculating immune cells and function scores. Drug sensitivity and 
tumor immune dysfunction and exclusion (TIDE) analyses showed a clear difference in the immunological 
and chemotherapeutic efficacy predictions within the two risk groups. Additionally, the degrees of expression 
of model genes in high-risk and low-risk subsets presented great discrepancies.
Conclusions: The signature may be applied as a predictive classifier to shepherd special medication for 
COAD patients.
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Introduction

Deaths from colon adenocarcinoma (COAD) account for 
a significant proportion of all human cancer deaths (1). 
The five-year survival rate of colon cancer patients has 
remained unsatisfactory throughout the last couple of 
decades despite significant progress in screening, diagnosis, 
and management of this malignancy (2,3). Currently, there 
is a lack of specific and sensitive biomarker signatures in 
clinical practice for COAD patients to determine the risk of 
prognosis and distinguish which group of patients respond 
better to medical treatment (4). Therefore, identifying new 
biomarkers or assessment models to improve this situation 
is particularly important. 

Zinc finger (ZNF) protein is a transcription factor 
superfamily containing at the minimum one ZNF unit 
member, which is crucial in the modulation of many 
basic mechanisms such as differentiation, proliferation, 
metabolism, and apoptosis of cancer cells (5,6). In 
particular, a growing number of studies revealed that ZNF 
protein genes are intimately related to COAD growth 
and progression (7). For instance, ZKSCAN3 was found 
to be more abundant in the colorectal tumor group than 
in adjacent nonmalignant mucosa, and it has been found 
to be linked to oncogenesis by transcriptionally activating 
integrins β4 and vascular endothelial growth factor (8). 
According to Hahn and Li et al., ZNF281 expression not 
only increases during tumor progression but also promotes 
the recurrence of colorectal cancer through enhancing 
the epithelial-mesenchymal transition (EMT), and KLF2, 
a carcinoma inhibitor existing in low concentrations in 

colorectal cancer tissues (9,10). These studies indicate 
that aberrant expressions of ZNF genes may represent 
potentially robust indicators for COAD patients’ prognosis 
and survival.

Owing to the development of sequencing technology 
and access to public databases, researchers have attempted 
to establish risk assessment models to identify the gene 
signatures of cancer. Interestingly, multiple studies have 
demonstrated that signatures based on ZNF protein gene 
expressions reveal prognostic information in multiple 
cancers (11-14). However, there is no such signature model 
taking advantage of ZNF protein genes in COAD. As a 
result, we searched for a model taking advantage of ZNF 
protein genes that might be convenient for forecasting 
the outcome of COAD patients and leading medication 
decisions. During this research, we first produced and 
verified a seven-gene prognosis model utilizing ZNF 
protein genes for COAD patients. Also, we performed 
relative functional analysis to investigate the bond among 
our prognostic model and immunity, mutation loads, 
and distinctions in chemotherapy and immunotherapy 
responses. Finally, the ZNF gene signature was proved to be 
beneficial in assessing clinical prognosis in COAD patients. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-2158/rc).

Methods

Acquisition of metadata 

The transcriptional [fragments per kilobase of exon per 
million mapped reads (FPKM)] and mutation of 465 COAD 
samples and 41 adjacent normal samples, and relational 
clinical data of 143 COAD patients were downloaded from 
The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). These datasets were used for the 
training and internal testing cohorts. The gene expression 
profiles and clinical data from 55 CC samples (GSE17537 
cohort) were downloaded from the publicly available Gene 
Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/), with this cohort being used for external 
validation. We screened the data to identify patients 
who had attended the required number of follow-up 
appointments and whose survival outcome was documented. 
Furthermore, for the purpose to decrease the batch effect 
and guaranteeing that the study could be effectively 
replicated, we standardized the RNA-Seq data of the GEO 
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and TCGA sets via the R software’s “limma” function. All 
processes in this study followed the policy and guidelines 
provided by the GEO and TCGA databases. A total of 
1,751 ZNF protein genes came from the UniProt database 
(https://www.uniprot.org/). 

Development and confirmation of a prognosis-linked ZNF 
protein genes model

A univariate Cox regression analysis was carried out 
applying the “survival” and “survminer” R Packages in the 
TCGA-COAD cohort. ZNF protein genes corresponding 
to prognostic were those with a P value less than 0.01. The 
concept of “entire cohort” referred to the TCGA data going 
forward. This cohort was stochastically split in half, and one 
dataset was used as the “training cohort”. To lessen the odds 
of overfitting, LASSO regression analysis was conducted on 
the prognosis-linked ZNF protein genes with the R Package 
“glmnet” in the training cohort. The regression coefficients 
were subsequently acquired by multivariate Cox regression 
analysis utilizing the R “survival” package in the training 
cohort. The results from the training cohort analyses were 
employed to make the model. The normalized expressed 
degree of the signature genes and the associated regression 
coefficients were combined to produce the patient risk score 
with the next equation:

( )score esum each gene s expression  respectively coeffi nt’ cie= ×  [1]

We classified the patients in the training cohort into 
two groups with different risk statuses: high and low, 
adopting the median number of each patient’s risk score 
as a threshold. Next, the two groups’ overall survival (OS) 
differences were noted, and the R package’s “survival” and 
“survminer” functions were employed to do a Kaplan-Meier 
(KM) survival analysis of OS. OS was defined as the time 
from diagnosis to death. Next, the R package “timeROC” 
was employed for performing time-dependent receiver 
operating characteristic (ROC) curve analysis for assessing 
the effectiveness of the model for forecasting the future 
prospects of COAD patients. The risk scores of the patients 
in the entire cohort and the GSE17537 cohort were 
counted using the aforementioned formula. To confirm 
the risk score’s independence, we integrated the clinical 
characteristics (including M stage, gender, stage, age, T 
stage, the risk scores, as well as N stage), then univariable 
and multivariate Cox regression analyses were performed. 
P values of less than 0.05 were considered statistically 
significant. To illustrate the effectiveness of the model, plots 

of patients’ gene expression, risk score distribution, and 
survival status in several cohorts were created.

Construction of a prognostic nomogram

A nomogram is an effective instrument for forecasting the 
clinical survival of patients. For creating the nomogram, we 
merged the clinicopathologic parameters (such as gender, 
age, stage, T stage, and N stage) with the risk model. 
We subsequently applied ROC curves to determine the 
nomogram’s dependability in forecasting 1-, 2-, and 3-year 
survival.

Immunohistochemistry (IHC)

There were sixteen pairings of COAD tissues with nearby 
non-cancerous tissues obtained from the patients in the 
Harbin Medical University Cancer Hospital after tumor 
resection and histological confirmation. The information 
and dilution concentrations of all primary antibodies 
applied to research are shown in Table S1. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The Harbin Medical University Cancer 
Hospital’s Ethics Committee has authorized this study 
(Ethics Application No. KY2023-58). Each study participant 
participating in IHC gave their informed consent. For 
this paper to be published, the patients have given written 
informed consents. Paraffin-embedded sections (4 µm) 
were prepared following standard protocol. In short, we 
blocked the endogenous peroxidase activity first, then we 
recovered the antigen, incubated the primary and secondary 
antibodies, and lastly dyed the material. 3% hydrogen 
peroxide, citrate buffer, 5% bovine serum albumin, primary 
and secondary antibodies, and a diaminobenzidine (DAB) 
kit were the reagents needed for this procedure. The 
directions for using these reagents were followed. The IHC 
staining score for each sample was equal to the product of 
the Positive Staining Cell Score and the Staining Intensity 
Score, where Staining intensity ranged from 0–3 and 
positive Staining Cell Score: 1 portrays 0–25%; 2 portrays 
26–50%; 3 portrays 51–75%; and 4 portrays 76–100%. 
Staining intensity ranges from 0-3.

Functional enrichment analysis

The whole patients cohort was split into two risk statuses 
by the genetic model. With a false discovery rate (FDR) of 
less than 0.05 and the criteria |log2 (fold change)| >0.5, 

https://www.uniprot.org/
https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
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we employed the R package “limma” to research potential 
changes in the functions where the differentially expressed 
genes (DEGs) were situated among these two subsets. 
These DEGs were then undergone the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and Gene Ontology (GO) 
enrichment analyses through the “clusterProfiler” and “org.
Hs.eg.db” packages in R.

Gene set enrichment analysis (GSEA)

GSEA was carried out using the R packages “cluster 
Profiler” and “org.Hs.eg.db” to examine whether the 
identified gene sets were statistically different in the two 
groups. Reference sets for the present research were the 
gene sets of c2.cp.kegg.v2023.1.Hs.symbols.gmt [Hallmarks] 
obtained in the Molecular Signatures Database (MSigDB, 
http://software.broadinstitute.org/gsea/msigdb/index.
jsp). The following criteria were used to filter the enriched 
pathways: normalized enrichment score (|NES|) >1.0 and a 
notional P value of 0.05.

Calculation of immune and stromal scores and immune 
infiltration analysis

It is widely known that stromal and immune cells are 
essential for forming the tumor immune microenvironment 
(TIME). In order to further seek the worth of our genetic 
model when guiding risk stratification, we used the 
estimation of stromal and Immune cells in malignant tumor 
tissues using expression data (ESTIMATE) in R to examine 
differences in stromal and immune scores among patients 
with different risk statuses. Meanwhile, single-sample gene 
set enrichment analysis (ssGSEA) via the R package “GSVA” 
was employed to identify variances in immune cells and 
immune function amongst various risk status groups and 
the results were performed multiple testing. 

Mutation status analysis

Mutation data were extracted from the TCGA. We analyzed 
variations in mutation status among subgroups of various 
risk statuses in the entire cohort using the R package “map 
tools”. After calculating the tumor mutation burden (TMB) 
in different risk status groups, in order to compare whether 
different TMBs and risk statuses have an effect on patients’ 
OS, we executed KM survival analysis using the R software 
packages “survival” and “survminer”.

Drug sensitivity analysis and tumor immune dysfunction 
and exclusion (TIDE) analysis

The TIDE was employed to model distinguishable 
tumor immune evasion processes (15). The likelihood of 
immunological escape of the tumor cells exhibits a positive 
connection with the TIDE score. Thus, a lower TIDE 
score indicates a better sensitivity to immune checkpoint 
inhibitor (ICI) therapy. Given that this is a relatively new 
form of cancer therapy and that chemotherapy is still one 
of the most valid therapeutic methods to treat COAD, 
we carried out a drug sensitivity measure to predict the 
chemotherapeutic response for every patient. Applying 
the R package “oncoPredict” to data from the free 
pharmacogenomic database Genomics of Drug Sensitivity 
in Cancer (GDSC, https://www.cancerrx gene.org/), half-
maximal inhibitory concentration (IC50) measurements 
were employed to predict drug sensitivity. If the IC50 is 
higher, the antitumor impact is lesser (16,17).

Statistical analysis

All the statistical analyses were performed using R software 
(version 4.1.2). P values of less than 0.05 were acceptable 
and demonstrated statistical significance for differences.

Results

Constructing a new tool: a prognostic model for COAD 
consisting of seven ZNF genes

The flowchart of the procedure for this research is displayed 
in Figure 1. To figure out the ZNF protein genes that affect 
prognosis, we employed univariate Cox regression analysis 
on the TCGA-COAD set. We identified 29 distinctly 
prognosis-associated genes (all P<0.01; Table S2). Genes 
(17/29) with a hazard ratio (HR) value >1 were considered 
risk factors for colorectal cancer, whereas those (12/29 genes) 
with HR value <1 were considered to be protective factors 
against COAD. Furthermore, we used a heatmap to contrast 
the expression of these 29 genes in tumor versus normal colon 
tissue (Figure 2A). Then, to eliminate overfitting, we ran a 
LASSO regression analysis in the training cohort (Figure 2B; 
Figure S1). The sample scores can be determined through the 
regression coefficients obtained from the multivariate Cox 
regression analysis in the training cohort. Ultimately, seven 
genes, consisting of INSM1, PHF21B, RNF138, SYTL4, 
WRNIP1, ZNF514, and ZNF585B, comprised the model 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
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Identifying a novel zinc finger protein gene-based model for colon cancer
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Figure 1 Flow chart illustrating the process used to identify and validate our novel prognostic-related zinc finger proteins gene signature. 
TCGA, The Cancer Genome Atlas; COAD, colon adenocarcinoma; ZNF, zinc finger; KM, Kaplan-Meier; ROC, receiver operating 
characteristic; IHC, immunohistochemistry; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set 
enrichment analysis; ssGSEA, single-sample GSEA; TIDE, tumor immune dysfunction and exclusion.

(Figure 2C), and Table S3 presents the values of coefficients 
for these genes. The formula mentioned in the methodology 
was applied by us to determine the risk score for each patient 
in the training cohort. The counted risk scores of the patients 
were ranked from low to high and then the middle value was 
chosen as the threshold to label the patients as high or low 
risk, respectively.

Individual patient risk scores ranged from low to high 
is illustrated in Figure 3A. Furthermore, the survival 
status plot revealed that, the percentage of survival was 

significantly lower in high-risk patients than that in low-
risk patients (Figure 3B). The KM survival analysis of OS 
revealed that patients in the low-risk subset had a significantly 
greater survival probability than patients in the high-risk subset 
(Figure 3C, P<0.001). The time-dependent ROC curves also 
provide further evidence of the reliability of the gene model 
through the area under the curve (AUC) (0.943 for 1 year, 0.939 
for 2 years, and 0.960 for 3 years) (Figure 3D). The heatmap 
(Figure 3E) displays the expression values of model genes.
Combining theory with practice: analyzing and validating 

https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
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Figure 2 Identification of prognostic zinc finger protein genes in the training cohort. (A) Heat map of prognostic gene expression from 
univariate regression analysis in colon adenocarcinoma (Tumor) and normal (Normal) tissues. (B) LASSO regression analysis. (C) Forest plot 
showing HRs with 95% CI of COAD prognostic ZNF protein genes, based on multivariate Cox regression. *, P<0.05. HR, hazard ratio; CI, 
confidence interval; LASSO, least absolute shrinkage and selection operator; COAD, colon adenocarcinoma; ZNF, zinc finger.

ZNF model genes expression

The results of our differential expression analysis of 
structural genes in the TCGA cohort revealed that 
WRNIP1, PHF21B, and ZNF514 were caught to be 
more abundant in carcinoma tissues than cancerous 
adjacent normal tissues, while INSM1, RNF138, SYTL4, 
and ZNF585B were opposite (Figure 3F). Since the 
bioinformatics analysis was based on transcriptomic data, 
we used IHC to confirm the protein expression of ZNF 
genes in 16 couples of COAD and near-healthy tissues. 
IHC staining showed that compared to paired adjacent 
normal tissues, INSM1 (Figure 4A), RNF138 (Figure 4B), 
and SYTL4 (Figure 4C) staining was stronger in adjacent 
cancer tissues, while WRNIP1 (Figure 4D) and ZNF514 

(Figure 4E) staining was stronger in COAD tissues. The 
distinction in PHF21B staining between the two groups 
was not statistically meaningful (Figure 4F). These 
results indicated that WRNIP1 and ZNF514 proteins were 
significantly overexpressed in COAD, while INSM1, RNF138, 
and SYTL4 were significantly downregulated. Figure S2 
shows that the IHC scores of INSM1, RNF138, and SYTL4 
were higher in normal tissues, while WRNIP1 and ZNF514 
were the opposite. The TCGA cohort survival analysis 
testified the clinical survival possibility between the high- 
and low-expression group of these genes (Figure S3). The 
results indicated that the survival possibility was worse in the 
RNF138 (Figure S3C) and ZNF585B (Figure S3G) decreased 
expression subset compared to the high expression subset, 
in contrast, the chances of survival were widely more in 

https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-2158-Supplementary.pdf
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Figure 3 Performance of ZNF protein gene signature in predicting prognosis in the training cohort. (A) Distribution of the COAD patients 
with different risk scores in the training cohort. (B) Distribution of survival status of COAD patients in the training cohort. (C) Survival 
analysis of high-risk and low-risk patients in the training cohort. (D) Time-dependent ROC curves for 1-, 2-, and 3-year survival in the 
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Figure 4 The expression of INSM1 (A), RNF138 (B), SYTL4 (C), WRNIP1 (D), ZNF514 (E), PHF21B (F) in the tumor tissue 
and adjacent tissue by IHC. The left column is 10× images of the sections, and the right column is 20× images of the sections. IHC, 
immunohistochemistry.

the decreased expression subset of WRNIP1 (Figure S3E) 
and ZNF514 (Figure S3F) compared to the rich expression 
subset. Unfortunately, there were no differences of survival 
possibility between high- and low-expression groups of 
INSM1 (Figure S3A), PHF2B (Figure S3B), and SYTL4 
(Figure S3D).

Using new tools: validating seven ZNF genes model in the 
entire cohort and GSE17537

Samples from the entire cohort and an external cohort 
(GSE17537) were utilized as testing data to check the 
efficacy of the predictive gene model. OS for both cohorts 
was used to gauge the success of the capability of our 
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model. Applying the same formula as the training subset, we 
computed risk scores for 143 COAD patients in the entire 
set. Again, adopting the middle value as the threshold, 
patients were sorted into either the subsets with high-risk 
(n=72) or low-risk (n=71). This process was repeated with 
55 patients from the external set: high-risk (n=27) and 
low-risk (n=28) subsets. Results were shown in Figure 5. 
The ranking of risk scores of patients in low-risk status to 
those in high-risk status for the entire cohort and for the 
GSE17537 cohort is presented in Figure 5A,5D. Figure 5B 
and Figure 5E show that for both the entire and GSE17537 
(GEO) cohorts, the number of deaths in the low-risk 
subsets was trivial compared to the high-risk subsets. The 
heat maps of the gene expression value of our signature are 
exhibited in Figure 5C and Figure 5F. Furthermore, patients 
in the high-risk subsets were less likely to live than patients 
in the low-risk subsets in the entire cohort (P=9.221e−05, 
Figure 5G), as evidenced in the GSE17537 cohort (P=0.03, 
Figure 5H). With respect to the entire cohort, the AUCs 
of the genetic model for OS prediction demonstrated 
considerable reliability: 0.877 (1 year), 0.802 (2 years), and 
0.813 (3 years), individually, with the GEO cohort following 
closely behind: 0.625 (1 year), 0.656 (2 years), and 0.656  
(3 years) (Figure 5I,5J).

Focus on model and clinics: independence of the model and 
nomogram in COAD

The question of whether genetic models can be used 
as independent predictors of prognosis was tested by 
univariate and multivariate Cox regression analyses. Figure 
6A depicts the result: risk score and staging were elements 
that were considerably linked to the prognosis. The product 
of the multivariate analyses suggested that the model could 
play as a self-contained prognostic implement (Figure 6B). 
As a result, our genetic model possesses some reliability for 
guiding clinical patient stratification. To improve clinical 
utility, we used available data to create a nomogram to 
forecast survival of 1-, 2-, and 3- year for COAD patients. 
We also used ROC curves to judge the rigor of this 
nomogram’s robustness. The total score obtained from 
the patient information was used to predict the patient’s 
probable OS (Figure 6C), and the 1-, 2-, and 3-year AUCs 
of the ROC curves based on this predicted nomogram were 
0.937, 0.902, and 0.952, in turn (Figure 6D).

Going deeper: functional and GSEA

In our prior research, the genetic model was employed to 
split TCGA-COAD patients into two risk subsets: high 
and low. Following that, we investigated what gene sets 
and functional differences exist between the different 
subsets identified by GSEA, GO enrichment, and KEGG 
enrichment analysis. Firstly, DEGs were identified among 
the high-risk and low-risk subsets in the TCGA cohort 
for further investigation (table available at https://cdn.
amegroups.cn/static/public/tcr-23-2158-1.xlsx), which 
included 686 genes (|logFC| >0.5, FDR <0.05). These 
results are displayed in a volcano plot (Figure 7A). whereas 
against the high-risk subset, 428 genes had reduced 
expression and 258 were elevated in the low-risk subset. 
Figure 7B draws a heatmap of the expression profile values 
of these 686 genes. According to the GO enrichment 
results, the DEGs identified were primarily involved with 
immune response: immune response−activating signal 
transduction; regulating cell surface receptor signaling 
pathway; positive regulation of cell activation in biological 
processes, activation of the immune response; immune 
response−activating cell surface receptor signaling pathway; 
and immune response activation. Regarding for molecular 
functions, DEGs were particularly strong in immune 
receptor activity, antigen binding, cytokine receptor 
binding, and immunoglobulin receptor binding. About 
cellular components, the enriched DEGs were most closely 
linked with the immunoglobulin complex, as well as the 
immunoglobulin complex, circulating and external side of 
the plasma membrane (Figure 7C, Figure S4). The DEGs 
were particularly rich in the chemokine signaling pathway, 
cell adhesion molecules, cytokine-cytokine receptor 
interaction, and neutrophil extracellular trap formation 
according to the KEGG enrichment analysis (Figure 7D; 
Figure S5). Finally, the JAK-STAT signaling pathway, the 
apoptosis, cytokine-cytokine receptor interaction, and 
chemokine signaling pathway had a crucial enrichment in 
the GSEA gene expression patterns (Figure S6).

Combined immunity: differences in TIME and immune 
score analysis

The above analyses supported that the model was strongly 
influenced by immune function, prompting us to be 
interested in investigating into the discrepancy in immune 
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Figure 5 Performance of ZNF protein gene signature in predicting prognosis in the entire cohort and GSE17537. (A,D) Distribution of the 
COAD patients with different risk scores in the entire cohort and GSE17537. (B,E) Distribution of survival status of COAD patients in the 
entire cohort and GSE17537. (C,F) Heat map depicting the expression patterns in the seven prognosis-related ZNF protein genes between 
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Figure 6 Independence test and nomogram for ZNF protein gene signature and clinical characteristics. Univariate (A) and multivariate 
regression analyses (B) of clinical characteristics and risk scores. (C) A nomogram for OS containing clinical characteristics such as age, sex, 
stage, and risk score. (D) ROC curve of the nomogram. *, P<0.05; **, P<0.01. CI, confidence interval; ZNF, zinc finger; OS, overall survival; 
ROC, receiver operating characteristic.

cells, function, and the TIME among the opposite subsets. 
An ESTIMATE algorithm was constructed to assess 
whether our 7-gene signature can discriminate differences 
in TIME for two risk groups of COAD patients. The 
methodology could be carried out to count the score of 
tumor purity, stromal cells, and immune cells in the immune 
microenvironment, from which we can compare the gaps in 
the cellular components of the immune microenvironment 
among the two subsets. The stromal score ranged from 
−2,068.98 to 2,029.63 (Figure 8A). The immune score 
ranged from −819.85 to 3,003.12, the ESTIMATE score 
from −2,679.15 to 4,554.83, and the tumor purity from 
0.292 to 0.978 (Figure 8B-8D, respectively). The immunity 
score, which represents the index of immune cell infiltration, 
was inferior in the immune microenvironment of the high-
risk subset to that of the low-risk subset (Figure 8B, P<0.001, 
Figure 8C, P<0.01). This situation indicated a richer index 
of immune cell infiltration in patients in the low-risk 
subset. Given the differences in immune scores among the 
two subsets, we used ssGSEA to determine what strains of 

immune cells and functional discrepancies existed among 
the two subsets, and the findings revealed that the two 
groups differed in B-cells, T helper cells, natural killer 
(NK) tumor-infiltrating lymphocyte (TIL), CD8+ T cells, 
interdigitating dendritic cells (iDCs), neutrophils, Th2, 
Treg cells, follicle-helper T cells (Tfh), dendritic cells (DCs), 
and Th1 cells (Figure 8E, all P<0.05 in mentioned cells).

This result demonstrated that the infiltration of the 
mentioned cells was much greater in the low-risk subset 
than in the high-risk subset. Surprisingly, the differences in 
immune function among the two subsets were consistent, 
with greater scores in the low-risk subset for chemokine 
receptor (CCR), cytolytic activity, type I interferon (IFN) 
response, check-point, type II IFN response, T-cell co-
stimulation, inflammation-promotion, human leukocyte 
antigen (HLA), and T cell co-inhibition (all P<0.01 in 
mentioned functions, Figure 8F). Furthermore, antigen-
presenting cell (APC) co-inhibition and APC synergistic 
stimulation, two molecular processes closely linked to 
antigen presentation, were decreased in the high-risk subset.
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Figure 7 Functional enrichment analysis in TCGA-COAD cohort. (A) Volcano plot of DEGs found in high- and low-risk groups. (B) 
Heatmap showing expression values for DEGs in high- and low-risk groups. (C) GO enrichment analysis of DEGs. (D) KEGG enrichment 
analysis of DEGs. TCGA-COAD, The Cancer Genome Atlas-colon adenocarcinoma; DEGs, differentially expressed genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Treatment-oriented: mutation landscape, analysis of drug 
sensitivity, and TIDE analysis

It is well established that somatic mutation is one of the 
essential characteristics of carcinogenesis (18). We used 

mutation data from TCGA to compare gene mutation 

landscapes between the two risk patients. As shown in 

Figure 9A,9B, the overall mutation rate for high-risk 

patients was greater than that of low-risk patients (98.51% 
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vs. 95.24%). With respect to gene mutation frequency 
of specific genes, 75%, 43%, and 36% of the high-risk 
subset had APC, TTN, and KRAS mutations, respectively, 
compared with 83%, 52%, and 44% of low-risk score 
patients. Furthermore, the tumor suppressor TP53 mutated 
with greater frequency in the high-risk subset (64% vs. 
52%). The oncogene MUC16, on the other hand, had a 
lower mutation frequency in the group with a higher risk of 
cancer (19% vs. 32%). The mutational frequency of BRAF 
and PIK3CA was more in the high-risk group than that 
in the low-risk group (9% vs. 8%, 27% vs. 24%). These 
results indicated that the possibility of progress in the high-
risk patients is more than that in the low-risk patients, so 
that the high-risk patients have a worse survival time and 
prognosis. Using the results of our TMB calculations for 
each individual in the entire cohort, patients were classified 
into high-TMB and low-TMB subsets, with the median 

value of all TMB serving as a threshold. The subsequent 
KM survival analyses proved that patients with high (H)-
TMB had more odds of survival than patients with low (L)-
TMB (Figure 9C). This prompted us to wonder if there are 
discrepancies in survival probability when patients stay in 
different risk statuses and TMB. To that end, we divided 
the entire cohort into four groups: high-risk/H-TMB, low-
risk/H-TMB, high-risk/L-TMB, and low-risk/L-TMB, and 
then used KM survival analysis to compare the discrepancies 
among these subsets, and the findings revealed that patients 
in the low-risk subset with a high TMB load depicted much 
greater chance of survival than those in the other groups 
(Figure 9D). However, the efficacy of colorectal cancer 
chemotherapy and immunotherapy is still an important 
concern. We employed TIDE analyses to anticipate the 
discrepancies in immunotherapy among the two subsets. 
The TIDE score, which represents the possibility of 
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Figure 8 Tumor microenvironment and immunological analysis of TCGA-COAD cohort. Boxplot and violin plot show the differences 
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Figure 9 Mutational data analysis and immunotherapy analysis in TCGA-COAD cohort. (A) Type and frequency of mutation data 
for patients in the high-risk group. (B) Type and frequency of mutation data for patients in the low-risk group. (C) Survival analysis of 
patients in the high and low TMB groups. (D) Survival analysis of patients with different TMB and risk. (E) Boxplots and violin plots show 
differences in TIDE scores between high- and low-risk groups. *, P<0.05. TMB, tumor mutation burden; TCGA-COAD, The Cancer 
Genome Atlas-colon adenocarcinoma; TIDE, tumor immune dysfunction and exclusion.

immune dysfunction and rejection, was greater in the high-
risk subset than in the low-risk subset. This suggests that 
high-risk patients are more inclined to experience tumor 
immune dysfunction and rejection, resulting in poor 
immunotherapy outcomes (Figure 9E). 

Finally, we examined the drug sensitivity (as determined 
by “oncoPredict”) of all patients in each of the two risk 

groups to the 25 various medications administered (table 
available at https://cdn.amegroups.cn/static/public/tcr-
23-2158-2.xlsx). With regard to the IC50 values of the 25 
drugs, the outcomes testified notable discrepancies between 
the two subsets (P<0.05 for all) (Figure 10). Patients with 
high-risk status had better sensitivity to Linsitinib (P=0.001, 
Figure 10A), Navitoclax (P=0.003, Figure 10B), OSI-027 

https://cdn.amegroups.cn/static/public/tcr-23-2158-2.xlsx
https://cdn.amegroups.cn/static/public/tcr-23-2158-2.xlsx
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(P=0.01, Figure 10C), Vorinostat (P=0.04, Figure 10D) and 
WEHI-539 (P=0.01, Figure 10E). In contrast, patients with 
low-risk status had better sensitivity to the other 20 drugs. 
This testified that low-risk patients may be more responsive 
to the requirements of chemotherapeutics. 

Discussion

The most frequent kind of colon cancer is COAD, and 

its morbidity and mortality remain high. The lack of 
effective biomarkers restricts clinical prognosis evaluation 
and individualized treatment. As sequencing technology 
advances and public databases such as TCGA and GEO 
become more accessible, it has enabled researchers to 
evaluate the role of biomarkers in clinical practice from 
a more comprehensive perspective. Compared to single-
gene biomarkers, gene signatures have taken a step forward 
in patient risk stratification and individualized treatment 
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Figure 10 Drug sensitivity analysis of high- and low-risk groups in TCGA-COAD cohort. Boxplots (A-Y) show the estimated IC50 of 25 
chemotherapeutic agents in the high and low risk groups (all P<0.05). TCGA-COAD, The Cancer Genome Atlas-colon adenocarcinoma; 
IC50, half-maximal inhibitory concentration.



Xu et al. ZNF genes model in COAD1638

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(4):1623-1641 | https://dx.doi.org/10.21037/tcr-23-2158

guidance (19,20). 
ZNF proteins are intimately involved in the transcription 

of the human genome. Accumulating evidence has indicated 
the important role of ZNF protein genes in various 
aspects of cancer biology (21). It is not surprising that 
the alternations of ZNF protein genes can affect cancer 
development and vice versa. Indeed, recent studies have 
reported the model consisting of ZNF protein genes in 
certain tumors. The expression signature of ZNF factors 
linked to cancer that was discovered in TCGA pan-cancer 
transcriptome data was initially reported by Machnik et al. (22)  
Then, prognostic assessment models based on their expression 
signatures were established in bladder cancer, breast 
cancer, osteosarcoma, and esophageal carcinoma (11-14).  
These studies provided a large amount of integrated 
clinical information, suggesting their potential prognostic 
application values.

Inspired by the above studies, we investigated the 
prognostic and therapeutic value of ZNF protein genes 
in COAD and built a novel model containing seven ZNF 
protein genes for COAD. The 7-gene model assigns 
COAD patients to groups with different risk statuses. 
The KM analysis confirmed that patients in the low-risk 
subset had a greater probability of survival than patients 
in the high-risk subset. The reliability of the analysis 
was evaluated by a time-dependent ROC curve analysis, 
which resulted in a high degree of confidence in the ZNF 
protein gene model to forecast the survival of patients. 
Moreover, except for the absence of commercial antibodies 
for ZNF585B, the IHC results depicted that at the 
protein level, the expression patterns of six genes (INSM1, 
RNF138, SYTL4, WRNIP1, PHF21B, and ZNF514) were 
consistent with the transcriptional data. IHC had trouble 
detecting PHF21B because of its slight expression in the 
tumor and surrounding tissues, which may be caused by low 
transcriptional expression (Figure 3F). 

TIME profoundly affects the initiation, progression, 
and drug treatment response of tumors. We discovered 
that DEGs were primarily enriched in biological processes 
connected to the immune system in accordance with the 
findings of GO and KEGG analysis. Patients in the low-
risk subset showed greater immune cell infiltration via 
ESTIMATE and ssGSEA than the high-risk patients 
and the two subsets exhibited substantial distinctions in 
related immune functions. Indeed, the result of TIDE 
analysis suggested that patients in the high-risk subset 
had an elevated risk of developing tumor immunological 
dysfunction than those with low-risk status. We confirmed 

that the immune status of patients in the high-risk status 
group may have been suppressed, and can postulate that 
they may have mild reactions to ICIs. Finally, the low-
risk/H-TMB subgroup of patients had significantly better 
survival probability than the other 3 sub-groups. This 
agrees with the findings of previous research and is believed 
to be because the more novel epitopes generated (increased 
in H-TMB), the more likely one will be recognized as 
an immunogenic antigen and trigger a T-cell attack (23). 
Collectively, these findings implied that there may be a 
relationship between our ZNF gene signature and the 
TIME of COAD.

The model in our research consists of INSM1, PHF21B, 
RNF138, SYTL4, WRNIP1, ZNF585B, and ZNF514. 
INSM1 is mainly expressed during the development of 
mammalian neuroendocrine tissues and nervous systems (24).  
It can directly suppress the cell cycle’s advancement 
and promote cell differentiation (25,26). In addition, 
the prospective biomarker and treatable position for 
neuroendocrine carcinomas may be INSM1 (27). PHF21B, 
an individual belonging to the PHD ZNF superfamily, 
participates in tumorigenesis and the development of 
multiple types of tumors (28,29). Li et al. found that as 
an oncogene, PHF21B represents an excellent candidate 
prognostic biomarker in prostate cancer (30). In addition, 
another study showed that overexpression of PHF21B, as 
a gene that suppresses tumors, can reduce cell migration 
and colony formation (31). RNF138 is an E3 ligase (32-34),  
which can confer cisplatin resistance on gastric cancer cells 
by weakening the cell cycle arrest and Chk1-mediated 
apoptosis induced by cisplatin (35). It is interesting that the 
incidence of colorectal cancer tumors is directly associated 
with the decreased levels of RNF138, and RNF138 can 
inhibit the transformation of chronic colitis into colon 
tumors (36). SYTL4, as a Rab27 effector (37,38), has been 
testified to be a suitable prognostic indicator in breast 
cancer patients whose cancer kind is triple-negative breast 
cancer receiving taxane treatment (39). According to 
reports, WRNIP1 can significantly affect the restoration of 
DNA damage and the preservation of genomic stability (40). 
According to Jiang et al., miR-22 may decrease WRNIP1 
expression, improving the reactivity to radiation in small-
cell lung cancer, which suggests that WRNIP1 exists as a risk 
element for lung cancer patients with non-small cell (41).  
In contrast, there is little research on ZNF585B and 
ZNF514 so further research is needed regarding their roles 
in tumors.

Our research had examined the features of ZNF genes as 
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prognostic predictive biomarkers for COAD. Nevertheless, 
we also have certain limitations with our research. First, the 
present study is a study utilizing public databases. Although 
we conducted IHC experiments, the sample size is small. 
Secondly, this study lacks basic experiments to verify the 
function of the seven ZNF genes in COAD, especially in 
the signaling pathways closely linked to the present study. 
Thirdly, the treatment of colon cancer is largely associated 
with the mutational status of KRAS, BRAF, and PIK3CA 
and microsatellite/mismatch repair status. As a result, the 
potential mechanism or combination for ZNF protein genes 
signature with these mutational genes and status needs to be 
further explored.

Conclusions

We employed seven ZNF protein genes to construct a 
reliable prognostic model of COAD. This model enables 
doctors to classify patients into either high- or low-risk 
subset with different survival probabilities. We believe our 
model may help elucidate the role of ZNF protein genes 
and have the potential to be clinically useful prognostic 
biomarkers for COAD patients.
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