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Innovation in methodology is fundamental to the advancement of science. Dissemination of such
information, specifically in the field of pain research, has remained unstructured and distributed
across various journals and monographs. It is thus imperative to create an openly shared space
where descriptions of novel methods, specifically dedicated to the field of pain research, can
be summarized.

FROM MODELS TO METHODS: A LARGE-BRUSH OVERVIEW OF

PROGRESS IN THE FIELD

There is little question that the mechanistic view of pain perception begins with Descartes’
child in pain drawing from 1,644. This drawing introduced the concept of a sensory
system, with components including peripheral encoding, afferent and central transmission, and
representation/encoding/perceiving at the level of the cortex. Thus, the idea preconceived the last
150 years of research in sensory neuroscience. As such, to this day, Descartes’ sketch remains
a favorite and inspiring concept. Descartes deserves credit for formalizing the fundamental
constituent components of the general idea of a sensory system via his illustration of the biological
response to burning the skin (Although, there is good evidence that he may have borrowed
this idea from Arab scientists). In a sense, Descartes’ drawing summarized all of the modern
neuroscience of sensation—it served as the initial grand model of how biology encodes sensation.
Thus, it is a beautiful example of a paper-and-pencil cartoon model that sparked centuries of
neuroscientific discoveries.

Moving forward to the late nineteenth century, German psychophysicists [Weber (1), Fechner
(2), and others] initiated the debate as to whether sensations are quantifiable. The effort was a
search for mathematical transformations between stimuli and the mind. This research created
rules, tools, and methods at a time where statistical methods were still nascent. Their quantitative
measurements began identifying various sources of variability: within a given subject, between
subjects, and due to uncontrollable influences. In turn, the work paved the way for the discovery
of the power law by Stevens (3), where the statistics of the stimulus-mind relationship for pain
were shown to have the unique property of sensitization (power law with exponent > 1.0). This
distinguished pain from all other sensations and mathematically demonstrated its necessity in
escape and protection behaviors. These early psychophysics concepts formed the foundation of the
modern pain perception scales now universally used in clinical trials (VAS, NRS); such subjective
reports are now a staple across all of the pain management and treatment literature.
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If one considers that the twentieth century established
static characterization of pain, the new century paves the
way for studying pain as a time varying dynamical system.
The advent of the digital age facilitates the quantification of
human pain perception at greater temporal resolutions, with
which the dynamics of pain can be studied. For example,
smartphone technology enables convenient, ecologically valid
data collection at much greater sampling rates (4). Over shorter
timescales, both acute and chronic pain have recently been
examined from a dynamical viewpoint. For instance, different
chronic pain conditions possess distinct fractal properties
regarding spontaneous fluctuations (5). Similarly, high sampling
rates have led to the discovery of “offset analgesia” (6), a
contrast enhancement phenomenon that can be mathematically
described using a second-order differential equation (7, 8).
The latter is the only differential equation that can be related
to any sensation. Thus, the sensory modality—pain—that has
been philosophically expounded for centuries as the most
incommunicable seems to be the one that can be precisely
captured mathematically. The biological underpinnings of the
statistical and dynamical properties of pain remain (for the
most part) to be discovered. Such discoveries would undoubtedly
provide novel mechanistic insights.

The 200-year history of advancements in unraveling pain
magnitude perception has proven to be critical in clinical
studies and applications. Notwithstanding, pain magnitude is
also commonly acknowledged to be a very poor metric of both
acute and chronic pain qualia. The latter has been supplemented
with a long list of patient-reported outcomes (PROs), in
which the properties, characteristics, and related psychological
disturbances can be assessed in subjects with pain. Most notably,
the McGill Pain Questionnaire (9) has been used extensively
for this purpose. Perhaps surprisingly, the interrelationship
between PROs and pain ratings, especially in the clinical setting,
remains minimally explored. Early work within this purview
demonstrates surprising relationships between personality, pain
ratings, and clinical pain states (10). How such relationships
evolve and differentiate between clinical conditions remains
unexplored. Exploring these relationships necessitates much
larger datasets than are typically collected in clinical pain research
studies, but such efforts will undoubtedly be fruitful.

Conceptual models in pain research remain scarce. Melzack
andWall’s gate control theory (11) is perhaps the most influential
two-synapsemodel. It summarizes the concept of a specific spinal
cord circuit to control ascending nociception. It is the basis for 50
years of follow-up research and the creation ofmany technologies
for managing clinical pain; viz. electrical stimulators applied
to different parts of the afferent-spinal circuitry. The model is
a prime example of a concept leading to novel methods both
for research and for clinical treatment. More recent conceptual
models of the spinal circuitry are far more complex as they
incorporate knowledge that has been amassed. Depending on
one’s question, one may need to consider many different types
of neurons, receptors, and neurotransmitters, and also include
the interface between glia and neurons (12). This system is
further complicated by its ability to reorganize in distinct ways
in various rodent models of persistent pain, where diverse types

of peripheral injuries lead to distinct peripheral-spinal cord
plasticity (13, 14). The cellular molecular details of nociceptive
afferent inputs and their interaction in the spinal are now
characterized (and continue to be investigated) at exquisite detail.
The intent of this effort was to cure acute and chronic pain, yet
we remain far from achieving these goals.

There is little doubt that the creation of alternate organism
models of clinical pain states should be regarded as a major
advance in pain research over the last 50 years. The discovery
of a partial peripheral nerve injury in rodents giving rise to
behaviors that correspond to human signs of persistent/chronic
pain was an exciting observation that hugely influenced the field.
The first robust model of this type was described by Bennett
(15). This model (CCI) and its various variants continue to reveal
important knowledge regarding the underlying mechanisms of
chronic pain (16). The translational value of such models has
also been criticized (16). Contrary to the initial enthusiasm, they
have not resulted in the discovery of efficient treatments. Yet,
their utility in advancing knowledge, especially regarding the
plasticity of the peripheral and central neural circuits, cannot be
questioned. More recent rodent models, capturing more specific
properties of different human chronic clinical pain conditions,
remain ongoing [e.g., see (17–19)]. It is also important to
highlight the applicability of these rodent models in uncovering
supraspinal neocortical and limbic brain circuitry in pain (20–
22), even though these models were initially designed to capture
peripheral-spinal cord interactions. One must then assume that
suchmodels will continue to generate new insights and ultimately
lead to novel therapies for pain.

Aside from choosing appropriate models representing human
clinical pain conditions (23), limitations in assessing pain in such
models remain an important challenge. Assessing touch-induced
withdrawal is prevailingly used as if it is a golden standard,
but it is doubtful that this defensive response represents what
is defined as “unpleasant sensory and emotional experience”
in human subjects. Many different routes have been explored
to expand on pain evaluation in model organisms. A broad
range of behavioral measurements including the evaluation
of social interactions, place preference/avoidance, elevated-plus
maze, burrowing etc. have been explored, yet these efforts
remain limited to specific studies or labs. Large data modeling
approaches are beginning to make inroads in the topic as
well. Computational technology allows for more ecological
measurements of animal pain behaviors; tools from dynamical
systems, statistical modeling, and machine learning enables the
analysis of high dimensional behavioral data (e.g., hours of
video recording) (24), or analyzing high-speed videos of paw
movements (25).

Human brain imaging technology has advanced our notions
of the brain circuitry implicated in pain and the discovery of
biomarkers of risk for chronic pain. A combination of human
brain imaging and rodent models has yielded a four-phase model
of transition from acute to chronic pain (26, 27). The long-
term influence of this model remains to be seen. However, it has
already led to novel approaches in designing clinical trials for
testing the efficacy of a combination medication therapy to block
the transition from acute to chronic pain (28). Is remains unclear
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whether comparative brain imaging studies, between models and
human conditions, would be an appropriate route with which
similarity of brain activity patterns can be used to establish model
correspondences to specific clinical conditions.

Nocifensive behavior is ubiquitous in living organisms,
starting from unicellular life. Thus, it is unquestionable that
nociceptive signaling, and related pain, are fundamental for
survival and evolution. Surprisingly, little is known regarding the
mechanisms and function of pain from an evolutionary context.
The comparison of pain-related behaviors across species can help
us in the distinction of pain and nociception (29), since both
vertebrates and invertebrate animals share a similar segregation
of nociceptive and non-nociceptive signals (30). However,
quantifying pain remains a most complex task, especially because
the current definition of pain– the conscious and emotional
experience of pain—is human focused and defining conscious
experiences outside of reported subjectivity remains unreachable
(31, 32). Despite challenges, advances on the field show how pain-
like behaviors interact with motivational effects as an adaptative
response to nociceptive sensitization—which can be key for
survival in some species (33); these motivational effects share
similarities, in humans, with fear and anxiety derived pain
behaviors which may become maladaptive (34). Experimental
research can take in consideration predatory and defense
interactions—in presence and absence of pain/injury—to further
understand mechanism of hypervigilance and hyperalgesia
expressed in mammals species. One could even argue that the
ultimate nocifensive behavior is the establishment of culture:
constructing shelter, moving into caves, and ultimately building
cathedrals are seem evolutionarily aimed at enhancing comfort
and thus also reducing nociception within the environment.

Models—whether they be toys (paper planes), circuit
diagrams, mathematical formulations, or more general
formulations (labeled line vs. distributed representation;
the necessity of peripheral vs. central mechanisms)—remain
essential to furthering science. Moreover, they are critical to
conceptualizing and advancing and/or applying novel tools and
methods. For a slightly different and more detailed outline of the
current theories of mechanisms of pain, see (35). Importantly,
the utility of models becomes most apparent when they are
simplified to contain only their essential components. The
latter is always a challenge for the biologist who is excited in
continuously unraveling the huge complexity of the cellular and
molecular construction of life.

CHALLENGES

In the field of clinical pain, the principal grand challenge remains
the need to conquer chronic pain. The prevalence of chronic
pain is on the rise; its ubiquity and healthcare cost worldwide
is staggering. Somewhere between 15 and 20% of the world
population suffers from continued, unremitting pain, for which
there are no scientifically validated treatments. Therefore, new
approaches in research methods and their application will be
critical to advance our knowledge and build validated preventive
and treatment methods. Such methods will likely need to be

multi-modal; in this sense, proper co-implementation will be
necessary to move the field forward. For further discussion on
the challenges regarding the transition from acute to chronic
pain, see (36); musculoskeletal pain, see (37); neuropathic pain,
see (38); and challenges in the pharmacotherapy of pain, see
(36). These latter articles outline the general scope and vision of
Frontiers in Pain Research.

Of course, another major challenge is the scientific
conceptualization of pain perception. Its definition at a
brain representational level, at least for acute painful stimuli in
healthy subjects, should have been settled years ago given the
plethora of human brain imaging data. Yet, the topic remains
hotly debated. For example, compare the strong claims of a
whole-brain signature for acute pain (39) with the opposing
view that the latter is not tenable (40, 41). It used to be thought
that the sensory component of acute pain was represented in
some differential pattern within S1 or S2 or insula, while its
affective properties were localized to ACC (42). This is despite
the ascending supraspinal nociceptive signals reaching the cortex
have long been known to be minimal (43). There is now even
evidence that one can capture signals related to acute pain from
the primary visual cortex (44). Thus, even the existence of brain
activity patterns that are specific to acute pain remains unclear.
In fact, whether a brain pattern or interaction across many brain
regions constructively defines pain states remains unsettled, and
the challenge of isolating pain from tightly correlated mental
states like salience, anxiety, and attention is also unsettled (45).
Human studies and rodent models on the transition to chronic
pain have vastly expanded our knowledge of the brain circuitry
engaged in the process (27). In particular, by describing the
critical role of mesolimbic motivational/affective circuits in
the transition to chronic pain (46) and identifying predictive
biomarkers for the development of chronic pain (26, 47).
Current evidence on the mechanisms of plasticity, as well as
risk predictive markers, suggests that these mechanisms may
be critically dependent on the type of chronic pain. However,
such knowledge remains to be systematically pursued. Thus, the
minimal biological requirements for pain perception remain
elusive. Similarly, the expansion of such circuits with distinct
chronic pain conditions also remains unclear.

OPPORTUNITIES

In the twenty-first century, advances in biological science
research methods continue to occur at a dizzying pace. Such
advances span all domains and scales; from novel genetic tools
to genetically modified rodent models, to cellular molecular
techniques coupled with genetic tools to modulate neural
circuitry, to new advances in clinical trial design that may
be coupled with brain imaging and molecular and genetic
assays. Various combinations of these methods should provide
unprecedented opportunities to demystify acute and chronic
pain. Yet, tools alone are not sufficient; they need to be coupled
with models that can be rigorously tested.

Within the framework of preventing/curing chronic pain,
there remain a multiplicity of interrelated challenges that require
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new approaches, combinations of approaches, and concepts (48).
An important example is recent efforts to modify the definitions
of pain and chronic pain (49). The latter is a natural consequence
of advances in mechanistic understandings, which will continue
to evolve as critical neural, glial, and genetic factors becomemore
apparent. Finally, conflating pain and nociception emanates from
the ongoing, opposing viewpoints regarding the necessary and
sufficient neural elements that underscore pain and chronic pain,
especially the supposedly opposing positions of peripheral vs.
central circuitry being viewed as the prime contributors and thus
controllers of pain states (50).

The persistence of the Covid19 pandemic itself poses
additional challenges. Societal changes in everyday behaviors,
more seclusion, and less physical interaction will further
exacerbate the suffering of living with pain. Indeed, new data
indicate that the opioid epidemic, a simple barometer of
incidence and prevalence of chronic pain, is itself becoming
more prevalent.

Human brain imaging methods have already revolutionized
our concepts of pain and chronic pain. By themselves, these
methods can only push the field so far. They need to be
coupled with forward and backward translational approaches,
along with causal studies of neuronal circuits by taking advantage
of optogenetic and chemogenetic tools.

Decades of intense and costly research by the pharmaceutical
industry have yielded very meager results. Progress in
pharmacotherapy would need far better-combined studies
of brain physiology, human genetics, and human behavior
assessments, ideally tightly coupled with each other, and with
translational animal model studies.

I hope and expect that this Methodology dedicated section of
the journal can provide a platform for further expound, argue,
and demonstrate the merits of the application of diverse methods
to advancing the science of pain.

A major issue in advancing the field regards the rigor
with which science is conducted. It is now apparent that
more transparency and a greater expounding of methods and
results are critical for replication and thus the advancement
of science. Proper power calculations, their reporting, and
rigorous statistical models are also necessary for enhancing
scientific research. Moreover, the age of big data is upon
us, together with the necessity of collaboration across labs
and research groups. Especially in genetics and human
brain imaging, as well as their combination, will require
appreciable collaborative efforts with coordinated and
transparent methodologies. Fortunately, multiple such efforts
have already launched or are starting (e.g., OPPERA, MAPP,
BACPAC, A2CPS), which should quicken the pace of progress
in revealing mechanisms and providing proper cures for
chronic pain.
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