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Abstract

An emerging trend is to use regression-based machine learning approaches to pre-

dict cognitive functions at the individual level from neuroimaging data. However,

individual prediction models are inherently influenced by the vast options for net-

work construction and model selection in machine learning pipelines. In particular,

the brain white matter (WM) structural connectome lacks a systematic evaluation

of the effects of different options in the pipeline on predictive performance. Here,

we focused on the methodological evaluation of brain structural connectome-

based predictions. For network construction, we considered two parcellation

schemes for defining nodes and seven strategies for defining edges. For the regres-

sion algorithms, we used eight regression models. Four cognitive domains and brain

age were targeted as predictive tasks based on two independent datasets (Beijing

Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older adults; Human

Connectome Projects in Aging [HCP-A]: 560 healthy older adults). Based on the

results, the WM structural connectome provided a satisfying predictive ability for

individual age and cognitive functions, especially for executive function and atten-

tion. Second, different parcellation schemes induce a significant difference in pre-

dictive performance. Third, prediction results from different data sets showed that

dMRI with distinct acquisition parameters may plausibly result in a preference for

proper fiber reconstruction algorithms and different weighting options. Finally,

deep learning and Elastic-Net models are more accurate and robust in

connectome-based predictions. Together, significant effects of different options in

WM network construction and regression algorithms on the predictive perfor-

mances are identified in this study, which may provide important references and

guidelines to select suitable options for future studies in this field.
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1 | INTRODUCTION

Combined with different neuroimaging features, regression algorithms

have been increasingly applied to predict individual cognitive func-

tions (Gabrieli et al., 2015; Sui et al., 2020). Specifically, regression-

based multivariate models have provided a powerful and widely used

approach to predict human behavior from neuroimaging features.

Models spanning multiple brain regions (features) have been devel-

oped to reveal the neurobiology of cognition and behavior (Rosenberg

et al., 2018). Compared with traditional univariate brain-behavior

mapping, the multivariate model shows stronger statistical power and

spatial mapping capability (Woo et al., 2017). In addition, predictive

models usually employ a nested cross-validation (CV) strategy to avoid

the problem of overfitting and to achieve generalization across differ-

ent datasets (Gabrieli et al., 2015; Rosenberg et al., 2018; Sui

et al., 2020; Woo et al., 2017).

Using different brain imaging modalities, different types of neuro-

imaging features can be extracted. Brain connectome-based features

and predictive models exhibit great potential for individual fingerprint

identification, and they have been gradually applied to the individual

prediction of cognitive functions (Rosenberg et al., 2016; Sui

et al., 2020). Both functional and structural brain networks can be

constructed using different brain magnetic resonance imaging (MRI)

techniques. Then, graph theory analysis is performed to quantify the

integration and segregation of brain networks. To date, the functional

connectome has been widely applied to predict fluid intelligence

(Jiang et al., 2020), attention (Gao et al., 2020; Rosenberg

et al., 2016), processing speed (Fountain-Zaragoza et al., 2019), work-

ing memory (Jangraw et al., 2018), creativity (Beaty et al., 2018), and

visuospatial functions (Chen et al., 2019); however, the potential util-

ity of the structural connectome for establishing individual predictions

remains largely unknown. Compared with the functional connectome,

the structural connectome has been less studied as a neuroimaging

predictor of individual cognition and behavior.

Using the diffusion MRI (dMRI) tractography technique, the mac-

roscale white matter (WM) structural connectome has been con-

structed at an individual level in vivo (Bullmore & Sporns, 2009;

Jbabdi et al., 2015; Rubinov & Sporns, 2010; Sporns et al., 2005). The

topological organization of the brain structural connectome is sensi-

tive to development and aging and exhibits substantial individual dif-

ferences in both normal and disease populations. Previous brain

network studies using dMRI have shown a significant correlation

between connectomics features (edge or topological properties) and

processing speed or executive function in normal elderly individuals

and patients with MCI (Fornito et al., 2015; Madole et al., 2020;

Palop & Mucke, 2016), suggesting the potential of brain connectome-

based markers to predict individual cognitive performance. Notably,

our previous study trained a linear regression model based on the

WM structural connectome, which predicts executive and attention

functions in normal elderly individuals (Li et al., 2020). Recently, a

study adopted the WM structural network to construct an enriched

functional network, which improved the network consistency and pre-

dictive power of cognitive function (Kim et al., 2021). Moreover, a

cutting-edge study found that ultrahigh-resolution WM connectomes

yielded accurate predictive performance both on a range of behavioral

measures and individualized fingerprints (Mansour et al., 2021),

encouraging further investigation of brain-behavior studies with struc-

tural connectomes.

The brain connectome-based prediction pipeline consists of two

core parts: brain network construction and machine learning-based

prediction. However, many methodological choices require further

evaluation in this field, especially for structural connectome-based

predictions. First, how do different methods of WM network con-

struction affect the cognitive prediction performance? Zhong

et al. (2015) found that diverse construction methods affect the indi-

vidual differences in network measures. Dhamala et al. (2021) evalu-

ated the extent to which template selection and tractography

(probabilistic and deterministic) methods influence prediction results.

However, the effects of different strategies for defining edges have

not yet been considered. Second, how do different regression algo-

rithms affect the predictive performance? With structural

connectome-based features, we must examine which regression algo-

rithms are more suitable for individual predictions. These methodolog-

ical pipelines have been extensively evaluated for functional MRI

(fMRI) data-based prediction (Cui & Gong, 2018; He et al., 2020;

Pervaiz et al., 2020; Scheinost et al., 2019). Finally, researchers have

not evaluated which network construction methods and regression

algorithms should be used for different cognitive domains. To our

knowledge, no study has systematically evaluated the WM structural

connectome-based individual predictions pipeline and discussed the

potential effects.

In the present study, we focused on the methodological evalua-

tion of brain structural connectome-based cognitive predictions pipe-

line by assessing different network construction methods with dMRI

data and different machine learning regression algorithms. For net-

work construction, we considered two parcellation schemes for defin-

ing nodes and seven strategies for defining edges. We used eight

regression models for the regression algorithms, including both linear

and nonlinear models. Four cognitive domains and brain age were

targeted as predictive tasks based on two independent data sets

(Beijing Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older

adults; Human Connectome Projects in Aging [HCP-A]: 560 healthy

older adults).

2 | MATERIALS AND METHODS

2.1 | Participants

In the present study, two independent data sets were used. One

cohort is the BABRI, which included 633 cognitively normal elderly

Chinese participants (age range of 45 to 86 years, mean age of 65.5

± 6.9 years, 393 females) who were recruited by community public

health centers. The detailed inclusion and exclusion criteria for the

participants have been published (Yang et al., 2021). All participants

signed an informed consent form approved by the Institutional
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Review Board of the Beijing Normal University Imaging Center for

Brain Research and the study conformed to the principles of the Dec-

laration of Helsinki.

The other cohort is Lifespan HCP-A 1.0 data release (https://

www.humanconnectome.org/study/hcp-lifespan-aging), which is cur-

rently screening 560 healthy older adults (age range of 36 to

100 years, mean age of 57.46 ± 14.09 years, 322 females), after

matching according to the official demographic information table and

selection and quality control during MRI preprocessing. The detailed

inclusion and exclusion criteria have been published (Bookheimer

et al., 2019).

2.2 | Cognitive composite score

The following four common cognitive domains were included to ensure

the consistency between the two data sets: executive function, atten-

tion, language, and memory. In the BABRI data set, these four domains

were selected from the comprehensive neuropsychological battery of

the BABRI (Yang et al., 2021). In the HCP-A data set, the cognitive

scores were assessed with the National Institutes of Health (NIH) Tool-

box Cognition Battery (https://www.healthmeasures.net/explore-

measurement-systems/nih-toolbox) and other cognitive tasks (https://

www.humanconnectome.org/study/hcp-lifespan-aging/

documentation). The subscores for each cognitive domain in the HCP-A

data set were matched with those in the BABRI data set. For each cog-

nitive domain, the main composite score was calculated as the sum of z

scores from the neuropsychological tests belonging to this domain,

while the z score was obtained by subtracting the mean from the raw

score and dividing by the SD (z score = [raw � mean]/SD). Subjects

were discarded due to the lack of information for specific cognitive

domains. The demographic information and cognitive characteristics of

participants included in the BABRI and HCP-A data sets are presented

in Table 1. Detailed descriptions of the neuropsychological testing in

the two data sets are provided in Text S1, Supporting Information. The

histograms showing the distributions of age and cognitive scores are

presented in Figure S1.

2.3 | Imaging acquisition

2.3.1 | BABRI data set

The MRI data were acquired with a Siemens Trio 3 T scanner with a

16-channel phased array head coil at the Imaging Center for Brain

Research, Beijing Normal University. MRI scanning included the col-

lection of 3D T1-weighted structural MRI with a 1 mm isotropic voxel

size (repetition time [TR] = 1900 ms, echo time [TE] = 3.44 ms, inver-

sion time [TI] = 900 ms, flip angle = 9�, field of view

[FOV] = 256 � 256 mm2, and 176 sagittal slices) and diffusion-

TABLE 1 The demographics and cognitive characteristics of study samples

Samples (F/M) Mean ± SD Range

BABRI Age (years) 393/240 65.54 ± 6.91 45.00 � 86.00

Executive function SCWT-C 387/239 0.23 ± 0.59 �3.30 � 1.69

TMT-B

Attention SDMT 383/237 0.24 ± 0.56 �1.78 � 2.42

TMT-A

Language CVFT 390/236 0.27 ± 0.62 �1.60 � 2.07

BNT

Memory AVLT 389/239 0.30 ± 0.69 �1.33 � 2.42

ROCF-delay

HCP-A Age (years) 322/238 57.46 ± 14.09 36.00 � 100.00

Executive function DCCS 297/209 �0.21 ± 2.13 �4.80 � 9.30

FICAT

TMT-B

Attention PCPS 297/209 �0.13 ± 1.51 �3.82 � 5.26

TMT-A

Language CC 299/208 0.00 ± 1.00 �3.17 � 3.60

Memory RAVLT 293/204 0.15 ± 1.78 �4.69 � 4.74

PSMT

Note: (1) BABRI: SDMT, Symbol Digit Modalities Test; TMT-A, Trail Making Test-A; SCWT-C, Stroop Color and Word Test C; TMT-B, Trail Making Test-B;

AVLT, Auditory-Verbal Learning Test; ROCF-delay, Rey-Osterrieth Complex Figure Test; CVFT, Category Verbal Fluency Test; BNT, Boston Naming Test.

(2) HCP-A: DCCS, Dimensional Change Card Sort Test; FICAT, Flanker Inhibitory Control and Attention Test; TMT-B, Trail Making Test-B; PCPS, Pattern

Completion Processing Speed Test; TMT-A: Trail Making Test-A; CC, Crystallized Cognition, which is derived by Picture Vocabulary and Oral Reading

Recognition; RAVLT, Ray Auditory Verbal Learning Test; PSMT, Picture Sequence Memory Test.
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weighted MRI (DWI) with a 2 mm isotropic voxel size (30 diffusion

directions with b = 1000 s/mm2 and an image with b = 0 s/mm2,

TR = 9500 ms, TE = 92 ms, flip angle = 90�, FOV = 256 � 256 mm2,

and 70 axial slices).

2.3.2 | HCP-A data set

The MRI data were acquired at four imaging sites using a matched

Siemens Prisma 3 T scanner with a 32-channel head coil. The high-

quality MRI scans included T1-weighted structural images with a

0.8 mm isotropic voxel (TR = 2500 ms, TE = 1.81/3.6/5.39/7.18 ms,

TI = 1000 ms, flip angle = 8�, FOV = 256 � 256 mm2, and 208 sagit-

tal slices) and DWI images with a 1.5 mm isotropic voxel size (185 dif-

fusion directions with both b = 1500 s/mm2 and b = 3000 s/mm2

and 14 DWIs with b = 5 s/mm2, TR = 3230 ms, TE = 89.20 ms, flip

angle = 78�, FOV = 210 � 210 mm2, and 92 axial slices).

2.4 | Image preprocessing

The preprocessing procedures for diffusion magnatic resonance imag-

ing (dMRI) data comprised the correction of the eddy current and

motion artifacts, estimation of the diffusion tensor elements, and cal-

culation of the fractional anisotropy (FA). The eddy current distortions

and motion artifacts in the dMRI data were corrected by applying an

affine alignment of each DWI image to the b0 image using the

eddy_correct command in the FMRIB's Diffusion Toolbox (FDT) tool-

box of FMRIB Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FDT). For the HCP dataset, we applied minimal preprocessing

pipelines (Glasser et al., 2013) by referring to the publicly available

code from https://github.com/Washington-University/HCPpipelines,

including intensity normalization, echo planar imaging distortion cor-

rection, eddy current, motion artifacts, and gradient nonlinearity cor-

rection. The diffusion tensor elements were estimated by solving the

Stejskal and Tanner equations, and the FA value of each voxel was

calculated using the dtifit command in the FDT toolbox of FSL.

For the estimation of fiber orientations in each voxel, the ball-

and-stick model estimated from bedpost was used (Behrens

et al., 2003, 2007; Jbabdi et al., 2012), which is a Bayesian estimation

of diffusion parameters using sampling techniques for modeling cross-

ing fibers within each voxel. The bedpostx_gpu (Hernandez

et al., 2013) command in the FDT toolbox was adopted to quickly

estimate multiple fiber orientations (three fibers modeled per voxel)

based on the preprocessed dMRI data. Approximately 423 s were

required for the analysis of each subject in the BABRI data set and

approximately 1551 s per subject in the HCP-A data set.

2.5 | WM network construction

The brain network consists of two main elements: nodes and edges.

In this study, we applied two parcellation schemes with different brain

atlases and seven edge definition strategies to evaluate the effect of

different WM network construction methods on the performance of

cognitive predictions. In addition, two diffusion models (the tensor

model and ball-and-stick model) were employed to reconstruct whole-

brain WM fiber streamlines. Therefore, for each participant, 14 distinct

WM structural networks were constructed with different methods

(Figure S2).

2.5.1 | Network node definition

In the present study, we used two popular brain atlases to define

network nodes: Automated Anatomical Labeling with 90 cortical

and subcortical regions (AAL90) (Tzourio-Mazoyer et al., 2002) and

the Human Brainnetome Atlas with 246 brain regions (BNA246)

(Fan et al., 2016). Briefly, the dMRI b0 image was aligned to the

native T1 image, and then the native T1 image was normalized to

the ICBM-152 T1 template in MNI space using the Centre for

Functional Magnetic Resonance Imaging of the Brain (FMRIB) Lin-

ear Image Registration Tool (FLIRT of FSL, https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/FLIRT) (Jenkinson et al., 2002) and FMRIB Nonlinear

Image Registration Tool (FNIRT of FSL, https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/FNIRT). Inverse transformation matrices derived from

the aforementioned steps were applied to the brain atlases, and

then we obtained whole-brain parcellation with cortical and sub-

cortical areas as the network nodes.

2.5.2 | Network edge definition

Deterministic and probabilistic tractography were performed to define

network edges, and different WM network matrices were constructed

using different weighting strategies.

Deterministic tractography

Two distinct diffusion models (tensor model and ball-and-stick

model) were used to perform deterministic tractography. Deter-

ministic tractography with a single tensor model was performed

using the Diffusion Toolkit (http://www.trackvis.org/dtk/) and the

command-line dti_tracker to reconstruct whole-brain fiber tracts.

Using the Camino toolbox (http://camino.cs.ucl.ac.uk/), a

command-line track was used to reconstruct fibers with a ball-and-

stick model estimated from bedpostx, and command-line

procstreamlines were adopted to remove false-positive fibers.

Based on the deterministic tractography results, a binary network

(BN), FA-weighted network (FA), and fiber number weighted net-

work (FN) were constructed for each subject. BN represents the

presence or absence of fiber bundles between two regions; if the

number of fiber streamlines is greater than 0, it is 1; otherwise, it is

0. Other BN strategies are provided in Text S4. FA weight is

defined as the average FA value of the voxels traversed along the

connected fibers between two regions. The FN weight is the num-

ber of fiber streamlines connecting two brain regions.
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Probabilistic tractography

Based on the bedpost estimation of fiber orientations in each voxel,

probabilistic tractography was implemented to estimate the probabil-

ity of connectivity between two regions (Behrens et al., 2007). The

probability pij from region of interest (ROI) i to ROI j was defined as

the number of fibers passing through ROI j divided by the total num-

ber of fibers sampled from ROI i. For each voxel within the seed

region, 5000 fibers were sampled. Importantly, the probability pij is

not necessarily equivalent to the probability pji because of the

tractography dependence on the seeding location, and thus the prob-

ability between ROIs i and j is defined as the average of pijþpji. The

probtrackx2_gpu command in the FDT toolbox (Hernandez-Fernandez

et al., 2019) utilizes GPU acceleration to produce sample streamlines.

For the AAL90-based network, approximately 563 s were required to

produce results for each subject in the BABRI data set and approxi-

mately 3618 s for each subject in the HCP-A data set. The

BNA246-based network took approximately 1250 s per subject in the

BABRI data set and approximately 4948 s for subjects in the HCP-A

data set. Considering that removing spurious connections with rela-

tively low probability and ensuring comparability of features between

probabilistic tractography (PT)-derived WM networks and determinis-

tic tractography (DT)-derived networks, we chose the following strat-

egy: two brain regions were considered unconnected if the mean

connectivity probability across the subjects was >2 SDs below a given

threshold (Cao et al., 2013). The threshold should be selected to

ensure that the sparsity of mean probability network is approximate

to that of deterministic networks.

2.6 | Machine learning prediction framework

2.6.1 | Connectome-based features

Both edge and node features based on the brain connectome were

considered. As the WM structure network is a symmetric matrix, only

the upper/lower triangular matrix represented edge features. Addi-

tionally, five common nodal metrics for brain connectome research

were included as node features: clustering coefficient (Chen

et al., 2021), shortest path length (Boot et al., 2020), nodal efficiency

(Li et al., 2020), local efficiency (Tuladhar et al., 2016), and degree cen-

trality (Liao et al., 2017), which were calculated with GRETNA soft-

ware (http://www.nitrc.org/projects/gretna/) (Wang et al., 2015). See

Text S2 for detailed definitions of nodal network metrics. Then, both

edge and node features were concatenated and flattened into a one-

dimensional vector. Standard min-max scaling was employed in the

training set to estimate the scale values (min and max values) and

applied to the testing set (Figure 1c and f).

2.6.2 | Regression algorithms

Seven common regression algorithms were evaluated in this study,

including basic ordinary least squares (OLS) regression, least absolute

shrinkage and selection operator least absolute shrinkage and selec-

tion operator (LASSO) regression, ridge regression, Elastic-Net, linear

support vector regression (LSVR), relevance vector regression (RVR),

F IGURE 1 Prediction framework used in this study. (a) One hundred trials were performed per group to avoid model bias caused by data
partitioning. (b) Outer 5F-CV. The data set is randomly divided into five folds on average, with four folds serving as training features and the
remaining one fold serving as the testing feature; the process was repeated five times. (c) Min-max scaling. The training features are executed by
scaling normalization, and min and max values are obtained after fitting. (d) Inner 5F-CV. The training features are further randomly divided into
five folds, of which four folds are used for model training under the hyperparameter candidate combinations, and the remaining one fold is used
to test the model accuracy and determine the optimal hyperparameter. This step was omitted if the regression algorithm did not involve
hyperparameter selection. (e) Model construction. Based on the determined optimal hyperparameter combination, the training model is
constructed according to the training set divided in (b). (f) Application of min-max scaling. The testing features from (b) are subjected to scaling
normalization using min and max values from (c). (g) Prediction. The testing features from (b) are input to generate prediction outputs. (h) Model
evaluation. The predicted outputs and corresponding labels were calculated using Pearson's correlation analysis to obtain the prediction accuracy
of the model
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and partial least squares regression (PLSR). Usually, the dimension

of neuroimaging features is much larger than the sample size of the

training set, which may lead to the problem of overfitting. Regulari-

zation terms in the objective functions of some regression algo-

rithms automatically select features, reduce redundancy, simplify

the model, and enhance generalization. The PLSR algorithm solves

the overfitting problem using a component extraction strategy

from the original data. Notably, a deep learning method, the multi-

layer perceptron neural network (MLP), was also examined in the

experiment. Compared with some complex network structures,

MLP has a simple structure and high performance (Tolstikhin

et al., 2021). Detailed descriptions of the aforementioned regres-

sion algorithms are provided in Text S3.

2.6.3 | Nested cross-validation framework

In the present study, a nested n-fold (n = 5) CV (5F-CV) framework

was adopted, which consists of both outer CV and inner CV. In the

outer CV, the data set is randomly divided into n folds, one-fold is

used for the testing set, and the remaining n-1 folds are used for the

training model. By repeating the process n times, n predictive models

are obtained, and the averaged predictive accuracy across n times is

the accuracy of the final model. Inner CV is used to search for optimal

hyperparameters. Within the candidate set of hyperparameters, four-

fifths of the training set was used to train the model under different

hyperparameters, and the remaining one-fifth of the training set was

used to determine the optimal parameters (Figure 1b and d). An inner

CV step was skipped if the regression algorithm did not contain

hyperparameters.

2.6.4 | Construction and evaluation of predictive
models

First, the optimal hyperparameters were determined based on the

inner CV (Figure 1d), and the predictive model was determined using

the training set of outer CV (Figure 1e). Then, the model was applied

to the test set to generate predicted outputs (Figure 1g). Finally,

Pearson's correlation coefficients between predicted outputs and

actual labels were calculated to assess the model performance

(Figure 1h).

2.6.5 | Experimental setup and implementation

Based on the extracted features from 14 WM networks with dis-

tinct construction methods, 8 regression algorithms were used to

predict 5 cognition-related measures across 2 independent

datasets. Each experiment included 100 trials; therefore, a total of

14 � 8 � 5 � 100 � 2 = 112,000 trials were performed in this

study. The experimental settings of the regression algorithms are

summarized in detail below.

For OLS and RVR, inner CV was excluded because of the lack

of hyperparameters. For LASSO and Ridge, regularization strength

α� x j x¼2n,n�Z,n� �10,5½ �f g was used to improve the conditioning

of the problem and reduce the variance of the estimates. Larger

values specify stronger regularization. For Elastic-Net, the constant

α� x j x¼2n,n�Z,n� �10,5½ �f g was the regularization strength, and

the tradeoff parameter β� x j x¼0:1n,n�Z,n� 0,10½ �f g was applied

to the L1 penalty and L2 penalty. A raster search was performed to

find the optimal combination among the 16�11 hyperparametric

combinations. For LSVR, the regularization parameter

c� x j x¼2n,n�Z,n� �5,10½ �f g was inversely proportional to the reg-

ularization strength. For PLSR, n� x j x� 1,6½ �,x�Zf g was the number

of components. For MLP, three hidden layers with neural units [256

128 64] and four hidden layers with neural units [512 256 128 64] were

adopted. The dropout radio d� x j x¼0:1n,n�Z,n� 0,5½ �f g was applied

to all hidden layers, enhancing generalization and simplifying the

model. The leaky rectified linear unit nonlinearity activation function

limited the output amplitude to avoid losing negative weight informa-

tion. The mean absolute error loss and adaptive moment estimation

gradient optimizer with a learning rate lr¼ 0:001,0:0001,0:00001f g
and no batch size strategy were incorporated to calculate and update

the model parameters.

OLS, LASSO, Ridge, Elastic-Net, LSVR, and PLSR were

implemented in scikit-learn library 0.24.0 (https://scikit-learn.org/),

RVR was executed referencing https://github.com/AmazaspShumik/

sklearn-bayes, and MLP was implemented in pytorch 1.9.0 (https://

pytorch.org/) using an NVIDIA RTX 3090.

2.7 | Statistical analyses

Pearson's correlation coefficients and mean absolute error (MAE)

between predicted scores and actual scores were calculated to evalu-

ate the predictive performance. To simplify the description, Pearson's

correlation coefficient is used as the main measure for the subsequent

descriptions of the prediction results. Since correlations of prediction

were not normally distributed, group differences in predictive perfor-

mances between two brain atlases (AAL90 and BNA246) were com-

pared using a two-sample Wilcoxon rank-sum test. The pairwise

comparisons among different edge definition methods and regression

algorithms after inverted rank sorting were performed with a two-

sample Wilcoxon rank-sum test. The Bonferroni correction was used

to correct for multiple comparisons. All the aforementioned statistical

analyses were performed using R (https://www.r-project.org/).

3 | RESULTS

3.1 | Predictive performances across different
cognitive domains

In this study, the predictive performance brain age and cognitive

scores across four domains was comprehensively analyzed. For each
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predictive measure, 112 candidate combinations (2 node definition

atlases, 7 edge definition methods, and 8 regression algorithms)

were obtained, and 100 trials were conducted per combination.

The predictive performance of each combination was reported as

the average value across 100 trials. As shown in Table 2, the mean,

std, min, median, and max values of prediction precision (Pearson's

correlation coefficient) were calculated for each measure. The pre-

diction results for executive function and attention were most sta-

ble among the four cognitive domains in both the BABRI and

HCP-A data sets. For memory, prediction results were good in

HCP-A but not in BABRI. Moreover, prediction results for language

were relatively poor in both data sets. Regarding brain age, the pre-

diction accuracy in the HCP-A dataset was significantly higher than

that in the BABRI data set.

3.2 | The effect of the node definition on
predictive power

As shown in Figure 2, split violin plots show the predictive perfor-

mances obtained with different node definition atlases in the BABRI

(Figure 2a) and HCP-A (Figure 2b) data sets. Group comparisons

between the two atlases showed that the BNA246 atlas significantly

outperformed the AAL90 atlas in predicting brain age and all cognitive

measures (p < .001, Bonferroni correction) in both data sets.

3.3 | The effect of the edge definition on
predictive power

The axial split violin diagram in Figure 3a shows the predictive ability

of the seven edge definition methods for different measures in the

BABRI and HCP-A data sets. The heatmap in Figure 3b represents the

pairwise comparisons across different edge definition methods after

ranking (in reverse order) to obtain a statistical comparison. For

BABRI, edge definitions based on a single tensor model were superior

to the strategy based on the ball-and-stick model (*_t > *_bs), and DT

was superior to PT, especially in predicting executive function and

attention. For HCP-A, the edge definitions based on the ball-and-stick

model were better than those based on the single tensor model

(*_bs > *_t). Meanwhile, PT was better than DT, showing excellent

predictive performance. In general, the edge definition with FA weight

exhibited excellent performance in predicting executive function and

attention cognitive tasks, where FA_t was the best for BABRI and

TABLE 2 The predictive performance
for age and four cognitive composition
scores Predicted measure

R (Pearson correlation) MAE

Mean ± SD Min � max Mean ± SD Min � max

BABRI Executive function 0.28 ± 0.06 0.09 � 0.40 0.45 ± 0.06 0.37 � 0.86

Attention 0.25 ± 0.07 0.02 � 0.37 0.45 ± 0.05 0.38 � 0.89

Language 0.12 ± 0.06 �0.01 � 0.22 0.53 ± 0.05 0.46 � 0.93

Memory 0.06 ± 0.05 �0.02 � 0.17 0.60 ± 0.07 0.52 � 1.15

Age 0.54 ± 0.07 0.33 � 0.69 4.83 ± 0.71 3.67 � 7.49

HCP-A Executive function 0.32 ± 0.07 0.11 � 0.45 1.63 ± 0.25 1.28 � 2.75

Attention 0.37 ± 0.07 0.17 � 0.50 1.19 ± 1.18 0.93 � 2.20

Language 0.23 ± 0.06 0.06 � 0.40 8.35 ± 5.11 6.72 � 59.53

Memory 0.36 ± 0.07 0.18 � 0.50 1.41 ± 0.19 1.13 � 2.24

Age 0.69 ± 0.08 0.48 � 0.84 8.89 ± 3.40 5.48 � 30.96

F IGURE 2 The effect of
network node definitions on
predictive power. (a) Split violin
plot of prediction results for the
BABRI cohort. (b) Split violin plot
of prediction results for the
HCP-A cohort. Group
comparisons between two atlases
were performed with the two-
sample Wilcoxon rank-sum test
(***p < 0.001, Bonferroni
correction)
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FA_bs was more suitable for HCP-A. For predicting brain age, both

datasets consistently indicated that PT performed better than DT.

3.4 | The effect of the regression algorithm on the
predictive power

The violin map of the eight regression algorithms in Figure 4a illus-

trates distributions of prediction results for different measures in the

BABRI and HCP-A data sets. Pairwise comparisons across different

algorithms are presented in heatmaps (Figure 4b) after ranking

(in reverse order). Based on the results, MLP achieved the best predic-

tion results for all prediction tasks. Among the seven traditional

regression algorithms, Elastice-Net exhibited an optimal and robust

prediction ability in most prediction tasks.

3.5 | Recommended optimal combination

Figure 5 provides a visualization of all possible combinations in the

structural connectome-based cognitive prediction pipeline. The

options with higher red proportions are consistent with previous

F IGURE 3 The effect of network edge definitions on predictive power. (a) The left panel shows the results from the BABRI cohort, and the
right panel shows the results from the HCP-A cohort. The median point line of each half violin diagram is used to visually identify the size of the
comparison value. In the legend below, different colors correspond to different edge definitions. (b) the pairwise comparison of edge definition
methods after ranking (in reverse order) with a two-sample Wilcoxon rank-sum test among various measures in the BABRI and HCP-A data sets.
The heatmaps denote p values from the two-sample Wilcoxon rank-sum test (***p < 0.001/n; **p < 0.01/n; *p < 0.05/n, n = 21, Bonferroni
correction), where pink represents significant p values, and blue represents nonsignificant p values. The abbreviation “_t” refers to the single
tensor model, and “_bs” refers to the ball-and-stick model. Abbreviations of the form “BN_t” refers to using BN edge definition based on single

tensor models
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statistical results. Table 3 shows the recommended combination for

each measure in each data set and the mean ± variance of 100 trials

of each combination. Notably, MLP appears in the optimal combina-

tion for all measures. Considering its complex parameter adjustment

procedure and weak interpretability (Cichy & Kaiser, 2019), cost-

effective combinations including only traditional regression algorithms

are also presented for reference.

3.6 | Cross-validation in independent datasets

Using two independent data sets, the generalizability, specificity, and

interpretability of the predictive models were investigated.

3.6.1 | Generalizability

To assess the generalizability of predictive models, we

selected executive function and attention scores with the highest

prediction accuracy in both data sets. The composite scores from

different data sets were adjusted to a uniform distribution

based on the z score. Subsequently, a cost-effective combination

was used to train the model based on one data set, and the inde-

pendent test was performed in the other data set. Four

models were generated and applied for external independent vali-

dation. As shown in Figure 6, all four models significantly

predicted the corresponding cognitive scores in the independent

test data set.

F IGURE 4 The effect of regression algorithms on predictive power. (a) The violin maps denote the results predicted by eight
regression algorithms for different measures in the BABRI and HCP-A cohorts. (b) The pairwise comparison of regression algorithms after
ranking (in reverse order) with the two-sample Wilcoxon rank-sum test (***p < 0.001/n; **p < 0.01/n; *p < 0.05/n, n = 28, Bonferroni
correction) among various measures in the BABRI and HCP-A cohorts. The heatmaps denote p values from the two-sample Wilcoxon rank-
sum test, pink indicates significant p values, and blue represents nonsignificant p values. The abbreviation “EN” refers to the elastic-net
algorithm
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3.6.2 | Specificity

To investigate the specificity of the predictive models, the models for

executive function and attention were also applied to predict

language and memory. We generated predictive models according to

1000 permutations of predictive variables and obtained a null distri-

bution for model performance. Effective specificity was described,

and the original prediction accuracy was less than 99%. Table 4 shows

F IGURE 5 A visualization of all possible combinations of options in the pipeline. The vertical sorting is selected relative to the prediction
performance for each subblock in ascending order of prediction correlation/accuracy. Each line of the combination is color-coded according to
prediction performance. In each subblock, the color proportion is clearly distinguished, where a higher red proportion indicates the inclusion of
more high-precision combinations, conversely, a higher blue proportion indicates the inclusion of more low-precision combinations. The
abbreviation “_t” refers to the single tensor model, “_bs” refers to the ball-and-stick model. Abbreviations of the form “BN_t” refers to using BN
edge definition based on single tensor models. And “EN” refers to the elastic-net algorithm
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the specific model predicting other cognitive scores with distinct FA

features derived from two diffusion models. Model specificity was

observed for the prediction of language but not for memory.

3.6.3 | Interpretability

Brain regions with positive and negative contributions for the prediction

were determined by calculating the sum of all positive and negative

weights of selected features, including both nodal metrics and

connections for each region. The top 20% of brain regions contributing

to predicting executive function and attention are shown in Figure 7. The

regions for predicting executive function in both data sets were congru-

ously located in the superior frontal gyrus, middle frontal gyrus, inferior

frontal gyrus, precentral gyrus, middle temporal gyrus, inferior parietal

lobule, precuneus, hippocampus, basal ganglia, and thalamus. For

predicting attention, the contributed regions in both data sets were

mainly located in the superior frontal gyrus, middle frontal gyrus, para-

central lobule, inferior temporal gyrus, superior parietal lobule, precuneus,

lateral occipital cortex, hippocampus, and basal ganglia.

TABLE 3 The recommended optimal combination

Predicted measure High-precision combination Cost-effective combination

BABRI Executive function 246_ FA_t_MLP (0.40 ± 0.01) 246_ FA_t_Elastic-Net (0.38 ± 0.01)

Attention 246_ FA_t_MLP (0.37 ± 0.01) 246_ FA_t_Elastic-Net (0.35 ± 0.02)

Language 90_FN_t_MLP (0.22 ± 0.02) 90_FN_t_PLSR (0.21 ± 0.01)

Memory 246_PT_MLP (0.17 ± 0.02) 246_FN_bs_LSVR (0.10 ± 0.02)

Age 246_PT_MLP (0.69 ± 0.01) 246_PT_ Elastic-Net (0.68 ± 0.01)

HCP-A Executive function 246_FA_bs_MLP (0.45 ± 0.01) 246_FA_bs_ Elastic-Net (0.42 ± 0.02)

Attention 246_FA_bs_MLP (0.50 ± 0.01) 246_FA_bs_PLSR (0.49 ± 0.02)

Language 246_PT_MLP (0.40 ± 0.02) 246_PT_ Elastic-Net (0.35 ± 0.03)

Memory 246_FN_bs_ MLP (0.50 ± 0.02) 246_PT_ Elastic-Net (0.47 ± 0.02)

Age 246_PT_ MLP (0.84 ± 0.01) 246_PT_Ridge (0.84 ± 0.01)

Note: All combinations are denoted by abbreviations, for example, “246_ FA_t_MLP” refers to using BNA246 for node definition, FA_t for edge definition

and MLP for prediction.

F IGURE 6 External independent validation of predictive models. (a b) The validation of executive function, and (c) and (d) show the validation
of attention. (a) Training on BABRI using 246_FA_t_Elastic-net, and testing on HCP-A using 246_ FA_t (left panel) and 246_ FA_bs (right panel).
(b) Training on HCP-A using 246_FA_bs_Elastic-net, and testing on BABRI using 246_ FA_t (left panel) and 246_FA_bs (right panel). (c) Training on
BABRI using 246_ FA_t_Elastic-net, and testing on HCP-A using 246_ FA_t (left panel) and 246_ FA_bs (right panel). (d) Training on HCP-A using
246_FA_bs_PLSR, and testing on BABRI using 246_ FA_t (left panel) and 246_ FA_bs (right panel). Above all combinations are denoted by
abbreviations, for example, “246_ FA_t_MLP” refers to using BNA246 for node definition, FA_t for edge definition, and MLP for prediction
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4 | DISCUSSION

To our knowledge, this study is the first to systematically evaluate the

pipeline of WM structural connectome-based individual predictions

and discuss the potential effects in two independent large cohorts.

First, we confirmed that the WM connectome contributes to the pre-

diction of multiple cognitive functions and age. Second, we showed

that the prediction performance is influenced by WM network con-

struction, including node and edge definitions. Third, different regres-

sion algorithms affect the predictive performance to varying degrees.

Fourth, through CV in independent data sets, we investigated the

generalizability, specificity, and interpretability of predictive models.

4.1 | WM connectome features tend to predict
cognitive function and age

Cognitive function and age present pronounced individual differences

in measures of brain connectivity. Previous dMRI studies have found

significant associations between microstructural connectivity patterns

and age (Cole & Franke, 2017) and various cognitive functions

(Bennett & Madden, 2014; Coelho et al., 2021; Palop &

Mucke, 2016), such as processing speed (Kochunov et al., 2016), fluid

intelligence (Zimmermann et al., 2018), language (Lin et al., 2020),

executive function (Li et al., 2020; Shu et al., 2012), and attention (Li

et al., 2020). Although the WM connectome is undeniably related to

age and cognition, few studies have analyzed its ability to predict cog-

nitive functions (Kim et al., 2021; Li et al., 2020; Madole et al., 2020;

Mansour et al., 2021). In this study, we predicted four cognitive mea-

sures and age using WM connectome features (edge and node fea-

tures). Consistent results were obtained from both cohorts and

revealed comparable individual predictive power compared with

advanced methods (Beck et al., 2021; Fountain-Zaragoza et al., 2019;

Gao et al., 2020; Kim et al., 2021; Madole et al., 2020; Mansour

et al., 2021), which is associated with the correlation between WM

and cognitive function and age from the perspective of prediction.

Executive function and attention had higher predictive power for

other cognitive functions, supporting significant statistical results that

executive function and attention are related to WM in individuals

with age-related normal degeneration or traumatic brain injury (Bai

TABLE 4 The specificity of predictive models

Predictive model

Language Memory

FA_t FA_bs FA_t FA_bs

Executive function BABRI_FA_t 0.03 (32.5%) 0.06 (70.9%) 0.24 (100%) 0.32 (99.5%)

HCP-A_FA_bs 0.11 (76.0%) �0.08 (81.9%) 0.15 (99.9%) 0.06 (84.0%)

Attention BABRI_FA_t 0.12 (96.6%) 0.07 (74.1%) 0.12 (98.8%) 0.03 (16.5%)

HCP-A_FA_bs 0.01 (4.6%) 0.04 (36.8%) 0.19 (100%) 0.34 (100%)

Note: (*%) means probability that original prediction accuracy is greater than random prediction accuracy. All combinations are denoted by abbreviations,

for example, “BABRI_FA_t” refers to using FA_t for edge definition in BABRI.

F IGURE 7 The distribution of brain regions contributing to the cognitive prediction. The top 20% of brain regions contributing to the

prediction of executive function and attention are shown with lateral and medial views of the right (RH) and left (LH) hemispheres in the BABRI
(a) and HCP-A (b) data sets. Warmer colors indicate positive weights, and cooler colors indicate negative weights. The results were visualized
using BrainNet viewer software (https://www.nitrc.org/projects/bnv/) (Xia et al., 2013)
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et al., 2020; Bubb et al., 2018; Chopra et al., 2018; Cristofori

et al., 2015; Madole et al., 2020; Webb et al., 2020). The predictive

accuracy of age was higher than that of cognitive functions, and age

appears to be more sensitive to changes in brain structure. On the

other hand, the conflicting results for memory prediction might be

influenced by the difference between the cognitive measures used in

the two data sets, and this difference might also explain the inter-

cohort difference in the accuracy of predictions of age and different

cognitive domains.

4.2 | The effect of network construction methods
on predictive power

4.2.1 | Node definition

Prior template selection can affect individual neuroimaging analyses

(Zalesky et al., 2010; Zhong et al., 2015). From the perspective of pre-

diction, a recent study (Dhamala et al., 2021) compared the predictive

power using two different parcellations that differ in nodal resolution

and derivation to construct a WM network, suggesting that high-

resolution parcellation might be better for predicting cognition. How-

ever, nonhomologous templates weaken the result of comparison

when one template is functionally defined and the other is anatomi-

cally defined. In our study, the AAL90 parcellation is anatomically

defined, and the fine-grained BNA246 parcellation is defined based

on both anatomical and functional connections. These two prevalent

parcellations are widely used in research supported by WM (Bi

et al., 2021; Cao et al., 2013; Huang et al., 2021; Li et al., 2020; Zhong

et al., 2015). Our results indicate that BNA246 is significantly superior

to AAL90 (p < .001, Bonferroni correction) in predicting various mea-

sures, indicating that finer division-derived features that more plausi-

bly contribute are useful for obtaining prediction results, although

higher-resolution node definitions have theoretical overfitting threats

(for more details see Text S5). In addition, this result also seems to be

influenced by the ability to depict individual differences (Zalesky

et al., 2010; Zhong et al., 2015).

4.2.2 | Edge definition

The edge definition of the structural connectome hinges on

tractography (Yeh et al., 2021). Deterministic tractography based on a

tensor model is generally considered plagued by fiber crossing, while

probabilistic tractography can address this problem (Behrens

et al., 2007) but is a trade-off with exorbitant computational time con-

siderations, resulting in the prohibition of related research using large

samples. A compromise solution, deterministic tractography based on

a ball-and-stick model, is characterized by acceptable time consump-

tion and multidirectional fiber tracking. Multifiber deterministic

tractography is highlighted for mapping the connectome (Sarwar

et al., 2019) on simulated dMRI compared with other avenues. As the

evaluation of these three avenues from a predictive perspective has

not been clearly conducted to date, a presupposition is that a specific

central data set may be applied to a suitable fiber reconstruction

model. All three methods were included as fiber reconstruction

options in the present study. We found that the single tensor model

generally outperformed the ball-and-stick model in predicting cogni-

tive function in the BABRI cohort, while the opposite conclusion was

obtained for the HCP-A cohort. This model preference across cohorts

may be interpreted as influenced by acquisition parameters, since

dMRI of HCP-A included hundreds of gradient directions and higher

voxel resolution. Interestingly, the prediction performance of the sin-

gle tensor model was weaker than that of the ball-and-stick model for

predicting age in both the BABRI and HCP-A cohorts, possibly

because changes in the brain with age are brain-wide and subtle,

whereas the ball-and-stick model reconstructs more fiber bundles and

captures these subtle changes more easily.

On the other hand, we analyzed the effects of different weighting

strategies (BN, FA, and FN) by focusing on execution function and

attention that exhibited higher predictive accuracy. Many studies usu-

ally choose different weighting strategies with distinct neurophysio-

logical significance for a particular problem, and the inconsistent

results seem to be caused by different weighting strategies (Zhong

et al., 2015). In the present study, FA > BN > FN was relatively consis-

tent based on the applicable model across the two cohorts. This result

supports the validity of FA for capturing individual differences in the

structural integrity of WM from the perspective of forecasting cogni-

tion (Bennett & Madden, 2014; Coelho et al., 2021; Qi et al., 2018;

Sui et al., 2018). Furthermore, the comparison (Figure 3b) revealed

that the effect of model selection was greater than that of the

weighting strategy. The weighting strategies with the lowest predic-

tion accuracy in the optimal model were greater than or equal to the

weighted strategies with the highest prediction accuracy in the sub-

optimal model.

4.3 | The effect of regression algorithms on
predictive power

Many studies have used a single machine learning algorithm to predict

measures without considering the prediction bias associated with dif-

ferent regression algorithms (Cui & Gong, 2018; He et al., 2020;

Pervaiz et al., 2020). A comprehensive experimental analysis based on

different algorithms has an important role as a reference and guideline

for future prediction research in the computational neuroscience field

on the selection of algorithms. We showed that various algorithms

have heterogeneous performance, where the deep learning algorithm

displays its considerable fitting ability compared with traditional

regression algorithms and Elastic-Net reveals the most robust perfor-

mance among traditional regression algorithms. In addition, we also

observed an overall trend in which algorithms predict different mea-

sures across data sets from different centers in similar patterns, which

may indicate that the performance of the algorithm is robust for data

sets from different centers. In particular, emerging deep learning

models, such as BrainNetCNN (Kawahara et al., 2017) and GCNN (He
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et al., 2020), are deemed to change the conventional pattern of the

field of cognitive prediction. However, critics draw attention to their

limitations, the divergence between the limited range of tasks a deep

learning model can currently perform, and the many cognitive func-

tions lacking explanations (Cichy & Kaiser, 2019; Kay, 2018).

4.4 | Generalizability, specificity, and
interpretability of the predictive model

Many exploratory studies are based on relatively small samples and

tend to report higher precision with a positive bias (Gabrieli

et al., 2015; Sui et al., 2020). The results that are statistically rigorous

must be based on larger samples, especially for neurodiversity studies

that focus on individual differences, because sufficient sampling is

required not only for the entire population but also for individual

diversity within that population (Woo et al., 2017). Furthermore, the

lack of completely independent samples for prospective testing will

also lead to data dependence bias. Using the aforementioned guide-

lines, we conducted CV of the prediction model in two completely

independent large data sets to examine the generalizability, specificity,

and interpretability of the model.

4.4.1 | Generalizability

Model generalizability has always been a key problem in the field of

multicenter cognitive prediction, and the validation of external inde-

pendent samples is generally considered the most objective test

method. A hidden rule is that training and testing across multicenter

samples are built in the same feature from a common pipeline. In our

experiment, a very unexpected finding was that the model trained

using the FA_t feature in the BABRI data set for predicting the perfor-

mance of FA_t was significantly lower than that of FA_bs, and the

identical result was observed simultaneously for the prediction of

executive function (a) and attention (c) in the HCP-A cohort. How-

ever, when the attentional model trained with the FA_bs feature from

the HCP-A cohort, the predictive performance for BABRI_FA_t was

slightly higher than that for BABRI_FA_bs (d), and no analogous result

was observed for the executive function prediction (b). Overall, this

generalizability is not restricted by the selection of the fiber tracking

model in the scope of consideration of the experiment in this study.

At the same time, this finding reveals that more accurate follow-up

analysis results might be obtained by adopting the most suitable data

processing method for the data set from each center when simulta-

neously predicting data from multiple centers.

4.4.2 | Specificity

We evaluated the domain specificity of the constructed predictive

model described in Table 4. None of the four models predicted perfor-

mance on the language task, as the predictive precision was less than

99% of the random accuracy of 1000 permutation tests, indicating

the specificity of the model. In contrast, no definite specificity was

observed for predicting memory tasks. The result is that memory and

attention functions are likely to be predictive of their shared pro-

cesses with processing speed (Gao et al., 2020), while attention is usu-

ally significantly correlated with executive function.

4.4.3 | Interpretability

Machine learning not only provides models with higher predictive

accuracy but also, more importantly, helps us understand and inter-

pret the necessary and sufficient representation basis of the brain (Sui

et al., 2020; Woo et al., 2017). Its heuristic techniques have the

exceptional advantage of simplifying models and giving humans intui-

tively readable feature weights to provide potential biological inter-

pretability. Consistent with previous studies (Bennett &

Madden, 2014; Li et al., 2020; Lin et al., 2020), our visualized feature

mapping showed multiple brain regions (frontal, parietal, temporal,

limbic system, etc.) with strong contributions to executive function

and attention across distinct cohorts.

4.5 | Methodological issues

Several methodological issues in this study must be addressed. First,

our parcellation-level WM connectomes may not be sufficiently pre-

cise to represent fine features for predicting individual cognitive func-

tions and brain age. The vertex-level WM connectome with ultrahigh

resolution has been shown to have potential advantages for individual

predictions (Mansour et al., 2021). However, it was not considered in

this study due to the inherent computational complexities of handling

a high-dimensional connectome. Second, we should examine combin-

ing more fiber reconstruction methods (e.g., other model-based

methods or model-free methods) and tracking algorithms

(e.g., machine learning) to reconstruct accurate fibers focusing on data

from different centers (Jeurissen et al., 2019; Yeh et al., 2021) and

explore its convergence and divergence of predictive performance in

the future. Third, the predictive efficacy of different sets of graph

parameters should be further examined. Finally, our general results

are based on two data sets of healthy elderly individuals, and further

studies are needed to explore whether the results can be generalized

to other age groups (adolescents or young adults).

5 | CONCLUSIONS

In the present study, we systematically evaluated different options in

the pipeline of brain WM connectome-based cognitive predictions in

two large data sets. Both WM network construction methods and

regression algorithms influence the predictive performances for cogni-

tive functions and brain age in elderly subjects. The results indicated

that the effects of different options in the predictive pipeline should be
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considered and evaluated in future studies. Therefore, our study may

provide important methodological references and guidelines for future

research on brain WM connectome-based individual predictions.

ACKNOWLEDGMENTS

The authors thank all the volunteers for their participation in the study

and anonymous reviewers for their insightful comments and sugges-

tions. This work was supported by the National Natural Science Foun-

dation of China (No. 81671761 and 81871425); Funds for International

Cooperation and Exchange of the National Natural Science Foundation

of China (No. 81820108034); National Key Research and Development

Project of China (No. 2018YFC1315200); Fundamental Research Funds

for the Central Universities (No. 2017XTCX04); Open Research Fund of

the State Key Laboratory of Cognitive Neuroscience and Learning

(No. CNLYB2001). Data in this publication were provide (in part) by the

Human Connectome Project-Aging (HCP-A), which is supported by the

National Institute On Aging of the National Institutes of Health under

Award Number U01AG052564. The content in this publication is solely

the responsibility of the authors and does not necessarily represent the

official views of the National Institutes of Health.

CONFLICT OF INTEREST

There are no conflicts of interest including any financial, personal, or

other relationships with people or organizations for any of the authors

related to the work described in the article.

AUTHOR CONTRIBUTIONS

Guozheng Feng: Software, Data curation, Writing - original draft,

Writing - review & editing. Yiwen Wang: Data curation, Writing - orig-

inal draft, Writing - review & editing. Weijie Huang: Writing - Soft-

ware, Data curation, Supervision. Haojie Chen: Software, Data

curation. Zhengjia Dai: Writing - review & editing, Supervision. Guolin

Ma: Writing - review & editing. Xin Li: Writing - review & editing.

Zhanjun Zhang: Writing - review & editing. Ni Shu: Software, Data

curation, Writing - review & editing, Supervision.

DATA AVAILABILITY STATEMENT

The data sets generated and analyzed in the present study will be

made available from the corresponding author to other scientists on

request in anonymized format and according to data protection policy

in the ethics agreement. Code availability The Python, MATLAB, and

R code for MRI data processing and experiments is available from the

authors upon request.

ORCID

Guozheng Feng https://orcid.org/0000-0002-6937-8592

Zhanjun Zhang https://orcid.org/0000-0001-7266-4218

REFERENCES

Bai, L., Bai, G., Wang, S., Yang, X., Gan, S., Jia, X., Yin, B., & Yan, Z. (2020).

Strategic white matter injury associated with long-term information

processing speed deficits in mild traumatic brain injury. Human Brain

Mapping, 41(15), 4431–4441. https://doi.org/10.1002/hbm.25135

Beaty, R. E., Kenett, Y. N., Christensen, A. P., Rosenberg, M. D.,

Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, T., Kane, M. J., &

Silvia, P. J. (2018). Robust prediction of individual creative ability from

brain functional connectivity. Proceedings of the National Academy of

Sciences of the United States of America, 115(5), 1087–1092. https://
doi.org/10.1073/pnas.1713532115

Beck, D., de Lange, A. G., Maximov, I. I., Richard, G., Andreassen, O. A.,

Nordvik, J. E., & Westlye, L. T. (2021). White matter microstructure

across the adult lifespan: A mixed longitudinal and cross-sectional

study using advanced diffusion models and brain-age prediction.

NeuroImage, 224, 117441. https://doi.org/10.1016/j.neuroimage.

2020.117441

Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W.

(2007). Probabilistic diffusion tractography with multiple fibre orienta-

tions: What can we gain? NeuroImage, 34(1), 144–155. https://doi.
org/10.1016/j.neuroimage.2006.09.018

Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H.,

Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., & Smith, S. M.

(2003). Characterization and propagation of uncertainty in diffusion-

weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077–
1088. https://doi.org/10.1002/mrm.10609

Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: Cerebral white

matter integrity and age-related differences in cognition. Neuroscience,

276, 187–205. https://doi.org/10.1016/j.neuroscience.2013.11.026
Bi, Q., Wang, W., Niu, N., Li, H., Wang, Y., Huang, W., Chen, K., Xu, K.,

Zhang, J., Chen, Y., Wei, D., Cui, R., Shu, N., & Zhang, Z. (2021). Rela-

tionship between the disrupted topological efficiency of the structural

brain connectome and glucose hypometabolism in normal aging.

NeuroImage, 226, 117591. https://doi.org/10.1016/j.neuroimage.

2020.117591

Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M.,

Buckner, R. L., Burgess, G. C., Curtiss, S. W., Diaz-Santos, M.,

Elam, J. S., Fischl, B., Greve, D. N., Hagy, H. A., Harms, M. P.,

Hatch, O. M., Hedden, T., Hodge, C., Japardi, K. C., Kuhn, T. P., …
Yacoub, E. (2019). The lifespan human connectome project in aging:

An overview. NeuroImage, 185, 335–348. https://doi.org/10.1016/j.
neuroimage.2018.10.009

Boot, E. M., Mc van Leijsen, E., Bergkamp, M. I., Kessels, R. P. C.,

Norris, D. G., de Leeuw, F. E., & Tuladhar, A. M. (2020). Structural net-

work efficiency predicts cognitive decline in cerebral small vessel dis-

ease. NeuroImage: Clinical, 27, 102325. https://doi.org/10.1016/j.nicl.

2020.102325

Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum

bundle: Anatomy, function, and dysfunction. Neuroscience and Biobe-

havioral Reviews, 92, 104–127. https://doi.org/10.1016/j.neubiorev.

2018.05.008

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoret-

ical analysis of structural and functional systems. Nature Reviews. Neu-

roscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M. R., Wang, J.-H.,

Gong, G.-L., Zang, Y.-F., Wang, Y.-F., & He, Y. (2013). Probabilistic dif-

fusion tractography and graph theory analysis reveal abnormal white

matter structural connectivity networks in drug-naive boys with atten-

tion deficit/hyperactivity disorder. The Journal of Neuroscience, 33(26),

10676–10687. https://doi.org/10.1523/JNEUROSCI.4793-12.2013

Chen, Q., Baran, T. M., Turnbull, A., Zhang, Z., Rebok, G. W., & Lin, F. V.

(2021). Increased segregation of structural brain networks underpins

enhanced broad cognitive abilities of cognitive training. Human Brain

Mapping, 42(10), 3202–3215. https://doi.org/10.1002/hbm.25428

Chen, Q., Beaty, R. E., Cui, Z., Sun, J., He, H., Zhuang, K., Ren, Z., Liu, G., &

Qiu, J. (2019). Brain hemispheric involvement in visuospatial and ver-

bal divergent thinking. NeuroImage, 202, 116065. https://doi.org/10.

1016/j.neuroimage.2019.116065

Chopra, S., Shaw, M., Shaw, T., Sachdev, P. S., Anstey, K. J., & Cherbuin, N.

(2018). More highly myelinated white matter tracts are associated

FENG ET AL. 3789

https://orcid.org/0000-0002-6937-8592
https://orcid.org/0000-0002-6937-8592
https://orcid.org/0000-0001-7266-4218
https://orcid.org/0000-0001-7266-4218
https://doi.org/10.1002/hbm.25135
https://doi.org/10.1073/pnas.1713532115
https://doi.org/10.1073/pnas.1713532115
https://doi.org/10.1016/j.neuroimage.2020.117441
https://doi.org/10.1016/j.neuroimage.2020.117441
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1016/j.neuroscience.2013.11.026
https://doi.org/10.1016/j.neuroimage.2020.117591
https://doi.org/10.1016/j.neuroimage.2020.117591
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.neuroimage.2018.10.009
https://doi.org/10.1016/j.nicl.2020.102325
https://doi.org/10.1016/j.nicl.2020.102325
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1038/nrn2575
https://doi.org/10.1523/JNEUROSCI.4793-12.2013
https://doi.org/10.1002/hbm.25428
https://doi.org/10.1016/j.neuroimage.2019.116065
https://doi.org/10.1016/j.neuroimage.2019.116065


with faster processing speed in healthy adults. NeuroImage, 171, 332–
340. https://doi.org/10.1016/j.neuroimage.2017.12.069

Cichy, R. M., & Kaiser, D. (2019). Deep neural networks as scientific

models. Trends in Cognitive Sciences, 23(4), 305–317. https://doi.org/
10.1016/j.tics.2019.01.009

Coelho, A., Fernandes, H. M., Magalhaes, R., Moreira, P. S., Marques, P.,

Soares, J. M., Amorim, L., Portugal-Nunes, C., Castanho, T.,

Santos, N. C., & Sousa, N. (2021). Signatures of white-matter micro-

structure degradation during aging and its association with cognitive

status. Scientific Reports, 11(1), 4517. https://doi.org/10.1038/

s41598-021-83983-7

Cole, J. H., & Franke, K. (2017). Predicting age using neuroimaging: Innova-

tive brain ageing biomarkers. Trends in Neurosciences, 40(12), 681–
690. https://doi.org/10.1016/j.tins.2017.10.001

Cristofori, I., Zhong, W., Chau, A., Solomon, J., Krueger, F., &

Grafman, J. J. N. (2015). White and gray matter contributions to exec-

utive function recovery after traumatic brain injury. Neurology, 84(14),

1394–1401.
Cui, Z., & Gong, G. (2018). The effect of machine learning regression algo-

rithms and sample size on individualized behavioral prediction with

functional connectivity features. NeuroImage, 178, 622–637. https://
doi.org/10.1016/j.neuroimage.2018.06.001

Dhamala, E., Jamison, K. W., Jaywant, A., Dennis, S., & Kuceyeski, A.

(2021). Distinct functional and structural connections predict

crystallised and fluid cognition in healthy adults. Human Brain Mapping,

42, 3102–3118. https://doi.org/10.1002/hbm.25420

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C.,

Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016).

The human Brainnetome atlas: A new brain atlas based on connec-

tional architecture. Cerebral Cortex, 26(8), 3508–3526. https://doi.org/
10.1093/cercor/bhw157

Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of

brain disorders. Nature Reviews. Neuroscience, 16(3), 159–172. https://
doi.org/10.1038/nrn3901

Fountain-Zaragoza, S., Samimy, S., Rosenberg, M. D., & Prakash, R. S.

(2019). Connectome-based models predict attentional control in aging

adults. NeuroImage, 186, 1–13. https://doi.org/10.1016/j.neuroimage.

2018.10.074

Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as

a humanitarian and pragmatic contribution from human cognitive neu-

roscience. Neuron, 85(1), 11–26. https://doi.org/10.1016/j.neuron.

2014.10.047

Gao, M., Wong, C. H. Y., Huang, H., Shao, R., Huang, R., Chan, C. C. H., &

Lee, T. M. C. (2020). Connectome-based models can predict

processing speed in older adults. NeuroImage, 223, 117290. https://

doi.org/10.1016/j.neuroimage.2020.117290

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van

Essen, D. C., Jenkinson, M., & WU-Minn HCP Consortium. (2013). The

minimal preprocessing pipelines for the human connectome project.

NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.

2013.04.127

He, T., Kong, R., Holmes, A. J., Nguyen, M., Sabuncu, M. R., Eickhoff, S. B.,

Bzdok, D., Feng, J., & Yeo, B. T. T. (2020). Deep neural networks and

kernel regression achieve comparable accuracies for functional con-

nectivity prediction of behavior and demographics. NeuroImage, 206,

116276. https://doi.org/10.1016/j.neuroimage.2019.116276

Hernandez, M., Guerrero, G. D., Cecilia, J. M., Garcia, J. M., Inuggi, A.,

Jbabdi, S., Behrens, T. E. J., & Sotiropoulos, S. N. (2013). Accelerating

fibre orientation estimation from diffusion weighted magnetic reso-

nance imaging using GPUs. PLoS One, 8(4), e61892. https://doi.org/

10.1371/journal.pone.0061892

Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., &

Sotiropoulos, S. N. (2019). Using GPUs to accelerate computational

diffusion MRI: From microstructure estimation to tractography and

connectomes. NeuroImage, 188, 598–615. https://doi.org/10.1016/j.
neuroimage.2018.12.015

Huang, W., Li, X., Li, X., Kang, G., Han, Y., & Shu, N. (2021). Combined sup-

port vector machine classifier and brain structural network features

for the individual classification of amnestic mild cognitive impairment

and subjective cognitive decline patients. Frontiers in Aging Neurosci-

ence, 13, 687927. https://doi.org/10.3389/fnagi.2021.687927

Jangraw, D. C., Gonzalez-Castillo, J., Handwerker, D. A., Ghane, M.,

Rosenberg, M. D., Panwar, P., & Bandettini, P. A. (2018). A functional

connectivity-based neuromarker of sustained attention generalizes to

predict recall in a reading task. NeuroImage, 166, 99–109. https://doi.
org/10.1016/j.neuroimage.2017.10.019

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., &

Behrens, T. E. (2015). Measuring macroscopic brain connections

in vivo. Nature Neuroscience, 18(11), 1546–1555. https://doi.org/10.
1038/nn.4134

Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Grana, M., & Behrens, T. E.

(2012). Model-based analysis of multishell diffusion MR data for

tractography: How to get over fitting problems. Magnetic Resonance in

Medicine, 68(6), 1846–1855. https://doi.org/10.1002/mrm.24204

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved opti-

mization for the robust and accurate linear registration and motion

correction of brain images. NeuroImage, 17(2), 825–841. https://doi.
org/10.1006/nimg.2002.1132

Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2019). Diffusion

MRI fiber tractography of the brain. NMR in Biomedicine, 32(4), e3785.

https://doi.org/10.1002/nbm.3785

Jiang, R., Calhoun, V. D., Fan, L., Zuo, N., Jung, R., Qi, S., Lin, D., Li, J.,

Zhuo, C., Song, M., Fu, Z., Jiang, T., & Sui, J. (2020). Gender differences

in connectome-based predictions of individualized intelligence quo-

tient and sub-domain scores. Cerebral Cortex, 30(3), 888–900. https://
doi.org/10.1093/cercor/bhz134

Kawahara, J., Brown, C. J., Miller, S. P., Booth, B. G., Chau, V.,

Grunau, R. E., Zwicker, J. G., & Hamarneh, G. (2017). BrainNetCNN:

Convolutional neural networks for brain networks; towards predicting

neurodevelopment. NeuroImage, 146, 1038–1049. https://doi.org/10.
1016/j.neuroimage.2016.09.046

Kay, K. N. (2018). Principles for models of neural information processing.

NeuroImage, 180, 101–109. https://doi.org/10.1016/j.neuroimage.

2017.08.016

Kim, M., Bao, J., Liu, K., Park, B. Y., Park, H., Baik, J. Y., & Shen, L. (2021). A

structural enriched functional network: An application to predict brain

cognitive performance. Medical Image Analysis, 71, 102026. https://

doi.org/10.1016/j.media.2021.102026

Kochunov, P., Rowland, L. M., Fieremans, E., Veraart, J., Jahanshad, N.,

Eskandar, G., Du, X., Muellerklein, F., Savransky, A., Shukla, D.,

Sampath, H., Thompson, P. M., & Hong, L. E. (2016). Diffusion-

weighted imaging uncovers likely sources of processing-speed deficits

in schizophrenia. Proceedings of the National Academy of Sciences of the

United States of America, 113(47), 13504–13509. https://doi.org/10.
1073/pnas.1608246113

Li, X., Wang, Y., Wang, W., Huang, W., Chen, K., Xu, K., Zhang, J., Chen, Y.,

Li, H., Wei, D., Shu, N., & Zhang, Z. (2020). Age-related decline in the

topological efficiency of the brain structural connectome and cognitive

aging. Cerebral Cortex, 30(8), 4651–4661. https://doi.org/10.1093/

cercor/bhaa066

Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain net-

works: Perspectives and challenges. Neuroscience and Biobehavioral

Reviews, 77, 286–300. https://doi.org/10.1016/j.neubiorev.2017.

03.018

Lin, Y. C., Baete, S. H., Wang, X., & Boada, F. E. (2020). Mapping brain-

behavior networks using functional and structural connectome fin-

gerprinting in the HCP dataset. Brain and Behavior: A Cognitive Neu-

roscience Perspective, 10(6), e01647. https://doi.org/10.1002/brb3.

1647

3790 FENG ET AL.

https://doi.org/10.1016/j.neuroimage.2017.12.069
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1038/s41598-021-83983-7
https://doi.org/10.1038/s41598-021-83983-7
https://doi.org/10.1016/j.tins.2017.10.001
https://doi.org/10.1016/j.neuroimage.2018.06.001
https://doi.org/10.1016/j.neuroimage.2018.06.001
https://doi.org/10.1002/hbm.25420
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1038/nrn3901
https://doi.org/10.1038/nrn3901
https://doi.org/10.1016/j.neuroimage.2018.10.074
https://doi.org/10.1016/j.neuroimage.2018.10.074
https://doi.org/10.1016/j.neuron.2014.10.047
https://doi.org/10.1016/j.neuron.2014.10.047
https://doi.org/10.1016/j.neuroimage.2020.117290
https://doi.org/10.1016/j.neuroimage.2020.117290
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2019.116276
https://doi.org/10.1371/journal.pone.0061892
https://doi.org/10.1371/journal.pone.0061892
https://doi.org/10.1016/j.neuroimage.2018.12.015
https://doi.org/10.1016/j.neuroimage.2018.12.015
https://doi.org/10.3389/fnagi.2021.687927
https://doi.org/10.1016/j.neuroimage.2017.10.019
https://doi.org/10.1016/j.neuroimage.2017.10.019
https://doi.org/10.1038/nn.4134
https://doi.org/10.1038/nn.4134
https://doi.org/10.1002/mrm.24204
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1002/nbm.3785
https://doi.org/10.1093/cercor/bhz134
https://doi.org/10.1093/cercor/bhz134
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1016/j.neuroimage.2016.09.046
https://doi.org/10.1016/j.neuroimage.2017.08.016
https://doi.org/10.1016/j.neuroimage.2017.08.016
https://doi.org/10.1016/j.media.2021.102026
https://doi.org/10.1016/j.media.2021.102026
https://doi.org/10.1073/pnas.1608246113
https://doi.org/10.1073/pnas.1608246113
https://doi.org/10.1093/cercor/bhaa066
https://doi.org/10.1093/cercor/bhaa066
https://doi.org/10.1016/j.neubiorev.2017.03.018
https://doi.org/10.1016/j.neubiorev.2017.03.018
https://doi.org/10.1002/brb3.1647
https://doi.org/10.1002/brb3.1647


Madole, J. W., Ritchie, S. J., Cox, S. R., Buchanan, C. R., Hernandez, M. V.,

Maniega, S. M., Wardlaw, J. M., Harris, M. A., Bastin, M. E.,

Deary, I. J., & Tucker-Drob, E. M. (2020). Aging-sensitive networks

within the human structural connectome are implicated in late-life

cognitive declines. Biological Psychiatry, 89, 795–806. https://doi.org/
10.1016/j.biopsych.2020.06.010

Mansour, L. S., Tian, Y., Yeo, B. T. T., Cropley, V., & Zalesky, A. (2021).

High-resolution connectomic fingerprints: Mapping neural identity and

behavior. NeuroImage, 229, 117695. https://doi.org/10.1016/j.

neuroimage.2020.117695

Palop, J. J., & Mucke, L. (2016). Network abnormalities and interneuron

dysfunction in Alzheimer disease. Nature Reviews. Neuroscience,

17(12), 777–792. https://doi.org/10.1038/nrn.2016.141
Pervaiz, U., Vidaurre, D., Woolrich, M. W., & Smith, S. M. (2020). Optimi-

sing network modelling methods for fMRI. NeuroImage, 211, 116604.

https://doi.org/10.1016/j.neuroimage.2020.116604

Qi, S., Calhoun, V. D., van Erp, T. G. M., Bustillo, J., Damaraju, E.,

Turner, J. A., Du, Y., Yang, J., Chen, J., Yu, Q., Mathalon, D. H.,

Ford, J. M., Voyvodic, J., Mueller, B. A., Belger, A., McEwen, S.,

Potkin, S. G., Preda, A., Jiang, T., & Sui, J. (2018). Multimodal fusion

with reference: Searching for joint neuromarkers of working memory

deficits in schizophrenia. IEEE Transactions on Medical Imaging, 37(1),

93–105. https://doi.org/10.1109/TMI.2017.2725306

Rosenberg, M. D., Casey, B. J., & Holmes, A. J. (2018). Prediction com-

plements explanation in understanding the developing brain. Nature

Communications, 9(1), 589. https://doi.org/10.1038/s41467-018-

02887-9

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X.,

Constable, R. T., & Chun, M. M. (2016). A neuromarker of sustained

attention from whole-brain functional connectivity. Nature Neurosci-

ence, 19(1), 165–171. https://doi.org/10.1038/nn.4179
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain

connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069.
https://doi.org/10.1016/j.neuroimage.2009.10.003

Sarwar, T., Ramamohanarao, K., & Zalesky, A. (2019). Mapping con-

nectomes with diffusion MRI: Deterministic or probabilistic

tractography? Magnetic Resonance in Medicine, 81(2), 1368–1384.
https://doi.org/10.1002/mrm.27471

Scheinost, D., Noble, S., Horien, C., Greene, A. S., Lake, E. M., Salehi, M.,

Gao, S., Shen, X., O'Connor, D., Barron, D. S., Yip, S. W.,

Rosenberg, M. D., & Constable, R. T. (2019). Ten simple rules for pre-

dictive modeling of individual differences in neuroimaging.

NeuroImage, 193, 35–45. https://doi.org/10.1016/j.neuroimage.2019.

02.057

Shu, N., Liang, Y., Li, H., Zhang, J., Li, X., Wang, L., He, Y., Wang, Y., &

Zhang, Z. (2012). Disrupted topological organization in white matter

structural networks in amnestic mild cognitive impairment: Relation-

ship to subtype. Radiology, 265(2), 518–527. https://doi.org/10.1148/
radiol.12112361

Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: A

structural description of the human brain. PLoS Computational Biology,

1(4), e42. https://doi.org/10.1371/journal.pcbi.0010042

Sui, J., Jiang, R., Bustillo, J., & Calhoun, V. (2020). Neuroimaging-based

individualized prediction of cognition and behavior for mental disor-

ders and health: Methods and promises. Biological Psychiatry, 88(11),

818–828. https://doi.org/10.1016/j.biopsych.2020.02.016
Sui, J., Qi, S., van Erp, T. G. M., Bustillo, J., Jiang, R., Lin, D., Turner, J. A.,

Damaraju, E., Mayer, A. R., Cui, Y., Fu, Z., Du, Y., Chen, J., Potkin, S. G.,

Preda, A., Mathalon, D. H., Ford, J. M., Voyvodic, J., Mueller, B. A., …
Calhoun, V. D. (2018). Multimodal neuromarkers in schizophrenia via

cognition-guided MRI fusion. Nature Communications, 9(1), 3028.

https://doi.org/10.1038/s41467-018-05432-w

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., & Dosovitskiy, A.

(2021). MLP-mixer: An all-MLP architecture for vision.

Tuladhar, A. M., van Dijk, E., Zwiers, M. P., van Norden, A. G., de

Laat, K. F., Shumskaya, E., Norris, D. G., & de Leeuw, F. E. (2016).

Structural network connectivity and cognition in cerebral small vessel

disease. Human Brain Mapping, 37(1), 300–310. https://doi.org/10.

1002/hbm.23032

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,

Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated

anatomical labeling of activations in SPM using a macroscopic anatom-

ical parcellation of the MNI MRI single-subject brain. NeuroImage,

15(1), 273–289. https://doi.org/10.1006/nimg.2001.0978

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA:

A graph theoretical network analysis toolbox for imaging con-

nectomics. Frontiers in Human Neuroscience, 9, 386. https://doi.org/

10.3389/fnhum.2015.00386

Webb, C. E., Rodrigue, K. M., Hoagey, D. A., Foster, C. M., &

Kennedy, K. M. (2020). Contributions of white matter connectivity

and BOLD modulation to cognitive aging: A lifespan structure-function

association study. Cerebral Cortex, 30(3), 1649–1661. https://doi.org/
10.1093/cercor/bhz193

Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building

better biomarkers: Brain models in translational neuroimaging. Nature

Neuroscience, 20(3), 365–377. https://doi.org/10.1038/nn.4478
Xia, M., Wang, J., & He, Y. (2013). BrainNet viewer: A network visualiza-

tion tool for human brain connectomics. PLoS One, 8(7), e68910.

https://doi.org/10.1371/journal.pone.0068910

Yang, C., Li, X., Zhang, J., Chen, Y., Li, H., Wei, D., Lu, P., Liang, Y., Liu, Z.,

Shu, N., Wang, F., Guan, Q., Tao, W., Wang, Q., Jia, J., Ai, L., Cui, R.,

Wang, Y., Peng, D., … Beijing Aging Brain Rejuvenation Initiative

Workgroup. (2021). Early prevention of cognitive impairment in the

community population: The Beijing aging brain rejuvenation initiative.

Alzheimers Dementia, 17(10), 1610–1618. https://doi.org/10.1002/alz.
12326

Yeh, C. H., Jones, D. K., Liang, X., Descoteaux, M., & Connelly, A. (2021).

Mapping structural connectivity using diffusion MRI: Challenges and

opportunities. Journal of Magnetic Resonance Imaging, 53(6), 1666–
1682. https://doi.org/10.1002/jmri.27188

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yucel, M., Pantelis, C., &

Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the

choice of nodes matter? NeuroImage, 50(3), 970–983. https://doi.org/
10.1016/j.neuroimage.2009.12.027

Zhong, S., He, Y., & Gong, G. (2015). Convergence and divergence across

construction methods for human brain white matter networks: An

assessment based on individual differences. Human Brain Mapping,

36(5), 1995–2013. https://doi.org/10.1002/hbm.22751

Zimmermann, J., Griffiths, J. D., & McIntosh, A. R. (2018). Unique map-

ping of structural and functional connectivity on cognition. The

Journal of Neuroscience, 38(45), 9658–9667. https://doi.org/10.

1523/JNEUROSCI.0900-18.2018

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Feng, G., Wang, Y., Huang, W., Chen,

H., Dai, Z., Ma, G., Li, X., Zhang, Z., & Shu, N. (2022).

Methodological evaluation of individual cognitive prediction

based on the brain white matter structural connectome.

Human Brain Mapping, 43(12), 3775–3791. https://doi.org/10.

1002/hbm.25883

FENG ET AL. 3791

https://doi.org/10.1016/j.biopsych.2020.06.010
https://doi.org/10.1016/j.biopsych.2020.06.010
https://doi.org/10.1016/j.neuroimage.2020.117695
https://doi.org/10.1016/j.neuroimage.2020.117695
https://doi.org/10.1038/nrn.2016.141
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1109/TMI.2017.2725306
https://doi.org/10.1038/s41467-018-02887-9
https://doi.org/10.1038/s41467-018-02887-9
https://doi.org/10.1038/nn.4179
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1002/mrm.27471
https://doi.org/10.1016/j.neuroimage.2019.02.057
https://doi.org/10.1016/j.neuroimage.2019.02.057
https://doi.org/10.1148/radiol.12112361
https://doi.org/10.1148/radiol.12112361
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1016/j.biopsych.2020.02.016
https://doi.org/10.1038/s41467-018-05432-w
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1002/hbm.23032
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.1093/cercor/bhz193
https://doi.org/10.1093/cercor/bhz193
https://doi.org/10.1038/nn.4478
https://doi.org/10.1371/journal.pone.0068910
https://doi.org/10.1002/alz.12326
https://doi.org/10.1002/alz.12326
https://doi.org/10.1002/jmri.27188
https://doi.org/10.1016/j.neuroimage.2009.12.027
https://doi.org/10.1016/j.neuroimage.2009.12.027
https://doi.org/10.1002/hbm.22751
https://doi.org/10.1523/JNEUROSCI.0900-18.2018
https://doi.org/10.1523/JNEUROSCI.0900-18.2018
https://doi.org/10.1002/hbm.25883
https://doi.org/10.1002/hbm.25883

	Methodological evaluation of individual cognitive prediction based on the brain white matter structural connectome
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Participants
	2.2  Cognitive composite score
	2.3  Imaging acquisition
	2.3.1  BABRI data set
	2.3.2  HCP-A data set

	2.4  Image preprocessing
	2.5  WM network construction
	2.5.1  Network node definition
	2.5.2  Network edge definition
	Deterministic tractography
	Probabilistic tractography


	2.6  Machine learning prediction framework
	2.6.1  Connectome-based features
	2.6.2  Regression algorithms
	2.6.3  Nested cross-validation framework
	2.6.4  Construction and evaluation of predictive models
	2.6.5  Experimental setup and implementation

	2.7  Statistical analyses

	3  RESULTS
	3.1  Predictive performances across different cognitive domains
	3.2  The effect of the node definition on predictive power
	3.3  The effect of the edge definition on predictive power
	3.4  The effect of the regression algorithm on the predictive power
	3.5  Recommended optimal combination
	3.6  Cross-validation in independent datasets
	3.6.1  Generalizability
	3.6.2  Specificity
	3.6.3  Interpretability


	4  DISCUSSION
	4.1  WM connectome features tend to predict cognitive function and age
	4.2  The effect of network construction methods on predictive power
	4.2.1  Node definition
	4.2.2  Edge definition

	4.3  The effect of regression algorithms on predictive power
	4.4  Generalizability, specificity, and interpretability of the predictive model
	4.4.1  Generalizability
	4.4.2  Specificity
	4.4.3  Interpretability

	4.5  Methodological issues

	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


