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ABSTRACT: Copper corrosion was suppressed when a lupine extract
was immersed in a 2 M sulfamic acid (H2NSO3H) solution. Numerous
methods, including mass loss (ML), dynamic potential polarization
(PL), and electrochemical impedance (EIS), were employed in these
experiments, in addition to theoretical computations such as density
functional theory (DFT), Fukui function, and Monte Carlo simulations.
Fourier transform infrared (FT-IR) spectroscopy and scanning electron
microscopy (SEM) were used to analyze the Cu surface’s composition
and determine its form. Mass loss (ML) was used to examine the
inhibition rate of copper corrosion in sulfamic acid at 25 °C in the
presence of lupine extract. After examining how it behaved throughout
the adsorption process on copper, it was discovered that it follows the
Langmuir isotherm and chemical adsorption. An analysis of the PL
curves indicates that the lupine extract is a mixed-type inhibitor. It was shown that the inhibitory efficiency increased to 84.2% with
increasing lupine concentration. Additionally, as the data show, the efficiency of inhibitors is diminished by increasing temperatures.
Theoretical calculations and experimental data were compared using Monte Carlo simulation (MC) and density functional theory
(DFT).

1. INTRODUCTION
Sulfamic acid (H2NSO3H) is used in a variety of industrial
operations, such as mechanical cleaning and deposit removal.1

Unlike chloride, sulfuric acid does not create pitting or fatigue
cracking when applied to copper. Instead of producing corrosive
fumes, the−NH2 and−OH functional groups in water solutions
of sulfamic acid dissolve the incrustations so they can be
removed. A corrosion inhibitor must be present in the sulfamic
acid solution to stop corrosion from harming metal surfaces.2

The earliest metal that humans found and used is copper, which
is widely used in a variety of industries, including manufacturing,
national defense, light, electrical, and machinery. To prevent
copper from being destroyed and to guarantee that copper
equipment functions well for the duration of its life, significant
measures must be taken. Under certain conditions, copper is
susceptible to harmful corrosion, particularly in aggressive
corrosive environments like industrial and marine settings.3−7

Because synthetic organic corrosion inhibitors are bad for the
environment, researchers are striving to create green corrosion
inhibitors that are nontoxic.8,9 They function by organic
inhibitors adhering to a substrate made of metal. While electrons
are given away in lone pairs during electrostatic adsorption, they
are given away in pairs with opposing charges during chemical
adsorption. We can better comprehend the adsorption
mechanism by delineating distinct thermodynamic and kinetic
characteristics. Inorganic chemicals such as chromates, nitrites,

dichromate, etc. as well as organic compounds with pi bonds and
heteroatoms that boost the compound’s effectiveness make up
the majority of corrosion inhibitors and play a significant part in
preventing corrosion. Due to their N, O, and S composition,
organic compounds are good corrosion inhibitors, but their
toxicity prevents their use on a large scale. The current research
aims to develop a low-cost, environmentally safe, and high-
inhibition-efficiency, as well as eco-friendly corrosion inhibitor.
Plant extracts can be used to create corrosion inhibitors because
of their availability, harmless characteristics, and harmless
characteristics. Depending on how they are removed, plant
parts can be converted to corrosion inhibitors in a variety of
ways. Green corrosion inhibitors can be made from a variety of
plant parts including fruits, seeds, flowers, and leaves. The food
industry considers lupins, which are underutilized legumes, of
particular interest due to their high protein and fiber contents
and low starch content. Unlike most other legumes, lupine has
oil in it. Although lupins have demonstrated their nutritional and
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functional advantages, their main application is in animal feed,
and they are not yet widely utilized in human nutrition.10,11 Up
to 50% of quinolizidine alkaloids, 20% of lipids, and 5% of
protein can be found in the lupine (Lupinus sp. L.) seed content.
A genus of plants in the legume family Fabaceae, Lupinus, is often
known as lupine, lupine, or regionally as bluebonnet, among
other names. Over 199 species make up the genus, with North
and South America serving as its diversity hotspots. The
Mediterranean and North Africa both have smaller centers.12,13

Although they are widely planted for both food and decorative
purposes, they are invasive in some locations. In order to prevent
corrosion, researchers are concentrating on creating low-cost,
nontoxic, biodegradable, and environmentally friendly natural
products of plant origin. Inhibitors made from plant extracts are
increasingly being used to slow down corrosion of metals and
alloys.14,15 Plant extract-based corrosion inhibitors are less
expensive, biodegradable, and nontoxic than synthetic inhibitors
and do not pose a risk to human health or the environment.16−27

Therefore, eco-friendly corrosion inhibitors, also termed green
alternatives, have been studied recently to replace poisonous and
dangerous compounds. The culture contained a number of
quinolizidine lupine family alkaloids, but multiflorine and
lupanine were the most prevalent. In addition, sparteine, a
dibasic quinolizidine alkaloid, is present in lupine extract.28−32

The inhibitory effects of the lupine extract on Cu corrosion in 2
M H2NSO3H were investigated in this work using weight loss
and electrochemical techniques. The acquired results were
validated using an Fourier transform infrared (FT-IR)
spectrometer, DFT computations, Fukui functions, Monte
Carlo simulation, and an SEM microscope.

2. MATERIALS AND METHODS
2.1. Preparation of the Plant Extract. The lupine plant

was cleaned, crushed, and dried to produce a fine powder. The
plant samples were dried at 45 °C for the whole day. We
extracted 50 g of fine powder with 250mL of methanol using the
Soxhlet apparatus for 12 h. To create a solid product that was
crushed and freeze-dried, the filtrates from the earlier processes
were concentrated.10,33 In order to create the inhibitors,
methanol was used to dilute a concentrated solution of lupine
(1000 ppm). Our tests employed lupine extract at various doses
ranging from 100 to 500 ppm. The chemical action of lupine
extract was previously covered in Section 1. The main chemical
components of lupine extract are shown in Figure 1.13,34

2.2. Preparation of Copper Working Samples and
Corrosive Media.The samples used in this study were all made
from copper. Before each test, the Cu samples had 200, 400, 600,
1200, and 2000 grit sandpaper surface polishing. For mass loss
and electrochemical tests, the Cu specimens were chopped into
rectangular forms with dimensions of 2.0, 2.0, 0.1 and 1.0, 1.0,

0.1 cm, respectively. Inhibitor solutions were generated in
concentrations ranging from 100 to 500 ppm in 2 M aqueous
H2NSO3H, with purified water and commercial sulfamic acid
serving as the corrosive control medium.35

2.3. Experimental Methods. 2.3.1. Mass Loss Tests.
Gravimetric analysis is an often used corrosion method. This
method is perfect for beginners because it is simple to use and
does not require a lot of equipment. The sample is submerged in
a corrosive solution at 25 °C for 3 h and has dimensions of 2 cm
× 2 cm × 0.1 cm. The following equation was used to compute
corrosion rates and corrosion inhibition effectiveness using
various inhibitor concentrations36
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where (CR) stands for corrosion rate, (W) stands for mass loss,
(t) stands for immersion time, (ρ) stands for copper density, and
(K) stands for corrosion constant, whose value is (8.76 × 104).
Inhibitor surface coverage (θ) and corrosion inhibition

efficiency (IE) values were calculated using eqs 2 and 3,
respectively.37
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where CR
0 and CR

i reflect the corrosion rates with and without
inhibitors, respectively.

2.3.2. Electrochemical Tests. In an electrochemical CS
studio, a potentiodynamic polarization experiment was carried
out. Three electrodes make up the three-electrode assembly: a
reference electrode made of saturated calomel, a counter
electrode made of platinum, and a working electrode made of
copper with a 1 cm2 surface exposed.38 At 25 °C, all experiments
were completed. Open-circuit potential (OCP) was established
prior to each experiment by allowing the system to run for 30
min. Before each experiment, an open-circuit potential (OCP) is
set up for 30 min. For this experiment, the power polarization
potential range was from 1 to −250 mV with regard to OCP.39

The EIS was then performed at OCP using a 5 mV AC signal
with frequencies ranging from 100 kHz to 10 MHz.

2.3.3. Theoretical Calculations. Quantum chemical calcu-
lations employing generalized density functional theory (DFT)
with the Becke three parameters Lee, Yang, and Parr (B3LYP)
were carried out using Gaussian 09 software (Gaussian, Inc., CT,
USA).40 Many organic compounds’ electrical characteristics and
geometries can be precisely calculated using 6-311G++(d,p).

Figure 1. Chemical composition of main components in lupine extract.
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2.3.4. Scanning Electron Microscopy (SEM). The morphol-
ogy of the copper surface was examined using a scanning
electron microscope during the course of a 24 h immersion
period in the presence or absence of a tested inhibitor.41 Test
was carried out with 500 ppm of the tested substance and 2 M
H2NSO3H.

3. RESULTS
3.1. Mass Loss (ML). Figure 2 illustrates the results of a study

of the influence of concentration on an inhibitor’s ability to

inhibit Cu in 2MH2NSO3H. The Cu samples were placed in a 2
M H2NSO3H solution with varying amounts of lupine extract
and corrosion inhibitors. For various concentrations of lupine
extract in 2 M H2NSO3H, the corrosion rates and inhibitory
effects calculated by using gravimetric methods are shown in
Table 1. Table 1 shows that the essential lupine extract

significantly inhibits Cu in 2 M H2NSO3H medium. The
corrosion rate decreases as the inhibitor concentration rises, and
the effectiveness of the inhibition also rises.42 To maximize the
effectiveness of inhibition, a protective coating must be formed
via adsorption or by covering the electrode surface with inhibitor
molecules.43 This is interpreted as an increase in the efficiency
with increasing concentration.

3.2. Adsorption Isotherm. Due to their efficiency in
examining their adsorption mechanisms, two corrosion
inhibitors have been examined through isothermal adsorption
for a long time. The Temkin, Frumkin, Langmuir, and other
common adsorption isotherms were compared, along with a
number of others.44 The results of the experiments were found
to be consistent with Langmuir adsorption and might be applied

to improve our understanding of adsorption behavior. The
following is a definition of Langmuir adsorption:45

= +C
K

c1

ads (4)

where θ stands for surface coverage, Kads means adsorption
equilibrium constant, and C is the concentration of two
corrosion inhibitors. The standard adsorption-free energy is
calculated by the following formula46
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The values of Kads and −ΔGads are listed in Figure 3. The lower
the −ΔGads, which generally correlates with greater Kads, the
better the corrosion inhibitory characteristics.47 The magnitude
relation between the Kads values of multiflorine, sparteine, and
lupanine is multiflorine > sparteine > lupanine; however, the
relationship between −ΔGads values is the opposite. The data
show that multiflorine molecules strongly adsorb to Cu because
of these events, which have a better corrosion inhibition effect
than sparteine and lupanine. We are all aware that the type of
adsorption of corrosion inhibitors depends on the value of
−ΔGads. When −ΔGads falls below or equals 20 kJ/mol, physical
adsorption takes place, and the adsorbent and sample are
electrostatically drawn to one another.48 As previously
mentioned, chemical adsorption happens when −ΔGads > 40
kJ/mol, and during this process, the inhibitor molecule
transferred electrons under friendly circumstances by sharing
electrons with the Cu atoms on the surface.49 In this
investigation, chemical reactions demonstrated the inhibitor
adsorption on Cu surfaces.

3.3. Tests for Potentiodynamic Polarization. Figure 4
depicts Cu’s potentiodynamic polarization curves in a 2 M
H2NSO3H solution, both with and without inhibitors. We
examined the corrosion potential (Ecorr), corrosion current
density (icorr), anodic and cathodic slopes (βa, βc), and corrosion
inhibition efficacy (%η). Tafel extrapolation was used to
calculate the corrosion current. Formulas were used to calculate
%η.

= ×i i
i

% 100corr corr
0

corr (6)

The corrosion parameters acquired from the potentiodynamic
polarization measurement are summarized in Figure 4. The
inhibitive action of the inhibitor was examined using a
potentiodynamic polarization analysis at various inhibitor
doses. After the addition of additives to the sulfamic acid
solution, the polarization curves in Figure 4 remain unchanged,
indicating that the corrosion mechanism for Cu is unaffected.50

Both anodic and cathodic curves have a mixed inhibitor
character, which is a sign that corrosion current density is
moving in the direction of lower value.51 According to Table 2,
different anodic and cathodic current densities were observed
following the addition of a corrosion inhibitor, proving that
lupine extract is a mixed-type corrosion inhibitor.52 Lupine
extract adsorption onCu surfaces is indicated by the fact that icorr
values decrease as inhibitor concentrations rise (Table 2). The
difference between the inhibitor and inhibitor-free settings in
terms of corrosion potential (Ecorr) is less than 85 mV, which
suggests a combination of inhibitor-free circumstances.53 A
small change in Ecorr readings relative to the blank values can be
used to demonstrate that both inhibitors have a mix-type

Figure 2. Copper mass loss at different lupine extract concentrations in
2 M H2NSO3H with and without immersion durations at 25 °C.

Table 1. Several Measures of Inhibition for 2 M H2NSO3H’s
Corrosive Effects on Cu at Various Concentrations, Both
with and without Lupine Extract

lupine extract concentration (ppm) k, mg cm−2 min−1 θ η%
100 2.39 0.51 51.0
200 1.87 0.741 74.1
300 1.35 0.791 79.1
400 1.04 0.820 82.0
500 0.937 0.842 84.2
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inhibitory effect that is primarily anodic in nature.54 After the
addition of lupine extract, an inhibitor was used to control the
anode and cathode reactions. Lupine extract has a value of 89.9%
at 500 ppm concentration. The stable development of the lupine
extract adsorbed film on Cu surfaces can be attributed to this.
This film lowers the current density at the anodic and cathodic

sites by shielding them from hydrogen evolution in 2 M
H2NSO3H solution and metal dissolution at the anodic site.

3.4. Electrochemical Impedance Spectroscopy (EIS).
Electrochemical impedance spectroscopy (EIS) was used to
analyze the behavior of the metal/solution contact in the
absence and presence of inhibitors. Figure 5 illustrates an
equivalent circuit, which is a parallel combination of the charge-

Figure 3. Cu adsorption graphs in 2 M H2NSO3H with and without various lupine extract consistencies at 25 °C.

Figure 4. PP curves for Cu corrosion in 2 M H2NSO3H solution without and with varying dosages of lupine extract at 25 °C.

Table 2. Electrochemical Parameters Derived by the PP Method for the Corrosion of Cu in 2 M H2NSO3H in the Presence and
Absence of Lupine Extract at 25°C

Inh. (ppm) −Ecorr (mV vs SCE) icorr (μA/cm2) βc (mV/dec) βa (mV/dec) kcorr (mm/y) θ %IE

blank 589 301 248.6 66.1 148.3
100 359 117 143.8 110.0 56.38 0.612 61.2
200 568 111 71.3 241.3 53.45 0.631 63.1
300 493 82.8 75.8 208.3 40.02 0.725 72.5
400 471 69.4 79.8 173 33.55 0.769 76.9
500 592.0 30.5 269.8 107.3 15.03 0.899 89.9
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transfer resistance (Rct) and the constant phase element (CPE),
both in series with the solution resistance (Rs) that is used to
take into account all of the processes involved in the electrical
response of the system. Figure 6a,b shows the Nyquist and Bode
plots for Cu in an aggressive solution at 25 °C, both without and
with various amounts of the lupine extract. Following 30 min of

immersion in a 2 M H2NSO3H solution, copper samples were
examined for electrochemical characteristics using the lupine
extract concentrations listed in Table 3. The Nyquist plots of
lupine extract, which show that each capacitive loop reflects a
single time constant, suggest that the kinetics of the electro-
chemical system is regulated by charge transfer. Indicating that

Figure 5. Equivalent circuit model used to fit the experimental results.

Figure 6. (a, b) Cu in 2MH2NSO3H solutions with and without various dosages of lupine extract plotted using the (a) Nyquist and (b) Bode method
at 25 °C.

Table 3. Electrochemical Parameters for the Corrosion of Cu 2MH2NSO3H Solutions with and without the Presence of Various
Dosages of Lupine Extract at 25°C Determined by the EIS Approach

conc., ppm Cdl, μF cm−2 Rct, Ω cm2 α Y0 × 10−4, μΩ−1 sn m−2 % IE X2

blank 11.2 19.74 0.69 7.2 0.0246
100 7.5 37.66 0.71 5.6 47.6 0.4391
200 4.87 51.69 0.69 6.3 61.8 0.0127
300 4.76 53.88 0.71 6.2 63.4 0.3990
400 4.18 60.44 0.69 6.3 67.3 0.4535
500 0.67 329.5 0.87 7.2 94.0 0.0046
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the addition of lupine extract to a 2MH2NSO3H solution has no
effect on the corrosion mechanism is Figure 6, which shows that
the appearance of the curve is the same before and after the
addition of inhibitors.55 The rough surface of the Cu electrode
causes an incomplete semicircle to appear in the Nyquist plots
with a one-time constant. The addition of lupine extract to the 2
M H2NSO3H solution results in a noticeable increase in the
capacitive loop diameter.56 As the inhibitor’s concentration
rises, it either becomes adsorbed on the surface of Cu or thin
films start to develop there. This protective layer significantly
slows Cu corrosion in a 2 M H2NSO3H solution by reducing

Cu’s active surface area and improving its corrosion resistance
behavior.

=C Y R( )n n
dl 0 p

1 1/
(7)

= ×
R R

R
% 100

p p

p

inh 0

inh (8)

Table 3 presents the EIS parameters. According to EIS data, Cdl
values fall as lupine extract concentrations rise and Rp values rise.
As a result, it is possible to draw the conclusion that molecules of
lupine extract adsorbed on the Cu surface by displacing water

Figure 7. Diagram of Fukui function of the lupine extract inhibitor sparteine, multiflorine, and lupanine.
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molecules at the metal-to-water interface, resulting in slower
rates of metal dissolution.57 As a result, there is an increase in %
values as the concentration of the lupine extract increases. At a
500 ppm concentration and 25 °C, the efficacy of the lupine
extract as an inhibitor was determined to be 94%. This outcome
is consistent with the inhibitor’s adsorption on the Cu surface.

3.5. Molecular Modeling. 3.5.1. Fukui Function.Themost
active locations of the optimized structures can be found by
translating the electron density as a function of the number of
electrons (N) at a constant external potential using the Fukui
function (fx).58 Depending on the direction of electron
transmission, the Fukui functions are determined using finite
difference approximations based on population assessments of
atoms in molecules and compounds.59 At the atomic level, f+
denotes the capacity to accept electrons, f− denotes the capacity
to donate electrons, and f denotes the state of a free radical.
While the multiflorine inhibitor has high electron density in
atoms 11, 13, 14, and 30 due to CHO, NH, CN, C�O, and
OCH3, respectively, it has low electron density in atoms 5, 7, and
20 due to conjugated carbons (Figure 7).

3.5.2. HOMO−LUMOMolecule Orbital. Figure 8 depicts the
examined compound’s lowest unoccupied molecular orbital
(LUMO) and highest occupied molecular orbital (HOMO)
density distributions in the aqueous phase. It shows that the
color red has a high electron density and the color green has a
low electron density.59 The metal surface can contribute
electrons when there is a high electron density. The metal
surface in the green area receives electrons.60 The distribution of
these two areas must therefore be carefully taken into account
because resonance is primarily caused by the links between the
oxygen and nitrogen atoms on the benzene ring. The LUMO is
centered on the carbon atoms in the meanwhile. Lower E values
may indicate an improved inhibition efficiency. The E value can
be used to assess the reactivity of the inhibitor molecule to the
metal atom.61 Due to its lower E value, multiflorous (E = 4.798)
is shown to be a better corrosion inhibitor than lupanine (E =
6.408) and sparteine (E = 5.181) as a result of the DFT
calculations.

3.5.3. MD Simulation. The area where lupine extract was
adsorbed onto the Cu(110) contact is shown in Figure 9. The
parallel adsorption of multiflorine provides excellent protection

Figure 8. HOMO and LUMO molecular orbitals of sparteine, multiflorine, and lupanine.

Figure 9. Adsorption of lupine extract compounds on the Cu surface.

Table 4. Lupine Extract Compound Adsorption Characteristics from Monte Carlo Simulation on the Cu(110) Surface

structure total energy adsorption energy rigid adsorption energy deformation energy Eads: compound

Cu(110) − 1 lupanine −2522.36 −2664.88 −2800.52 135.648 −16.771
Cu(110) − 1 multiflorine −2571.21 −2649.14 −2779.51 130.364 −12.301
Cu(110) − 1 sparteine −2550.89 −2669.88 −2802.54 132.650 −15.6295
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for the Cu substrate, but lupanine and sparteine require vertical
adsorption. The greater adsorption energy of compound
multiflorine suggests that it shelters the Cu surface more
efficiently than compounds lupanine and sparteine.62 Table 4
lists the results of the MD simulation for the energies of
adsorption, stiff absorption, and strain. Adsorption energy
(Eads), which describes how firmly the inhibitor adheres to its
substrate surface, has been computed. When molecules adsorb
to metal surfaces, those that block adsorption release stiff
adsorption power, and those that relax at metal surfaces release
deformation power.63 The Cu substrate was subjected to robust
and spontaneous adsorption according to the lupine extract’s
negative Eads values. Finally, inhibitors made from lupine
extracts provide excellent corrosion defense (Figure 10).

3.5.4. Electrostatic Potential (ESP) 2D Maps. ESP maps
make it possible to see how electrons are distributed and,
consequently, where they are concentrated within each
chemical.64 The contour maps of electron density show that
oxygen and nitrogen atoms appear to be advantageous
interaction sites on the investigated molecule inhibitor, which

is consistent with the differences in functions between oxygen
and the other atoms. A dark red outline surrounds the contact
areas that produce the bonding connections between metal
surfaces and inhibitor.65 In the contour map of negative
potential, lupine extract molecules in the aqueous phase are
particularly encircled by a dark red color, whereas the green
color is dispersed across the positive potential region at the
DFT/B3LYP/6-31++G(2d,p) calculation level. The positive
potential zone is colored green according to the contour
electrostatic depiction.

3.5.5. Charge Distribution. High negative charge atoms or
locations in the compound are more likely to donate electrons to
the metal surfaces. Based on this information, oxygen and
nitrogen atoms are the sites of the reactions within the
molecules. Therefore, one of the most popular ways to present
this characteristic is through Mulliken analysis.66 Mulliken
partial charges for the various atoms of the optimized molecules
under study are illustrated in Figure 11. Mulliken charges can
also show the locations of the inhibitor molecule binding on cell
surfaces. On the basis of the charges of chelating atoms,

Figure 10. ESP pictures of the lupine extract.

Figure 11. Mulliken atomic charges of compounds sparteine, multiflorine, and lupanine

Figure 12. SEM images from Cu: (a) Cu alone, (b) after soaking time for 24 h in 2 M H2NSO3H, and (c) in the 500 ppm lupine extract inhibitor.
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inhibitors have been investigated to determine whether they
stick to metallic surfaces. The likelihood that a metal’s d orbital
will get an electron donation rises as the negative Mulliken
charge of an adsorption site decreases.67 Mulliken charges for
the lupine extract are broken down into carbon and heavy atoms
(N and O). Therefore, in the anionic moiety of the compounds
under study, charge-deficient metallic atoms should be drawn to
suitable atoms.

3.6. Scanning Electron Microscopy (SEM) Analysis.The
SEM image of Cu submerged in 2 M H2NSO3H for 24 h is
shown in Figure 12 both with and without inhibitors for lupine
extract. The roughness of the metal surface indicates Cu
corrosion in sulfamic acid in the Cu surface SEMmicrographs in
Figure 12b without an inhibitor.68 Figure 12c shows that the
surface coverage increases in the presence of 500 ppm of
inhibitors from lupine extract, which in turn causes the
formation of the adsorbed compound on the metal surface.
The surface is then covered by an inhibitor layer that successfully
inhibits the dissolution of copper.

3.7. FT-IR Analysis of the Extract and Corrosion
Product. The experimental IR spectrum of the lupine extract
is shown in the image, together with the theoretical IR spectra of
lupanine, multiflorine, and sparteine. Figure 13 shows the FTIR
spectrum of a pure lupine extract. The −OH stretching
frequency appears at 3419 cm−1,69 the −CH stretching
frequency at 2933 cm−1,70 the C�O stretching frequency at
1654 cm−1,71 the −C�C stretching frequency at (multiple
bands) 1405−1547 cm−1,72 the −CN stretching frequency at
1246 cm−1,73 and the−CO stretching frequency at 1055 cm−1.74

According to the theoretical infrared (IR) spectra of lupanine,
multiflorine, and sparteine, the multiflorine IR is more like that
of an experimental lupine extract than it is for lupanine and
sparteine. This demonstrates that the primary ingredient in

lupine extract, multiflorine, is accountable for the inhibition
process.

3.8. Mechanism of Inhibition. Any inhibitory mecha-
nism’s features are based only on the electron density at the
reaction center. It is crucial to use polar groups that have
selenium, phosphorus, sulfur, or nitrogen atoms as building
blocks to create inhibitors.75 The effectiveness of metal and
inhibitor chemisorption is enhanced by increasing center
electron density.76 Due to lupine’s chemical profile, the extract
contains a large number of organic components. Cu surface
oxidation is prevented by the components of the lupine extract
adhering to it. These components’ properties facilitate the
adsorption process on the metal surface. The findings of the
current study show how lupine extract can stop Cu corrosion in
acid by adhering to the metal surface. The concentration of the
inhibitor, the kind of metal, the temperature, and the quantity of
adsorption sites are some of the variables that affect the
inhibition process. Due to its chemical makeup, lupine extract
exhibits a combination of chemisorption and physisorption.
This information could be explained by the fact that organic
molecules that have been adsorbed have the capacity to alter the
behavior of the electrochemical corrosion processes in a variety
of ways. Depending on how they interact, organic inhibitors can
have a variety of different impacts on the metal substrate.
Systems that use electrochemistry or surfaces may be affected by
these interactions.

4. CONCLUSIONS
According to experimental tests, lupine extract derivatives work
well as a mixed-type inhibitor to stop copper from corroding in a
solution of 2 M H2NSO3H. Inhibition was evident when this
substance formed Langmuir adsorption isotherms on the Cu

Figure 13. FTIR spectra of lupine extract.
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surfaces. Given that−ΔGads had a negative value, it was assumed
that the reaction was spontaneous. DFT revealed that the
components in the structure of the lupine extract are able to
transfer electrons from their highest occupied orbital (HUMO)
to their lowest unoccupied orbital (LUMO). According to how
well they can transfer electrons to metals and compounds, they
do so. Ultimately, it was determined that the findings and
measurements were in agreement.
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