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A common strategy among intracellular bacterial pathogens is to enter into a vacuolar

environment upon host cell invasion. One such pathogen, Salmonella enterica, resides

within the Salmonella-containing vacuole (SCV) inside epithelial cells and macrophages.

Salmonella hijacks the host endosomal system to establish this unique intracellular

replicative niche, forming a highly complex and dynamic network of Salmonella-induced

filaments (SIFs). SIFs radiate outwards from the SCV upon onset of bacterial replication.

SIF biogenesis is dependent on the activity of bacterial effector proteins secreted by the

Salmonella-pathogenicity island-2 (SPI-2) encoded type III secretion system. While the

presence of SIFs has been known for almost 25 years, their precise role during infection

remains elusive. This review summarizes our current knowledge of SCV maturation and

SIF biogenesis, and recent advances in our understanding of the role of SIFs inside cells.

Keywords: Salmonella typhimurium, Salmonella-induced filaments, Salmonella-containing vacuole, multiple
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INTRODUCTION

Salmonella enterica serovars are Gram-negative bacterial pathogens capable of causing enteric
disease in all vertebrates. S. enterica serovars are associated with illnesses ranging from
gastroenteritis to typhoid fever caused by non-typhoidal Salmonella (NTS) serovars and S. enterica
subsp. enterica serovar Typhi, respectively (Haraga et al., 2008; Keestra-Gounder et al., 2015).
Salmonellae are facultative intracellular pathogens that reside within a unique membrane-bound
compartment termed the Salmonella-containing vacuole (SCV) following host cell invasion. Entry
into a bacteria-containing vacuole (BCV) is seen in diverse intracellular pathogens including
Legionella pneumophila, Shigella flexneri, Francisella tularensis, Mycobacterium tuberculosis, and
Edwardsiella spp (Silva, 2012). Like Salmonella, Legionella and M. tuberculosis largely remain
and replicate within a BCV, while Shigella, Francisella, and Edwardsiella escape their vacuoles and
replicate within the host cell’s cytoplasm (Okuda et al., 2006; Santos and Enninga, 2016). This
review focuses on intravacuolar Salmonella, but a small portion of Salmonella (around 10%) escape
the SCV and enter a hyper-replicative state within the cytosol of epithelial cells (Knodler et al., 2010;
Malik-Kale et al., 2012; Yu et al., 2014; Santos et al., 2015).

S. enterica forms networks of Salmonella-induced tubules (SITs) radiating outwards from the
SCV, throughout the host cell’s cytoplasm. Salmonella-induced filaments (SIFs) are the most
abundant, and best studied, form of SIT. Intravacuolar replication accompanies formation of SIFs
which are endosomal-tubule extensions characterized by the presence of lysosomal glycoproteins
and other endocytic markers (Garcia-del Portillo et al., 1993; Beuzón et al., 2000). Other SIT types

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
https://doi.org/10.3389/fcimb.2017.00335
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2017.00335&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bfinlay@mail.ubc.ca
https://doi.org/10.3389/fcimb.2017.00335
http://journal.frontiersin.org/article/10.3389/fcimb.2017.00335/abstract
http://loop.frontiersin.org/people/428025/overview
http://loop.frontiersin.org/people/445306/overview


Knuff and Finlay The Role of Intracellular Salmonella-Induced Filaments

include Salmonella-induced secretory carrier membrane protein
3 (SCAMP3) tubules (SISTs) (Mota et al., 2009), LAMP1-negative
tubules (Schroeder et al., 2010), sorting nexin 3 tubules, and
spacious vacuole-associated tubules (Schroeder et al., 2011).

To create and maintain the SCV, Salmonella Typhimurium,
themodel organism for NTS infections, uses specialized secretion
systems to inject at least 43 bacterial protein “effectors” into the
host cell cytoplasm (Galán, 2001; Figueira and Holden, 2012;
LaRock et al., 2015). Effectors are secreted by two distinct type III
secretion systems (T3SSs) encoded on Salmonella pathogenicity
islands 1 and 2 (SPI1-T3SS and SPI2-T3SS, respectively). While
SPI1-T3SS-secreted effectors enable host cell invasion and
SCV biogenesis, the SPI2-T3SS-secreted effectors are associated
with SCV maturation, SIF biogenesis, and promoting survival
and replication (McGhie et al., 2009). While SIFs have been
extensively studied, only recently have we begun to understand
their intracellular role. SIF studies have primarily been conducted
in HeLa cells, and a small number in the murine macrophage
cell line RAW264.7. The role of SIFs is unclear in macrophages
as they have yet to be demonstrated in primary macrophage
cells. This review summarizes our current knowledge, and recent
advances in our understanding, of SCV maturation and SIF
biogenesis in epithelial cells.

SCV MATURATION: SALMONELLA MAKES
A HOME FOR ITSELF

The early stages of SCV formation and maturation (“early
SCVs”) in HeLa cells resemble early endosomes with markers
for endocytic sorting and recycling pathways and subsequent
maturation pathways, partially owing to the activities of
T3SS-secreted effectors. The SPI1-T3SS-secreted effector
SopB maintains high levels of SCV membrane-associated
phosphatidyl-3-phosphate during initial stages of SCV
maturation (Hernandez et al., 2004). SopB recruits the small
GTPase Rab5, which in turn, recruits early endosome antigen 1
(EEA1) to the SCV membrane (Haraga et al., 2008; Mallo et al.,
2008). Rab5 promotes docking and fusion of early endosomes
to various targets, and regulates the conversion of early to late
endosomes (Christoforidis et al., 1999; Huotari and Helenius,
2011). Early SCVs are also characterized by the endocytic
markers transferrin receptor (TfnR), Rab4, and Rab11 (Steele-
Mortimer et al., 1999; Smith et al., 2005). Rab4 regulates early
sorting events in endosomes while Rab11 recycles membrane
components between the plasma membrane and the Golgi (Sheff
et al., 1999; Sönnichsen et al., 2000).

SCV maturation, like endosome maturation, is marked by the
rapid loss of early-, sorting-, and recycling-membrane markers,
and acquisition of the late endosomal markers Rab7, lysosomal
associated membrane proteins (LAMPs) 1, 2, and 3, and vATPase
(see Figure 1 for comparison of SCV and endosome maturation)
(Garcia-del Portillo and Finlay, 1995; Méresse et al., 1999; Steele-
Mortimer et al., 1999; Beuzón et al., 2000; Drecktrah et al., 2007).
SCVs acquire the late endosome markers Rab7 and Rab9, but
are not enriched for the characteristic late endosomal/lysosomal
markers cathepsin D, lysobisphosphatidic acid (LBPA), and

mannose-6-phosphate receptor (M6PR) (Méresse et al., 1999;
Brumell et al., 2001b; Knodler and Steele-Mortimer, 2005). This
altered maturation program results from the activities of several
SPI2-T3SS-secreted effectors and delayed interactions with late
endocytic compartments.

The activities of the SPI2-T3SS-secreted effectors change
the early SCV into a unique compartment permissive for
bacterial replication, termed the “late SCV.” The SPI2-T3SS-
secreted effectors SifA, SopD2, and SseJ are partially responsible
for the SCV’s unique maturation program. SifA complexes
with the host factor SifA-and-Kinesin-Interacting-Protein (SKIP,
also known as PLEKHM2); the SifA-SKIP complex binds and
sequesters Rab9, inhibiting Rab9-dependent M6PR recruitment
to the SCV membrane. Decreased M6PR recruitment to the
SCV membrane decreases recruitment of lysosomal enzymes to
the SCV, thereby protecting intracellular Salmonella from host
defenses (McGourty et al., 2012). SopD2 further alters SCV
maturation by directly impairing Rab7-dependent recruitment
of the host trafficking-related effectors RILP (RAB-interacting-
lysosomal protein) and FYCO1 (FYVE and coiled-coil domain
containing protein 1). In uninfected cells, FYCO1 and RILP
mediate plus- and minus- end-directed movement of vesicular
cargo along microtubules, respectively (Jordens et al., 2001;
Harrison et al., 2004; Pankiv et al., 2010). Inhibition of
RILP- and FYCO1-mediated microtubule-based trafficking by
SopD2 in infected cells thereby prevents delivery of the SCV
to lysosomes (D’Costa et al., 2015). SseJ has two activities:
phospholipase A activity, and glycerophospholipid:cholesterol
acyltransferase activity (Lossi et al., 2008). Given these two
enzymatic activities, SseJ may alter SCV lipid composition, thus
altering the localization of lipid-bound proteins to the SCV
(Sprong et al., 2001; Ruiz-Albert et al., 2002), and consequently
mediating interactions with the host’s endocytic pathway. S.
Typhimurium is therefore able to alter the normal endosome
maturation program to transform the late SCV into a unique
niche within the host cell.

SIF BIOGENESIS

The process of SCV maturation from early- to late- SCV takes
∼5 h post-invasion (h.p.i.) of HeLa cells. Salmonella replication
coincides with full maturation of the late SCV and extension
of SIFs. The remarkably dynamic process of SIF biogenesis
results in a highly complex stabilized network of SIFs by 8 h.p.i.,
during which individual SIFs undergo extension, contraction,
branching, and fusion with other SIFs (Drecktrah et al., 2008;
Rajashekar et al., 2008). SIFs are the only type of SIT known to
be marked by LAMPs (Garcia-del Portillo et al., 1993; Schroeder
et al., 2011).

The same SPI2-T3SS-secreted effectors associated with SCV
maturation are also associated with SIF biogenesis. These
effectors are SifA, SseJ, SopD2, PipB2, SseF, SseG, SpvB, and
SteA (Table 1). All eight of these effectors collectively contribute
to at least one or more of the following roles within the host
cell: promoting SIF biogenesis, perinuclear positioning of the
SCV, maintaining stability and/or modifying the SCVmembrane,
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FIGURE 1 | SCV maturation and SIF biogenesis in epithelial cells. Salmonella Typhimurium invades epithelial cells in a SPI1-T3SS-dependent manner and specifically

resides in the Salmonella-containing vacuole (SCV) within the host cell. Studies primarily in HeLa cells have revealed that formation of the early SCV is dependent on

SPI1-T3SS-secreted effectors (red arrow) and occurs within 15 min post-invasion (p.i.). SCV maturation is dependent on SPI2-T3SS-secreted effectors (purple

arrows). The late SCV is formed by 3–4 h.p.i. SCV maturation closely resembles, but is distinct from, endosome maturation (black arrows). The SCV is located next to

the Golgi by 8 h.p.i., coinciding with the formation of Salmonella-induced filaments (SIFs, green tubules). SIFs form an extensive network throughout the host cell

facilitating interactions with host organelles. The tubular endoplasmic reticulum network (blue tubules) forms multiple contact sites (MCSs, pink bars) with organelles,

the plasma membrane, and the early SCV.

and recruiting and/or regulating microtubule motor activity
at the SCV membrane required for extension of SIFs along
microtubules (Figueira and Holden, 2012; van der Heijden and
Finlay, 2012; LaRock et al., 2015).

SifA classically has been considered the main driver of SIF
biogenesis as 1sifA mutants fail to induce SIFs in HeLa cells
(Stein et al., 1996). Extensive vacuolation of LAMP1+ vesicles is
observed in uninfected host cells transfected with SifA (Brumell
et al., 2001a) suggesting that SifA alone is sufficient to induce
endosomal tubulation resembling SIF-like structures. During
infection, LAMP1 enrichment at the SCVmembrane is enhanced
by the C-terminal domain of SifA (Zhao et al., 2015). While SifA
may be sufficient to induce endosomal tubulation, SseJ, when
activated by GTP-bound RhoA, cooperates with SifA to promote
formation of SIF-like structures (Ohlson et al., 2008; Christen
et al., 2009). Observations that effector deletion mutants of any
of the eight SPI2-T3SS effectors associated with SIF biogenesis
have altered SIF morphology and/or frequency in vitro (Stein
et al., 1996; Birmingham et al., 2005; Domingues et al., 2014;

Rajashekar et al., 2014) suggests that all eight SIF-related effectors
are required to produce wild-type SIFs within host cells.

Advances in fluorescence microscopy, transmission electron
microscopy, and EM tomography have provided new insights
into SIF biogenesis (Krieger et al., 2014). It was shown that
nascent SIFs emerge as single-membrane tubules, dependent on
SifA, and are thought to be of late endosomal or endolysosomal
origin based on luminal content. Double-membrane SIFs were
also observed in infected cells and are formed by the conversion
of single- to double-membraned SIFs, a process dependent
on both SseF and SseG. Double-membraned compartments
are commonly observed during formation of autophagosomes
(Rubinsztein et al., 2012). It is convenient to speculate that
autophagy plays a role in SIF biogenesis since SIFs are
double-membraned structures and multiple reports demonstrate
autophagy controlling intracellular Salmonella (Hernandez et al.,
2003; Birmingham and Brumell, 2006; Wild et al., 2011; Cemma
and Brumell, 2012; Fujita et al., 2013). However, Krieger et al.
(2014) found that autophagic machinery does not play a role
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TABLE 1 | SPI2-T3SS secreted effectors associated with SCV maturation and SIF biogenesis.

Effector Biochemical

activity

Known host target(s) Host subcellular localization/Effects References

SifA Unknown Rab7, Rab9, SKIP,

RhoA, PLEKHM1

Localized to SIFs and SCV membranes, promotes

SIF biogenesis, maintains SCV membrane stability,

promotes kinesin-1-dependent movements along

microtubules, enables continuous fusion of host

vesicles to SCV membrane

Brumell et al., 2002; Harrison et al., 2004; Boucrot

et al., 2005; Ohlson et al., 2008; Diacovich et al.,

2009; Dumont et al., 2010; McGourty et al., 2012;

Zhao et al., 2015

SseJ Deacylase;

transferase

RhoA, phospholipids,

cholesterol

Localized to SCV membrane and SIFs, regulates

SCV membrane dynamics, inhibits SIF biogenesis,

esterifies cholesterol on SCV membrane

Ruiz-Albert et al., 2002; Freeman et al., 2003;

LaRock et al., 2012; Kolodziejek and Miller, 2015

PipB2 Unknown Kinesin-1 Localized to SIF and SCV membranes, recruits

kinesin-1 to SCV membrane, reorganizes late

endosome/lysosome compartments

Knodler and Steele-Mortimer, 2005; Henry et al.,

2006

SopD2 GTPase-activating

protein for Rab32

Rab7, Rab32 Localized to SCV membrane and host cell

endosomes, inhibits host endocytic trafficking,

antagonist of SifA in regulation of membrane

dynamics and SIF biogenesis

Brumell et al., 2003; Schroeder et al., 2010;

D’Costa et al., 2015; Spanò et al., 2016

SseF

SseG

Unknown Acyl-CoA binding

domain containing 3

Integral membrane proteins localized to SIFs,

tethers SCV to Golgi, converts single-membraned

SIFs to double-membraned SIFs

Kuhle and Hensel, 2002; Kuhle et al., 2004; Deiwick

et al., 2006; Krieger et al., 2014; Yu et al., 2016;

Young et al., 2017

SteA Unknown Phosphatidylinositol

4-phosphate

Localized to membrane of SCV, SIFs, and SITs,

control of SCV membrane dynamics

Van Engelenburg and Palmer, 2010; Domingues

et al., 2014, 2016

SpvB Actin

ribosyltransferase

Unknown Depolymerizes actin cytoskeleton, downregulates

SIF biogenesis

Tezcan-Merdol et al., 2001; Birmingham et al., 2005

in SIF biogenesis; instead, SIFs likely originate from another,
SPI2-T3SS-dependent, mechanism (Krieger et al., 2014).

Krieger et al. propose a model of SIF biogenesis wherein
SPI2-T3SS-secreted effectors, in particular SifA, recruit and fuse
host membrane vesicles to the SCV providing components
for tubule extension. PipB2 then promotes SIF extension by
linking nascent SIFs to the kinesin-1 molecular motor promoting
extension of SIFs outwards from the SCV along microtubules
(Henry et al., 2006). Single-membrane SIFs are then converted
to double-membrane SIFs by SseF and SseG (Krieger et al.,
2014). The double membrane structure of SIFs would allow
Salmonella to maintain contact with endocytosed materials
(e.g., nutrients), while remaining separated from host cell
cytosol (and potential host antimicrobial defenses). This model
accounts for the activities of four of the eight SPI2-T3SS-secreted
effectors associated with SIF biogenesis, namely SifA, PipB2, SseF,
and SseG. It remains unknown how the other four effectors
contribute in this model.

SIFS LINK SALMONELLA TO THE
ENDOCYTIC AND EXOCYTIC PATHWAYS

S. Typhimurium has specifically evolved to establish the SIF
network, yet the role of the network is unclear. Mounting
experimental evidence indicates that intracellular Salmonella
interacts directly with the host’s endocytic system. SIFs are

characterized by host late endosome membrane markers LAMPs,
vATPase, Rab7, LBPA, and cholesterol. Unlike late endosomes,
SIF membranes are also marked by SPI2-T3SS-secreted effectors,
and low concentrations of bothM6PR and cathepsin D (Figure 1;
Brumell et al., 2001b; Knodler and Steele-Mortimer, 2005; Mota
et al., 2009; Van Engelenburg and Palmer, 2010; Schroeder
et al., 2011; Young et al., 2017). Multiple reports demonstrate
that SIFs likely acquire late endocytic membrane markers by
sustained fusion events with the endocytic pathway (Drecktrah
et al., 2008; Rajashekar et al., 2008, 2014; Krieger et al.,
2014).

Salmonella-induced secretory carrier membrane protein 3
(SCAMP3) is also a major component of SIFs, which unlike most
SIF markers is not associated with late endocytic compartments
(Mota et al., 2009). SCAMP3 is primarily localized to the trans-
Golgi network (TGN) and controls multivesicular endosome
biogenesis in uninfected cells (Castle and Castle, 2005; Falguières
et al., 2012). In line with this, Salmonella redirects exocytic
transport processes and interacts with the secretory pathway
(Kuhle et al., 2006; Perrett and Zhou, 2013). This interaction, in
addition to the endocytic pathway (discussed below), may allow
Salmonella to obtain nutrients for replication, collect membrane
components for SCV and SIF biogenesis, or manipulate the host
cell’s response to infection.

It is hypothesized that SIFs allow Salmonella to redirect
host vesicular traffic to supply intravacuolar Salmonella with
endocytosed nutrients and membrane components to promote
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intravacuolar replication (Kuhle et al., 2006; Perrett and Zhou,
2013; D’Costa et al., 2015). Fluorescently labeled endosomal
cargo is detected within SIF networks of infected cells
(Drecktrah et al., 2008; Rajashekar et al., 2008; Zhang and
Hensel, 2013) providing evidence that SIFs have access to
content endocytosed by the host cell. Furthermore, it was
demonstrated that the SPI2-T3SS-dependent remodeling of
the host cell’s endosomal transport system provides a means
by which intravacuolar S. Typhimurium can gain access to
endocytosed nutrients (Popp et al., 2015). It was recently
reported that membrane components and luminal content of
the SIF network are both connected to, and interchanging
with, the SCV in a SPI2-T3SS-dependent manner (Krieger
et al., 2014; Liss et al., 2017), allowing S. Typhimurium
rapid access to endocytosed materials. Liss et al. (2017) also
demonstrated that intravacuolar S. Typhimurium connected to
the SIF network are significantly more metabolically active than
S. Typhimurium in SCVs lacking connections to SIFs, suggesting
that SIFs enable nutrient acquisition. Collectively, these findings
suggest that S. Typhimurium uses the host endocytic system to
expand its replicative niche, form the SIF network, and uses
SIFs to gain access nutrients to promote replication within
the SCV.

EXTENDING THE SIF NETWORK

One approach to further characterize Salmonella’s intracellular
replicative niche is to examine the host proteins associated
with the SIT network. A recent study used a proteomics-based
approach to enrich and characterize membranes specifically
associated with the SIT network and the SCV (Vorwerk et al.,
2015). The authors confirmed previous reports that Salmonella
actively recruits host membranes for SIF formation from
endosomes, lysosomes, and the trans-Golgi network (Brumell
et al., 2001b; Ramsden et al., 2007; Mota et al., 2009) as
they detected proteins originating from these sources in the
membrane fraction enriched for the SIT network and SCV
(Vorwerk et al., 2015). Proteins originating from other host
compartments such as the endoplasmic reticulum (ER), nucleus,
and mitochondria were also identified (Vorwerk et al., 2015).

The presence of ER proteins in association with SIFs prompts
the question of if and/or how intravacuolar Salmonella interacts
with the ER. Vorwerk et al. (2015) first reported extensive
interactions between SIFs and the ER network, revealing markers
commonly associated with the ER in the membrane fraction
enriched for the SIT network and SCV. These included: VCP
(a transitional endoplasmic reticulum ATPase), ER localized
GTPases (Rab2, Rab10, Sar1A), and vesicle coat proteins
associated with coatomer protein complexes I and II (COPI
and COPII, respectively). Another group demonstrated that the
early SCV physically interacts with the ER via ER filaments
wrapped around the SCV (Santos et al., 2015). This ER-SCV
interaction was observed using high-resolution ultrastructural
imaging combined with immunofluorescence to give higher
resolution than light or confocal microscopy alone (Narayan
and Subramaniam, 2015; Santos et al., 2015). Santos et al.

(2015) also showed via proteomics that COPII complexes
accumulate on the early SCV membrane. COPII complexes are
typically associated with transport from the ER to the Golgi in
uninfected cells (Bonifacino and Glick, 2004). The accumulation
of COPII complexes on the SCV membrane destabilizes the
SCV membrane through an unknown mechanism, permitting
S. Typhimurium to escape the SCV and hyper-replicate within
the cytosol of epithelial cells (Santos et al., 2015). Therefore,
interactions with the ER may play a critical role in determining
whether S. Typhimurium stays within the SCV, or the SCV
ruptures and S. Typhimurium enters the cytosol of the host
cell.

Given the interactions between intravacuolar Salmonella and
the ER (or ER derived vesicles), there is the potential that the SCV
associates with the ER system via multiple contact sites (MCSs).
MCSs are regions where two organelles are in close apposition
(between 3 and 15 nm at ER MCSs) and permit communication
between organelles (Phillips and Voeltz, 2016). The tubular
ER network forms abundant MCSs with other organelles and
the plasma membrane (Raiborg et al., 2015). Live-cell imaging
and high-resolution ultrastructural imaging revealed membrane
interactions between the ER and the early SCV resembling MCSs
as early as 30 min post-invasion. This SCV-ER connection may
be promoted by SCV Rab7 and ER VAP-A (Santos et al., 2015).
This study reveals an unprecedented level of contact between
SCVs and the ER. It is therefore possible that there are also
MCSs between SIFs, ER membranes, and other host organelles,
enabling intravacuolar Salmonella to be in contact with host cell
compartments at distant intracellular locations. The evidence of
proteins acquired from a range of host compartments suggests
that the interactions between SIFs/SCVs and the host cell are far
more expansive than previously thought.

CONCLUSIONS

The ability to form BCVs, survive, and replicate within host
cells is a common strategy among intracellular pathogens.
Unique to Salmonella’s intracellular replicative environment
is the formation of the elaborate SIT and SIF network. S.
Typhimurium specifically develops the complex SIF network, yet
their mechanisms of development and action remain unclear.
There are two non-mutually exclusive hypotheses to explain SIF
function: (1) SIFs collect host membrane components providing
access to endocytosed compounds, including nutrients, enabling
replication and membrane expansion; and (2) the SCV/SIF
interconnectivity reduces exposure of intravacuolar Salmonella
to the host defenses by diluting lysosomal enzymes inevitably
acquired by the SCV. Fusion of host endocytic cargo from
various intracellular locations to provide themembranematerials
enabling SIF biogenesis explains both the abundance and variety
of host markers found within SIF and SCV membranes.

Although recent studies have significantly advanced our
understanding of Salmonella’s intracellular lifestyle, additional
work is needed to characterize SIFs if we wish to fully understand
S. Typhimurium’s intracellular niche. Despite the large body
of research regarding SIFs, several areas require further
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investigation. It remains unclear why S. Typhimurium has
evolved to form complex multi-SPI2-T3SS-effector-dependent
SIFs. The mechanisms underpinning SIF biogenesis still requires
work to determine how all eight implicated SPI2-T3SS effectors
create these unique structures. The ability to form SIFs correlates
with the ability to cause disease in mouse models of infection
(Stein et al., 1996), but their existence or purpose in human
infections is unknown. A great deal could be learned from
observing SIFs in infected tissue to address the correlation,
and potential causation, between SIF biogenesis and disease
phenotypes observed in mouse models of infection. It is possible
to observe Salmonella in association with LAMPs in infected
tissues (Zhang et al., 2014); the technology is already available
to further investigate this matter. In conclusion, determining
how SIFs form and why they are important during infection will
lead to a deeper understanding of Salmonella’s unique replicative

niche, and may reveal novel insights into other intracellular
pathogens.
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