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Abstract: Strigolactones (SLs) have recently been shown to play roles in modulating plant architecture
and improving plant tolerance to multiple stresses, but the underlying mechanisms for SLs regulating
leaf elongation and the influence by air temperature are still unknown. This study aimed to investigate
the effects of SLs on leaf elongation in tall fescue (Festuca arundinacea, cv. ‘Kentucky-31’) under
different temperature regimes, and to determine the interactions of SLs and auxin in the regulation of
leaf growth. Tall fescue plants were treated with GR24 (synthetic analog of SLs), naphthaleneacetic
acid (NAA, synthetic analog), or N-1-naphthylphthalamic acid (NPA, auxin transport inhibitor)
(individually and combined) under normal temperature (22/18 ◦C) and high-temperature conditions
(35/30 ◦C) in controlled-environment growth chambers. Exogenous application of GR24 stimulated leaf
elongation and mitigated the heat inhibition of leaf growth in tall fescue. GR24-induced leaf elongation
was associated with an increase in cell numbers, upregulated expression of cell-cycle-related genes,
and downregulated expression of auxin transport-related genes in elongating leaves. The results
suggest that SLs enhance leaf elongation by stimulating cell division and interference with auxin
transport in tall fescue.
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1. Introduction

Leaf elongation is a decisive factor of shoot biomass production in leafy crops, including perennial
grasses that are used as forage [1]. Two developmental processes that control leaf elongation are
cell elongation or expansion and rate of cell division [2,3]. In grass species, active cell division and
expansion occur in the leaf meristematic zone, which is located at the base of an elongating leaf [4,5].
Factors regulating either cell number or cell length may affect the overall leaf length and elongation rate.

Classic phytohormones, including auxin, gibberellic acid (GA), and cytokinins, play key roles
in controlling cell division and cell expansion, with a hormone-specific mode of action for each of
them [6–8]. Recently, SLs have also been named as plant hormones that play important roles in regulating
plant architecture, such as shoot branching [9,10]. Exogenous application of a bioactive, synthetic
SL, rac-GR24((3aR*,8bS*,E)-3-(((R*)-4-methyl-5-oxo-2,5-dihydrofuran-2-yloxy)methylene)-3,3a,4,8b-
tetrahydro-2H-indeno[1,2-b]furan-2-one) results in shortening of the mesocotyl [11] and hypocotyl [12],
and stimulating elongation of internodes [13,14], mesocotyls [11,15], and roots [16–19] through the
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regulation of cell division. In dicotyledonous plants, such as Arabidopsis (Arabidopsis thaliana), SLs have
also been reported to modify leaf shape [20–22]. In addition, other studies reported that leaf blade [20,23]
and petiole length [20,21] in SL-deficient mutants were reduced in comparison to wild-type Arabidopsis.

Auxin is known to play an important role in leaf growth and elongation [24]. Some studies report
that increased auxin levels have negative effects on leaf growth. It has been shown that transgenic,
auxin-overproducing petunia (Petunia hybrida) had smaller and narrower leaves than the wild type [25].
Similarly, Arabidopsis auxin-overproducing mutants, sur1 and sur2, showed reduced leaf area [26].
Moreover, auxin content normally decreases during leaf growth [27], which suggests that auxin plays
an inhibitory role in leaf development and the decreasing auxin level might be a precondition for
full leaf expansion. Auxin and SLs interact in regulating shoot development [28]; for example, SLs
interfere with auxin transport in both Arabidopsis and rice (Oryza sativa) [9,29,30]. Additionally, SLs act
downstream of auxin to modulate the shoot architecture in peas (Pisum sativum) and Arabidopsis [31].
Hayward and Leyser [28] have further suggested that auxin and SLs affect each other’s endogenous
levels and distribution within plants, which have direct implications on plant architecture. It has,
however, not been well documented whether SLs affect leaf elongation through crosstalk with auxin in
leaves of monocotyledons, including perennial grasses.

Leaf elongation is sensitive to environmental factors and is inhibited by abiotic stresses, including
heat stress [32]. The optimal temperature for leaf development in cool-season grasses is 18–24 ◦C,
but air temperature in the summer often exceeds this optimal temperature range, thereby restricting
leaf growth [33,34]. A few studies have reported that SLs may mediate plant response to abiotic stresses.
Ha et al. [35] suggest that SLs induce stomatal closure, thereby improving drought tolerance, and
Zhuang et al. [36] propose that SLs participate in increasing drought tolerance in tall fescue through
the regulation of tiller production. Although plant responses to SLs have been studied in a number of
cases [37], the positive regulatory role of SLs in heat stress has been rarely discussed. Current research
has shown that the germination rates of seeds in both Arabidopsis WT and SLs-deficient max1 plants
were increased by GR24 treatment under heat stress, but GR24 had no effect on germination rate in
mutant SLs-signaling max2 plants [38]. Moreover, the expression level of light harvesting-associated
genes and chlorophyll content were enhanced upon GR24 treatment in SLs-deficient tomato mutants
(Sl-ORT1) and WT plants under light stress [39]. These studies serve as indirect evidence, suggesting
SLs’ positive effects on heat stress tolerance, as light and heat stresses cause similar injury to the
structure of thylakoids and PSII complexes [40]. Marzec and Muszynska [41] report that heat stress
upregulated the expression of MAX3, the SLs-synthesis gene in Arabidopsis, which again indicates
that SLs play a role in the plant tolerance to heat stress. Recently, Hu et al. [42] reported that GR24
stimulates crown root elongation under heat stress in tall fescue.

We hypothesize that SLs affect the cell divisions and/or expansion that ultimately control leaf
elongation, thereby alleviating the heat inhibition of leaf elongation, and that these SLs effects involve
an interaction with auxin. This study aimed to investigate the effects of SLs on leaf growth in tall
fescue growing under different temperatures and to determine the interaction between SLs and auxin
regulating leaf elongation.

2. Results

2.1. Effects of GR24 and Auxin on Leaf Elongation in Tall Fescue under Different Temperature Regimes

GR24 treatment resulted in an increase of 18% in leaf length in tall fescue growing under normal
temperature (Figure 1). Heat stress severely suppressed leaf length by 26%, from 11.0 cm in the normal
temperature control plants to 8.1 cm in the heat-stressed plants (Figure 1). GR24 treatment mitigated
the inhibitory effect of heat stress on leaf elongation, resulting in a 27% increase in leaf length compared
to untreated plants under heat stress (Figure 1).
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Figure 1. Leaf length of plants under each treatment. Lowercase letters are for comparison between 
different chemical treatments, and uppercase letters are for comparison between treatments under 
two temperature conditions. 

Treatment with the auxin transport inhibitor NPA had no significant effect on leaf elongation 
under either temperature condition, while the combined treatment of GR24 and NPA exhibited a 
positive effect under heat stress (Figure 1). NAA inhibited leaf elongation and GR24 did not alleviate 
the adverse effect of NAA (Figure 1). 

Leaf anatomical features of GR24-treated and untreated seedlings were examined to determine 
whether the GR24 treatment affects leaf cell length and number. There was no significant difference 
in cell length between GR24-treated and untreated seedlings (data not shown), while the 
GR24-treated plants had a higher cell number in the meristematic zone than in untreated plants 
(Figure 2). 

 
Figure 2. Effects of GR24 on number of leaf cells in the meristematic zone under two different 
temperature regimes. Each value represents a mean of six to eight leaves for each seedling. Error bars 
indicate standard deviation. Lowercase letters are for comparison between GR24-treated and 
untreated plants, and uppercase letters are for comparison between treatments under two different 
temperature regimes. 

Figure 1. Leaf length of plants under each treatment. Lowercase letters are for comparison between
different chemical treatments, and uppercase letters are for comparison between treatments under two
temperature conditions.

Treatment with the auxin transport inhibitor NPA had no significant effect on leaf elongation
under either temperature condition, while the combined treatment of GR24 and NPA exhibited a
positive effect under heat stress (Figure 1). NAA inhibited leaf elongation and GR24 did not alleviate
the adverse effect of NAA (Figure 1).

Leaf anatomical features of GR24-treated and untreated seedlings were examined to determine
whether the GR24 treatment affects leaf cell length and number. There was no significant difference in
cell length between GR24-treated and untreated seedlings (data not shown), while the GR24-treated
plants had a higher cell number in the meristematic zone than in untreated plants (Figure 2).
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Figure 2. Effects of GR24 on number of leaf cells in the meristematic zone under two different
temperature regimes. Each value represents a mean of six to eight leaves for each seedling. Error
bars indicate standard deviation. Lowercase letters are for comparison between GR24-treated and
untreated plants, and uppercase letters are for comparison between treatments under two different
temperature regimes.
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2.2. Expression of Genes Related to Cell Cycle, Auxin Transport, and SLs Signaling in Leaves

Expression of several cell-cycle-related genes, including Proliferating Cell Nuclear Antigen (PCNA),
Cyclin-D2 (CycD2) and Cyclin-Dependent Kinase B (CDKB), were measured using q-PCR analysis in
order to investigate whether the positive regulation of cell number in leaves by GR24 is associated
with changes in cell division. Figure 3 shows that the expression of those genes was upregulated upon
GR24 treatment under both temperature conditions.
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receptor gene, TIR1, are measured in leaves under all treatments to determine whether GR24 
promotes leaf elongation by interfering with auxin transport or perception. Data show that the 
expression levels of all three auxin transport-related genes decreased in leaves upon GR24 
treatment, but increased significantly in leaves treated with NAA under both temperature 
conditions (Figure 4). The expression levels of PIN1 and PIN5 decreased in leaves upon NPA 
treatment. High temperature induced the expression of three auxin transport-related genes, 
especially the expression levels of PIN1 and PIN5. GR24 treatment led PIN2 expression to be more 
significantly inhibited than the NPA treatment, while the expression levels of other auxin transport 
genes do not show any significant differences for either of the two treatments under normal 
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Figure 3. (a) PCNA expression level in leaves treated with or without GR24 under two different
temperature regimes; (b) CDKB expression level in leaves treated with or without GR24 under
two different temperature regimes; (c) CycD2 expression level in leaves treated with or without
GR24 under two different temperature regimes. Lowercase letters are for comparison between
different chemical treatments, and uppercase letters are for comparison between treatments under two
temperature conditions.

The expression levels of three auxin transport genes, PIN1, PIN2, and PIN5, and the auxin receptor
gene, TIR1, are measured in leaves under all treatments to determine whether GR24 promotes leaf
elongation by interfering with auxin transport or perception. Data show that the expression levels
of all three auxin transport-related genes decreased in leaves upon GR24 treatment, but increased
significantly in leaves treated with NAA under both temperature conditions (Figure 4). The expression
levels of PIN1 and PIN5 decreased in leaves upon NPA treatment. High temperature induced the
expression of three auxin transport-related genes, especially the expression levels of PIN1 and PIN5.
GR24 treatment led PIN2 expression to be more significantly inhibited than the NPA treatment, while
the expression levels of other auxin transport genes do not show any significant differences for either
of the two treatments under normal temperature condition. The expression levels of PIN1, PIN5, and
TIR1 did not differ significantly among GR24, NPA, and NPA + GR24 treatments in plants exposed to
high temperature.
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uppercase letters are for comparison between treatments under two temperature conditions.

D3 and D14 family proteins are involved in SLs perception. D3 and D14 expression levels
were analyzed to determine changes in SLs signaling genes in responses to GR24, NAA or NPA.
The expression of these two genes increased significantly following NAA and NAA + GR24 treatment
while they were reduced upon NPA and NPA + GR24 treatment under both temperature conditions
(Figure 5). D3 expression level could be induced upon GR24 treatment under both temperature
conditions while D14 expression level could only be induced upon GR24 treatment at high temperatures.
The D3 gene expression level following treatment with GR24 or NAA under heat stress conditions was
much higher than that of plants under normal temperature conditions (Figure 5).
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3. Discussion

The biological functions of SLs are still largely unknown, although the effects of SLs on shoot
branching and leaf shape have been previously reported [22,23]. This study first found that SLs
were able to mitigate the inhibitory effects of high temperature on leaf elongation in tall fescue. It is
well known that leaf elongation is governed by both cell division and expansion; however, whether
SLs-stimulated leaf elongation is due to effects on either or both of these developmental processes is
not well documented. Our results demonstrate that growth-promoting effects of SLs on leaf growth
in tall fescue are mainly due to the increased number of cells in individual leaves, presumably by
maintaining active cell division even at high temperatures (Figure 2). Genes related to cell cycle
activities are closely associated with cell division [43–45]. PCNA (Proliferating Cell Nuclear Antigen) is
an important gene involved in DNA replication and cell cycle regulation [46]. CycD2 (Cyclin-D2) and
CDKB (Cyclin-Dependent Kinase B) play roles in promoting activities of the cell cycle [47,48]. These three
genes are associated with different stages of the cell cycle. In our study, the expression levels of
PCNA, CycD2 and CDKB are increased upon GR24 treatment (Figure 3). Sun et al. [18] report that
treating plants with GR24 upregulate the expression of the cell cycle activity-related gene, CYCB1;1,
in rice. These results indicate that the number of leaf cells increases by SLs may have resulted from up
regulation of the genes that control cell division in the leaves of tall fescue.

Previous studies have exhibited that SLs interact with auxin, controlling leaf shape in alfalfa [22]
and shoot branching in Arabidopsis [28,29,49,50]. Our study demonstrated that SLs interacted with
auxin in regulating leaf growth in tall fescue. In contrast with the positive effects of SLs on leaf
elongation in tall fescue, the NAA treatment suppressed leaf elongation in our study (Figure 1),
consistent with previous studies regarding other plant species [51–54]. A higher level of auxin in
Arabidopsis has been reported to inhibit leaf growth [52]. Borah and Baruah [51] report that rice treated
with IAA has a lower leaf biomass than untreated controls. Mulkey et al. [53] report that 1 µM IAA
strongly inhibits root growth in maize (Zea mays). SLs synthesis and signaling pathways may control
shoot architecture or branching by regulating auxin transport [28,50,55,56]. Chemicals that act on polar
auxin transport are useful for studying the relationship between GR24 and auxin transport. NPA is
a widely used inhibitor of auxin transport [57,58], while GR24 and NPA are shown to have similar
effects on bud and root elongation [42,59]. In order to determine whether SLs could reverse the adverse
effects of auxin or inhibit auxin transport, GR24 is applied to plants treated with NAA or NPA in our
study. Our results indicated that the GR24 + NAA treatment did not improve leaf elongation under
two different temperature conditions, which suggested that SLs were not able to directly reverse the
negative effects of NAA on leaf elongation in tall fescue. On the contrary, the NPA and NPA + GR24
treatments improved leaf elongation under heat stress, similar to the GR24 treatment. However, the
hidden mechanisms explaining how SLs affect auxin transport, resulting in the elongation of leaves,
deserve further study.

Auxin efflux carriers such as PIN-FORMED (PIN) family proteins play key roles in auxin
distribution [60], which has a significant influence on the regulation of cell division [61]. Lazar
et al. [62] report that the auxin influx gene, AUX1-like, and auxin efflux genes PIN1, PIN3, and PIN4
are overexpression in SLs mutants of Arabidopsis. Saini et al. [54] showed that the PIN1 protein
overaccumulates in max mutants. Hao et al. [63] report that PIN2 and PIN5 are induced by heat
stress. Transport Inhibitor Response1 (TIR1) is an auxin receptor associated genes [64,65]. It has been
reported that the auxin receptor mutant tir1-1 shows reduced sensitivity to GR24 relative to the
WT [66]. Mayzlish-Gati et al. [67] show that SLs’ regulation of a plant’s response to low Pi conditions
is correlated with increased TIR1 expression. In the present study, the expression levels of three
auxin efflux carrier genes (PIN1, PIN2, and PIN5) and TIR1 were measured to determine whether
SLs stimulate leaf elongation through effects on auxin transport or perception. Our results showed
that the expression of PIN1, PIN2, PIN5, and TIR1 were suppressed by GR24 application under both
temperature conditions, with similar results being seen for NPA (Figure 4). For PIN1, PIN2, and PIN5,
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suppression was more significant under high temperature. While the expression of PIN1 and PIN5 was
significantly upregulated upon NAA and NAA + GR24 treatments under both temperature conditions.

Auxin may additionally affect SLs signaling in the regulation of leaf elongation. The D3 gene
encodes an F-box protein, and the D14 gene encodes a protein that belongs to the α/β-fold hydrolase
family, and both are SL receptors [68–70]. It has been found that NAA treatment results in the increased
expression of the two SLs-signaling genes, D3 and D14, while NPA downregulates the expression of D3
and D14 (Figure 5). Similarly, one study found that SLs response was upregulated by auxin via the D3
gene component of SLs signaling during shoot branch formation in Arabidopsis [29]. In addition, it has
been reported that the transcription of CCD7 and CCD8, two SLs biosynthesis genes is upregulated by
auxin [28,71]. While the interactions between auxin and SLs in the regulation of shoot development
are widely studied [28], the manners in which these two hormones regulate leaf elongation need
further research.

In summary, our study demonstrated that SLs increased leaf length and mitigated the adverse
effect of heat stress on leaf elongation in tall fescue by promoting cell division in the leaf meristematic
zone. SLs could affect auxin transport, and both SLs and auxin might regulate leaf elongation in grass
species by mutually acting on one another; however, the underlying mechanisms associated with how
they interact are worth further study. This research offers a new insight regarding the breeding of
new varieties of leafy crops with high biomass production, particularly for enhancing leaf growth in
environments with elevated temperatures as a primary abiotic stress.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Seeds of tall fescue (cv. ‘Kentucky-31’) were planted in fritted clay medium (Profile Products,
Deerfield, IL) on 1 May 2017. After three weeks, uniformly sized seedlings were rinsed with water
to ensure that the roots were free of clay medium and then transplanted to a hydroponic growing
medium on 22 May 2017. The bases of the seedlings’ shoots were covered by foam cubes, which were
then inserted into a polystyrene board. The board was floated in a plastic box (30 × 21 × 18 cm) filled
with half-strength Hoagland’s nutrient solution [72]. Forty-eight containers of plants were used in this
experiment, and there were 160 plants in each container. An air pump was used to continuously inject
air into the hydroponic solution to ensure appropriate aeration. The experiment was conducted in
controlled-environment growth chambers (Environmental Growth Chambers, Chagrin Falls, OH, USA),
maintained at a temperature of 22/18 ◦C (day/night), a 12-h photoperiod, 60% relative humidity, and
650 µmol m−2s−1 photosynthetically active radiation at the canopy level during seedling establishment.

4.2. Experimental Treatments

Before exposure to heat stress condition, three-week-old seedlings were cultured in half-strength
Hoagland’s nutrient solution for 7 days. To initiate heat treatment, seedlings were exposed to 35/30 ◦C
(day/night) for 8 days, between 31 May and 7 June 2017, while control plants were grown at 22/18 ◦C
(day/night). Other environmental conditions were maintained as previously described.

Seedlings receiving the GR24 treatment were foliar sprayed with 0.01 µM GR24 (a synthetic analog
of SLs, dissolved in acetone and diluted with water) one day prior to high-temperature exposure and
every two days during the eight days of heat treatment. For NPA treatment, seedlings were foliar
sprayed with 0.5 µM NPA (an auxin transport inhibitor, dissolved in dimethyl sulfoxide [DMSO] and
diluted with water) 1 day prior to placement into the heat chamber and every two days during the
eight days of heat treatment. For each application, 30 mL of solution were sprayed onto leaves in
each container. Tween 20 was added to each treatment solution as a spreading and wetting agent.
For the NAA (dissolved in 1 µM NaOH and diluted with water) treatment, plants’ root systems
were first incubated overnight in half-strength Hoagland’s nutrient solution containing 1 µM NAA
prior to imposition of heat stress and then transferred into half-strength Hoagland’s nutrient solution
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without NAA. The concentration of chemicals used in the experiment was optimized according to
the pre-experiment.

Heat stress and hormone treatments were arranged in a split-plot design with heat stress treatments
as main plots and hormone treatments as subplots. The normal temperature control and heat stress
treatment were repeated in three growth chambers. Each hormone treatment had four replicates
(four containers of plants containing 160 replicate plants), which were randomly placed in each chamber.

4.3. Leaf Elongation Analysis and Histological Observation

Images of leaves were acquired using a scanner (Epson EU-35, Seiko Epson Corp., Suwa, Japan) on
7 June 2017. Average leaf length was obtained using the image analysis program, Digimizer (MedCalc
Software, Mariakerke, Belgium).

To examine cell number and length in individual leaves, nail polish was brushed onto the leaf
surface, and a transparent negative plate of the epidermis was carefully acquired. Images were captured
under a microscope (Nikon Instruments Inc., model SMZ1270, Melville, NY, USA). The number of
epidermal cells in the meristematic zone of the longitudinal leaf was determined by counting the
cortical cells in files extending from the ligule to the first elongated cell. Epidermal cell length was
calculated by counting the cell number per unit length in the longitudinal leaf.

4.4. qRT-PCR Analysis

The expression level of genes associated with the cell cycle, auxin transport, and SLs signaling in
leaves were analyzed via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Total
RNA was extracted from leaf tissue with TRIzol reagent (Life Technologies, Grand Island, NY, USA)
and contaminating genomic DNA was removed with DNase (TURBO DNA-free kit; Life Technologies).
Following RNA extraction, 2 µg total RNA was reverse-transcribed to cDNA using a high-capacity
cDNA reverse transcription kit (Life Technologies). The synthesized cDNA was expanded in a
StepOnePlus Real-Time PCR system (Life Technologies) using the following procedure: Pre-heat cycle
at 95 ◦C for 3 min, followed by 40 cycles of 95 ◦C denaturation for 30 s and 60 ◦C annealing/extension
for 60 s. Power SYBR Green PCR Master Mix (Life Technologies) was used as the intercalating dye
for detecting gene expression level. Gene names and forward and reverse primer sequences are
shown in Table 1. A melting curve analysis was performed for each primer pair to confirm binding
specificity. The data were standardized using Actin as the reference gene, since its expression was
constant throughout treatments. The relative expression levels between genes of interest and reference
genes were calculated using the ∆∆Ct method.

Table 1. Primers used in this research.

Primer Name Forward Primer Sequence (5′–3′) Reverse Primer Sequence (5′–3′)

Actin TCTTACCGAGAGAGGTTACTCC CCAGCTCCTGTTCATAGTCAAG
FaPCNA CATCTGAGCTACCAGTGGTG CCTCGTCCTCTTCAATCTTC
FaCycD2 ACTGCTCTCGGCTTGTTCAT GAAGACTCCCTCCTCCCATC
FaCDKB GTTGTTGGGAACTCCTACTG CGATAACAGGTCAAGTCCTTC
FaTIR1 AGGCTGTTGGTTGGATAAAG CCCAGCCTCCTACAGTTAT
FaPIN1 CTAGCTAAGTAGGACCCTAGAC CTCAAAGCCCTAGCCTTTAC
FaPIN2 GGTCTAGGGATGGCTATGT AATGTGGCGACAGACTTG
FaPIN5 ATGGGTTTGGCAACTACG GGTTCATCGGCAGGTATAAG
FaD3 GACAGGTACTCCATCTTCCT ATGTTCGCGAGAGCAAAG

FaD14 GAACGACAGCGACTACCA ACGTAGTTCGCCGACATC

4.5. Statistical Analysis

The effects of heat stress and hormone treatments and their interactions on leaf length, cell number,
and gene expression levels were determined by analysis of variance with SPSS software (version 20.0,
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SPSS Inc., Chicago, IL, USA). Differences between mean values for each parameter were distinguished
by Student’s t-test (α = 0.05).
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