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Abstract

Changes in the shape of the lung during breathing determine the movement of airways and alveoli, and thus impact airflow
dynamics. Modeling airflow dynamics in health and disease is a key goal for predictive multiscale models of respiration. Past
efforts to model changes in lung shape during breathing have measured shape at multiple breath-holds. However, breath-
holds do not capture hysteretic differences between inspiration and expiration resulting from the additional energy
required for inspiration. Alternatively, imaging dynamically – without breath-holds – allows measurement of hysteretic
differences. In this study, we acquire multiple micro-CT images per breath (4DCT) in live rats, and from these images we
develop, for the first time, dynamic volume maps. These maps show changes in local volume across the entire lung
throughout the breathing cycle and accurately predict the global pressure-volume (PV) hysteresis. Male Sprague-Dawley
rats were given either a full- or partial-lung dose of elastase or saline as a control. After three weeks, 4DCT images of the
mechanically ventilated rats under anesthesia were acquired dynamically over the breathing cycle (11 time points,#100 ms
temporal resolution, 8 cmH2O peak pressure). Non-rigid image registration was applied to determine the deformation
gradient – a numerical description of changes to lung shape – at each time point. The registration accuracy was evaluated
by landmark identification. Of 67 landmarks, one was determined misregistered by all three observers, and 11 were
determined misregistered by two observers. Volume change maps were calculated on a voxel-by-voxel basis at all time
points using both the Jacobian of the deformation gradient and the inhaled air fraction. The calculated lung PV hysteresis
agrees with pressure-volume curves measured by the ventilator. Volume maps in diseased rats show increased compliance
and ventilation heterogeneity. Future predictive multiscale models of rodent respiration may leverage such volume maps as
boundary conditions.
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Introduction

There is increasing interest in computational fluid dynamics

(CFD) modeling of airflow and tissue mechanics in the respiratory

tract for purposes of predicting particulate deposition and

clearance, uptake of vapors, and disease onset and progression

[1–5]. Such models can be used to further our understanding of

health risks from environmental exposures or alterations in inhaled

pharmaceutical uptake caused by disease [6]. Technology is

currently available for developing steady-state CFD models of

inhalation toxicology in the mammalian respiratory system,

including imaging pulmonary architecture, automating image

segmentation, and generating surface and volume meshes [5,7–

13]. However, a key component, and a major hurdle, to the

development of realistic transient CFD models is a quantitative

understanding of lung architecture and tissue mechanics, including

strain and compliance, and how the parenchyma and airways

move during the hysteretic breathing cycle. As transient CFD

models are developed, the dynamics and hysteresis of the full

breathing cycle must be accounted for with real time-dependent

structural data obtained from in vivo imaging during breathing. In

this way, the different dynamics of inhale and of exhale, which are

lost during breath-hold, can be properly incorporated. This paper

describes acquisition of dynamic 4D CT images (multi-time-point

3D images acquired without breath-hold), the non-rigid registra-

tion of the images, and the calculation of tissue dynamics and local

ventilation with high spatial and temporal resolution.

Several different in vivo imaging approaches to directly visualize

lung motion have been published. For example, proton and 3He

magnetic resonance imaging (MRI) grid tagging have been used to

visualize deformation of the moving lung [14,15]. MRI has also

been used to generate 3D maps of lung motion with the benefits of

no ionizing radiation or contrast agents [16]. In general, the MRI

approaches have relatively low spatial and/or temporal resolution,

and images are typically 2D [17]. Phase-contrast x-ray imaging

using monochromatic x-rays is an emerging technique used to

directly measure the velocity of lung tissue during the breathing

cycle in rodents [18]. This method provides high-resolution

velocity maps from 2D projections of the lung at near video-rate

temporal resolution. Alternatively, ventilation maps, or volume

maps, can be created by use of an inhaled contrast agent, such as

oxygen or hyperpolarized gas in MRI [17,19,20] or Xe in CT

[21,22] with images typically acquired during breath-hold.
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4D CT can be used to measure dynamic local physiological

properties such as strain, compliance, inhaled volume, or

ventilation (inhaled volume per unit time) [17,23,24]. Such an

approach provides detailed maps of gas distribution in the lung.

Importantly, these maps can be used to indicate regions with

irregularities that may be indicative of disease [18]. For example,

CT densitometry has been used to calculate local lung compliance

in 3D from breath-hold images in irradiated rodents [25].

Lung parenchyma is one of the most viscoelastic biologic

materials known in nature. The three predominant mechanisms

responsible for this are believed to be the surfactant film, alveolar

recruitment, and the extracellular matrix of collagen and elastin

[26–30]. The role of surfactant was demonstrated by Hildebrandt

[31] in air- and saline-filled lungs. The saline treatment showed

that lung surfactant plays a major role in lung hysteresis. Without

surfactant, collagen and elastin, the primary components in the

extracellular matrix [28], are responsible for the relatively small

hysteresis in the parenchyma and therefore contribute relatively

little to the viscoelasticity of the lung. Alveolar recruitment is not a

typical viscoelastic mechanism; nevertheless, an examination of the

work of Namati et al. [30] demonstrates that the recruitment

process is hysteretic, since the distributions in alveolar size are

different at the same pressure during inflation and deflation.

We show from CT-derived volume maps of dynamic breathing

(i.e. no breath-holds) in rats that we are able to match the global

pressure-volume (PV) behavior over the full breathing cycle, which

includes the hysteretic losses due to all three important viscoelastic

mechanisms. Previous work has addressed only measurement of

static lung compliance, with images acquired during breath-holds

[24], during which the lung tissue relaxes and dynamic viscoelastic

properties are not manifest. Herein, we image both inhalation and

exhalation during dynamic breathing. This difference is significant

because hysteretic differences between inhalation and exhalation

are lost when the lung is allowed to relax during breath-hold.

Furthermore, the mechanisms that contribute to the viscoelasticity

can be affected by disease, as we show by altered PV curves in

emphysematous rat lungs.

In this paper, we demonstrate a method for preparing rat 4D

CT images for non-rigid image-to-image spatial registration (i.e.

image warping), we evaluate the quality of the image warp

between the two extremes in the breathing cycle, we describe our

computation of local volume change beginning with the compu-

tation of volumetric strain, and we show the first inhaled air

volume maps calculated in healthy and diseased rats using this

method. Importantly, we demonstrate for the first time that

volume change maps can accurately predict measured lung

hysteresis.

Methods

Figure 1 shows a block diagram of the data processing flow, with

references to section and equation numbers.

2.1 Animal Preparation and Imaging
Animal use followed a protocol (2010–23) approved for this

study by the Institutional Animal Care and Use Committee of

Pacific Northwest National Laboratory. Nine male Sprague-

Dawley rats weighing 212611 g were used. Three rats received an

intratracheal dose of 250 U/kg of elastase (EMD Chemicals, Inc.,

Cat# 324682) in 200 mL saline to the whole lung, three received

50 U/kg of elastase in 200 mL saline to a single lobe, and three

received 200 mL saline to the whole lung as a control. Single lobe

dosing was monitored using magnetic resonance imaging to verify

the dose location. Dose levels were based on previous work in

which 3He diffusion MRI showed a significant disease response

[32].

Three weeks after dosing, rats were imaged with 4D CT. At the

time of CT imaging, rats weighed 357610 g. Details of animal

preparation, ventilation, and image collection are described in

[33]. In brief, anesthetized and intubated rats were mechanically

ventilated using a customized ventilator (CWE Inc. model 830/

AP; Ardmore, PA) with air (30% O2, 70% N2) and 3–4%

isoflurane at 60 breaths per minute, with 400 ms inhale and

600 ms exhale durations. Periodic sigh breaths to ,25 cmH2O

were delivered to maintain lung recruitment. 4D CT Images were

collected at 11 time points throughout the breathing cycle,

including at full exhalation and peak inhalation (,0 cmH2O and

,8 cmH2O), without breath-holds. Images were acquired on a

GE eXplore 120 scanner with the following settings: 100 kV peak

voltage, 50 mA tube current, 16 ms exposure time, and 360

projections with 1 degree angular separation. Imaging time was

about 90 minutes. Total radiation dose from imaging was

estimated to be 3.3 Gy based on information provided by the

vendor. Images were reconstructed to 150 mm isotropic resolution

on the GE console using supplied software. Immediately after

imaging, rats were sacrificed, and the lungs were cast so that

detailed airway architecture could be obtained for CFD modeling

efforts.

As described in [33], ventilator volumes were initially acquired

during the inhalation cycle only. After the acquisition of these

data, the ventilator was upgraded to measure volumes over the full

breathing cycle. Six additional untreated rats (one male, five

female Sprague-Dawley) were then imaged for purposes of

obtaining full ventilator hysteresis data.

2.2 Image Preparation for Warping
A direct non-rigid registration, or warp, between image sets is

inadvisable because intensity differences develop over the breath-

ing cycle and because differential motion between the lung and the

ribcage would have the effect of constraining the warp near the

parenchymal boundary [34,35]. Similar relative motion exists

between the parenchyma and the heart. Others have modified

their error metric for registration to account for intensity

differences [36]. However, this alone does not account for

differential motion between the lung and the ribcage nor between

the lung and the heart. Furthermore, CFD modeling of airflow

and lung function does not require information about the

surrounding tissue, which may therefore be masked.

We sought to determine the amount of image processing that

was necessary to optimize the warping results by utilizing

landmark identification to evaluate warping performance. Five

different levels of processing were tried (see Figure 2): A) original

images with no processing; B) bone signal replaced with typical

surrounding tissue signal, including noise; C) all non-lung

background removed, based on a tissue threshold level; D) same

as C but with a Gaussian filter of radius = 1 applied; E) same as D

but with contrast enhancement using histogram equalization

applied. Our results show that this final level of processing

(Figure 2E) resulted in the most accurate image registrations.

The specific steps adopted to process the images for warping,

such as shown in Figure 2E, were as follows. First, a Gaussian filter

(radius = 1) was applied to all the image slices. Next, using a seed

point inside the lung, a 3D lung mask was created using the 3D

Toolkit plug-in for ImageJ [37]. Then the Region Dilate and

Region Erode functions (also in the 3D Toolkit) were applied in

succession to fill missed voxels and to smooth the boundaries.

Next, the mask was added to the original image using ImageJ’s

Image Calculator, effectively saturating all regions of the image

Dynamic Boundary Conditions from 4D CT of Rats

PLOS ONE | www.plosone.org 2 June 2013 | Volume 8 | Issue 6 | e65874



outside the lungs while leaving the lungs unaffected (see Figure 2D).

Finally, the Enhance Contrast function was applied (with the

‘‘equalize histogram’’ option selected) in order to improve contrast

between lung tissue and features in the lung, such as airways and

vasculature. This also helped normalize the contrast between

source and target images to provide more consistent image feature

intensity for registration. This achieves a result similar to the mass

preserving error metric presented in [36]. This process was

automated with an ImageJ macro and executed in ,2 minutes on

a Mac Pro model 3.1 for an entire 4D image set.

2.3 Image Registration
Non-rigid registration, or warping, was performed on each 4D

CT image set. The lowest inflation image, acquired at the

beginning of the ventilation cycle, was used as the ‘‘target’’ image.

Images at the 10 inflation time points were the ‘‘source’’ images.

Briefly, we solve a nonlinear deformable registration problem

between the target and source images, with mean squared error as

the energy. The 3D warping was performed using Plastimatch

(www.plastimatch.org), an open source software package for

deformable image registration [38]. Optimal warping parameters

were determined empirically through dozens of iterations on

multiple rat image sets. Final warping parameters were: a first

stage with an affine registration with 46464 subsampling and 30

iterations; a second stage with a b-spline registration with 30

iterations, no subsampling, a regularization coefficient of 0.001,

and a vector field grid spacing of 10610610 pixels. Registration of

each 4D image (10 registrations in total) set took,45 minutes on a

Mac Pro model 3.1.

2.4 Registration Accuracy Analysis
To determine the accuracy of the warping, we evaluated the

warp results of the highest inflation image, which had the greatest

deformation from the target image. Registration accuracy was

qualitatively evaluated with relative ease by observing animations

(using ImageJ Hyperstacks) of the target and warped images – any

motion in the animation was due to registration errors. However,

landmark identification was used to quantify registration accuracy

in control rats to verify the observed results. One of us identified

landmarks throughout the target images of the three control rats

(67 total landmarks). The warp quality was then assessed in each of

the five cases shown in Figure 2 using one image set. After

verifying the best image processing method, the quality of the final

registration was independently evaluated in all control rats by

three of the coauthors, also through landmark identification. The

distances between landmark locations in the target and deformed

images, or target registration errors (TRE), were averaged for each

landmark. In addition, to give a sense of observer ‘‘mouse click’’

error – the typical error an observer makes when attempting to

select a specific landmark with a mouse and cursor – each observer

identified landmarks in the identical (unwarped) target image but

after a Gaussian filter of radius = 1 had been applied to simulate

the blurring effects of warping.

Figure 1. Block diagram illustrating the data processing flow.
doi:10.1371/journal.pone.0065874.g001

Figure 2. Examples of image processing for registration testing. A) Original image. B) Image with bones removed. C) Image with all
background masked. D) Same as C, with Gaussian filter applied prior to masking. E) Same as D, with contrast enhancement applied.
doi:10.1371/journal.pone.0065874.g002
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2.5 Inhaled Volume Map Calculation
To compute the voxel-by-voxel volume change, we combined

computations from two sets of time-series data. The first is the

masked and intensity balanced images whose processing is

described in Section 2.2. From these images, we computed a

kinematic volumetric deformation that was derived from the

motion of structures and was therefore independent of Hounsfield

(HU) values. The second is the unprocessed series of images that

preserves the original HU values and inherently contains an

approximation of the percentage of air within each voxel [39]. A

full discussion of the rationale behind the interpretation of HU

values in CT images of the lung and their role in computing local

ventilation can be found in [40]. All computations were performed

in BioGeom (https://simtk.org/home/biogeom) on a Mac Pro

model 3.1 using MATLAB 2011a.

Based on the sequence of computed deformation fields

described above, we compute the non-linear strain with a finite

element discretization [41]. The discretization is set up in the

undeformed configuration using isoparametric 8-noded hexahe-

dral elements, defined from the voxel centroids (see Figure 3).

Material particles at the voxel centroids, Xa, define the initial

position of the element nodes as,

X~
Xn

a~1
Na z1,z2,z3ð ÞXa ð1Þ

where Na are standard isoparametric shape functions (with

coordinates z) and n is the number of nodes - or in this case

voxel centroids. The combination of rigid-body motion and

deformation are fully described by the current nodal positions xa(t)

x~
Xn

a~1
Na z1,z2,z3ð Þxa tð Þ ð2Þ

The deformation gradient F, which is the fundamental kinematic

quantity for finite deformation, is given as:

F~
Xn

a~1
xa6+0Na ð3Þ

where +0Na~
LNa

LX is related to +zNa~
LNa

Lz by the chain rule:

LNa

LX
~

LX
Lz

� �{TLNa

Lz
;
LX
Lz

~
Xn

a~1
Xa6+zNa ð4Þ

Given the definition of the deformation gradient (Equation 3),

volume change is defined as.

dv~JdV ; J~detF, ð5Þ

where J is the Jacobian. If we reason that all measured volume

change in the parenchyma is due to air entering (or leaving) the

region, the regional ventilation rV can be estimated as

rV qð Þ~ J qð Þ{1ð Þ:Vr qð Þ, ð6Þ

where Vr qð Þ is the voxel volume in the original (t=0 ms)

configuration. However, we note that estimation of regional

volume change from Equation 6 can be misleading, particularly in

the presence of pathology. For example, in emphysema a region of

the lung may deform and yet may remain unventilated due to

airway collapse. We thus refine the computation of local

ventilation by taking into account intensity changes in the original

images, which reveal shifts in air and tissue.

Following the approach of [40], regional ventilation is jointly

estimated from Equation 5 and from the changes in local air

fraction as estimated from the intensity values in the unprocessed

images:

rV qð Þ~Vr qð Þ HUtiss{Ir qð Þ
HUtiss{HUair

{J qð ÞHUtiss{If T qð Þð Þ
HUtiss{HUair

� �
, ð7Þ

where HUtiss and HUair are representative Hounsfield values for air

and tissue; Ir and If are the intensity values of the voxel Q in the

reference (t=0) and the floating (t= t) images; and T(Q) is the

transformation represented by the non-linear warp.

We note that HUair in this context is the HU value of air in the

lung, and not necessarily the defined value of 21000 HU. HUair

values in rat lungs, even in the deep lung and largest airways,

rarely reach 21000 HU, likely due to common imaging artifacts

such as shading, view aliasing, and beam hardening [42] that can

be pronounced in the close proximities of the rat lung. Therefore,

the HUair and HUtissue values used in Equation 7 were determined

for each dose group. A histogram was constructed from the

combined images at the highest inflation level, and the mean

HUtissue value was determined from the tissue peak. HUair was

empirically determined as the lowest typically expected value of

HU in the group, which value was defined as being two standard

deviations below the mean of the isolated lung peak (when fit to a

Gaussian curve). For the control, full-lung dose, and single-lobe

dose groups, HUair was found to be 2781 HU, 2700 HU, and

2832 HU, respectively, and HUtissue was found to be 2122 HU,

2126 HU, and 2123 HU, respectively.

Results

Figure 4 shows the landmark registration results for the five

image preparation cases shown in Figure 2. The image prepara-

tion sequence of background masking, Gaussian filtering, and

contrast enhancement (Figure 2E) produced the most accurate

warps based on average landmark displacement and percentage of

misregistered landmarks. A misregistered landmark was defined as

Figure 3. An example of finite element discretization of an
image.
doi:10.1371/journal.pone.0065874.g003
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a landmark that was off by more than one slice in the z-dimension

and/or was observed to be farther than the greatest in-plane

(within the x-y plane of the image) nearest-neighbor distance (i.e.

1.41 pixel lengths). Hence, a misregistered landmark was off by

more than the greatest nearest-neighbor distance in 3D (1.73 pixel

lengths). These criteria were used to account for both observer

error and in-plane click error (the error related to using a

computer mouse input device to make selections). The dashed line

in Figure 4 indicates the average in-plane click error for the

observer. We point out that there is little difference between the

landmark results for the filtered and unfiltered images. However,

direct observation of the warped and target images in an animated

image sequence revealed several anatomical features (i.e. vascu-

lature) that were poorly registered in the unfiltered images,

particularly in the distal regions of the lung. We note that these

features were by chance not selected as landmarks, so their

misregistration is not reflected in Figure 4. Nevertheless, filtering

was employed in the image processing procedure.

The accuracy of the registrations on the fully processed images

(Figure 2E) was evaluated by comparing the position of all

landmarks in the deformed images with respect to the target image

in the three control rats. The average TRE of all landmarks was

1.3160.54 pixels (mean 6 SD), lower than the maximum nearest-

neighbor distance of 1.73 pixels. Of the 67 total landmarks, 12

were found to be misregistered by at least two of the observers

(TRE=2.1160.59 pixels), only one of which was found to be

misregistered by all three observers (TRE=2.76 pixels). The

average registration errors measured by the three observers were:

1.2660.94, 1.1060.69, and 1.5760.95 pixels.

Figure 5 shows an example of results from a representative rat

from the control (column A), full-lung dosed (column B), and

single-lobe dosed (column C) groups. Row 1 shows a representa-

tive coronal slice of the original target images at FRC, row 2 shows

the registration Jacobian, and row 3 is the inhaled volume maps.

The maps generally show heterogeneity in the air volume

distribution patterns, which tends to increase in the diseased rats.

The coefficient of variation (CoV), a general measure of

heterogeneity, was used to compare overall volume map

heterogeneity. The average CoV for the control group was

0.45660.024, for the full-lung dose group was 0.48660.048, and

for the single-lung dose group was 0.61360.147.

We compared the volume change from the maps at each

imaging time point during the inhalation phase of the ventilation

cycle to the average volume increase as measured by pneumo-

tachographs on the inhalation and exhalation lines of the

ventilator. Figure 6 shows the measured PV curve from the

ventilator, as well as the PV curve computed from Equation 7,

from the six additional undosed rats. The latter is the sum of the

flow into each voxel that belongs to the mask obtained in Section

2.5. Error bars represent the standard deviation of the mean

volume and tracheal pressure measured by the ventilator over

300–400 breathing cycles during imaging. The close agreement

between the measured and calculated volume measurements is a

global (whole lung) indicator of the correctness of the volume

maps.

Figure 7 shows representative hysteresis loops of a rat in each

dose group made from the volume maps and average tracheal

pressures. The changes in the overall slope are indicative of

changes in global lung compliance (compliance is the slope of the

PV curve) due to disease. The average compliance for the control

group as measured by the volume maps was 0.32260.053 mL/

cmH2O, for the full-lung dose group was 0.43060.046 mL/

cmH2O, and for the part-lung dose group was 0.36760.007 mL/

cmH2O. For comparison, the average compliance for the control

group as measured by the ventilator was 0.32560.046 mL/

cmH2O, for the full-lung dose group was 0.42460.028 mL/

cmH2O, and for the part-lung dose group was 0.37360.012 mL/

cmH2O. As expected, compliance is highest in the rat that

received the full-lung dose and is an intermediate value in the rat

that received a partial-lung dose. We note that, despite the

apparently severe disease in the dosed region of the partial-lung

dosed rat, the remainder of the lung was undosed, and therefore

the overall effect on the PV curve was a moderate change in

compliance.

Discussion

For the first time, we show volume maps calculated from

dynamic CT images of a live, ventilated rat. Figure 6 demonstrates

that the volume map calculation captures the complex nature of

the lung elasticity and hysteresis, as the PV curve of the measured

and calculated volumes agree. Figure 7 shows that the method is

sensitive to both global and local alterations in lung mechanics

caused by disease. Our ongoing work will exploit methods

discussed herein to provide physiologically accurate boundary

conditions in transient computational fluid dynamics models. For

the models to be reliable, it is first and foremost important that the

image registration faithfully represents the actual tissue displace-

ment. To facilitate accurate warping of 4D CT rat lung images, we

tested the effects of different image preparation approaches.

Furthermore, we selected the two most extreme images (end

inspiration and end expiration) from 4D data sets in order to

provide the most stringent test for the warping procedure. Based

on the landmark locations determined by the three observers, we

conclude that overall the warp is generally accurate, and on

average is within 1.73 pixel lengths – the maximum distance of

nearest-neighbor voxels in 3D. The resulting vector fields

generated by the warp were then used to calculate the Jacobian

and local air volume distribution (Figure 5).

Figure 4. Average landmark displacement (in pixels, red) and
the percentage of misregistered landmarks (blue) for the five
cases shown in Figure 1. The red dashed line indicates the observer’s
average ‘‘click error’’.
doi:10.1371/journal.pone.0065874.g004
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In warped images, the largest registration errors were typically

observed in three regions: 1) near lobar boundaries where spatial

variation of motion may be discontinuous [43] (particularly at the

interface of the left and accessory lobes), 2) around the heart/

diaphragm interface where motional blurring is maximum, and 3)

in the conducting airways. It may be possible to address the first

region with lobar segmentation and individual warping of each

lobe. However, the rat lobar boundaries are typically not distinctly

defined in the images, and they would have to be segmented

exactly in both the target and source images to avoid compound-

ing the registration errors. In an attempt to mitigate the second

region, we developed an automated scheme to delineate the

diaphragm to help the warping software better discern the true

motion of the caudal regions of the lung. This approach helped

somewhat in the immediate vicinity of the heart/diaphragm

interface but unfortunately introduced warping artifacts in other

regions, so it was abandoned. We speculate that a more

sophisticated approach in which the heart was also outlined may

prove beneficial; however, the lack of image contrast between the

heart and surrounding tissue complicates this. In the third region,

our images show that the cross-sectional area of the conducting

airways expanded by 2x or more from end expiration to end

inspiration (,0 cmH2O to ,8 cmH2O) [33], whereas vasculature

flanking the airways did not expand or contract measurably.

However, the warps only partially captured the expansion of most

of the airways. We have not yet addressed this problem, but we

speculate that airway segmentation may improve results by better

defining the airways or by allowing for separate warping of the

airways.

Our volume maps were qualitatively similar in appearance to

those generated in the healthy rabbit using dual-energy synchro-

tron radiation [44] and in the healthy rat using hyperpolarized
3He [45] – all of which show some level of heterogeneity. It has

also been shown that healthy human lungs also have ventilation

defects [46]. However, severe ventilation heterogeneities are well

documented in diseased lungs. We quantified the heterogeneity on

a global (i.e. whole lung) level using the CoV, but this does not

provide size or spatial information of regional variations or

Figure 5. Sample registration results. Column A: control. Column B: full-lung dosed. Column C: single-lobe dosed. Row 1: coronal images,
unprocessed. Row 2: Jacobian maps, between the lowest and highest inflation levels. Row 3: volume maps. The color scale represents the volume
change (61026 mL) in each voxel between 0 cmH2O and 8 cm H2O.
doi:10.1371/journal.pone.0065874.g005
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ventilation defects. In some instances the diseased regions are

easily discernable in the CT images. For example, in Figure 5

panel C1 clearly shows a region of lower tissue density (indicated

by lower signal intensity) in the left lobe where the elastase dose

was delivered. However, the CT image does not provide any

information about how well that region is ventilated. The volume

map of the single-lobe dosed rat (panel C3 of Figure 5) shows

comparatively little increase in air volume in the corresponding

region of the left lobe. This is consistent with air trapping that can

result from a severe emphysematous disease state. Indeed, the 4D

CT images of this rat showed that the main airway leading to the

distal portion of the left lung was completely collapsed through

much of the breathing cycle, confirming the lack of change of air

volume depicted in the map. However, in more subtle cases,

disease presence is not always obvious, such as in the full-lung

dosed rat (Column B of Figure 5). Yet our results suggest that the

increased heterogeneity in the volume maps may be indicative of

elastase-induced disease; further studies should be performed to

verify this. Others have correlated lung motion heterogeneity with

histology in a bleomycin disease model [18]. Although histology is

useful for documenting physical and/or biological changes in the

lung tissue that may indicate disease, it does not necessarily reveal

alterations to ventilation patterns or lung motion.

Our computation of volumetric strain differs from that

previously described [40,47–50] in that the result is piecewise

linear and the full deformation gradient is computed as opposed to

Figure 6. Comparison of the average ventilator-measured volume and the total volume from the volume maps for six untreated
rats, plotted as a function of tracheal pressure. Error bars represent the standard deviation of the mean ventilator volume and tracheal
pressure over the entire imaging experiment.
doi:10.1371/journal.pone.0065874.g006

Figure 7. Representative pressure-volume curves made from
the total volume from the volume maps and average tracheal
pressure. Data are from three different rats, one from each dose
group.
doi:10.1371/journal.pone.0065874.g007
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simply the Jacobian. That is, we determine the deformation

gradient first with a finite element discretization of the voxel and

then find its determinant. In this way, we can determine the full

2nd order deformation and strain tensors that will be necessary to

tease apart the change in volume (volumetric stress) from the

change in shape (deviatoric stress). This will allow our future

model to not only be thermodynamically correct but also to

facilitate the connection to alveolar micromechanics.

There are several limitations to this work. 1) The level of

anesthesia of the ventilated rats is high. We have learned through

experience that rats must be deeply anesthetized to assure total

compliance with the ventilator. Although the depth of anesthesia

may affect breathing mechanics (and resulting CFD modeling), we

are unaware of published evidence indicating such in ventilated

rats. 2) We are able to collect dynamic images at a limited number

of time points throughout the breathing cycle. Additional images

would help define the PV hysteresis more precisely. This would be

at the expense of longer imaging time, and ventilator-induced lung

injury is a concern in animals ventilated for extended durations.

However, others have observed minimal lung damage in rats

ventilated for durations used in this study [51–53]. 3) We are

currently unable to spatially validate the volume change maps. As

a global (whole lung) confirmation of the maps, we compared

inhaled gas volumes as measured by pneumotachographs with the

total volume of the maps and found good agreement (see Figure 6).

This provides a limited validation of our volume maps; however, it

provides no spatial information. A potentially useful validation tool

was recently demonstrated by [54] that directly measures local

ventilation. They delivered 40 nm aerosolized fluorescent particles

to rats then mapped their distribution using a cryomicrotome. By

comparing the spatial distribution of inhaled nanoparticles to

maps of volume change, a direct correlation between particle

density and the air volume may be feasible. 4) Histology was not

performed. Lungs were casted after imaging in order to provide

detailed and anatomically correct airway architecture for CFD

models [5] to a generation of branching that is not possible to

obtain by imaging the lungs in situ due to lack of contrast in the

deep lung. Although histology is useful to validate the severity of

disease in the dosed rats, for our work this is secondary in

importance to obtaining the airway geometry. 5) We measured

tracheal pressure during ventilation. Measurement of pleural

pressure, or esophageal pressure as a surrogate [55], gives a more

precise calculation of lung compliance. 6) The radiation dose from

imaging is high. Because of this, these imaging experiments are not

intended to be repeated in the same animal.

Our application of this work to transient CFD models is

ongoing. Local volume changes with pressure measurements

determine compliance, an important model parameter. We also

use the volume change maps, along with detailed airway structure

obtained from in situ cast images, to define airflow patterns. This

may prove important in predicting particulate deposition and

clearance in exposure simulations.
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