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Loss of podocalyxin causes a novel syndromic type of
congenital nephrotic syndrome

Hee Gyung Kang1,2,7, Moses Lee3,7, Kyoung Boon Lee4, Michael Hughes5, Bo Sang Kwon1, Sangmoon Lee3,
Kelly M McNagny5, Yo Han Ahn1,2, Jung Min Ko1,2, Il-Soo Ha1,6, Murim Choi1,3,6 and Hae Il Cheong1,2,6

Many cellular structures directly imply specific biological functions. For example, normal slit diaphragm structures that extend

from podocyte foot processes ensure the filtering function of renal glomeruli. These slits are covered by a number of surface

proteins, such as nephrin, podocin, podocalyxin and CD2AP. Here we report a human patient presenting with congenital

nephrotic syndrome, omphalocele and microcoria due to two loss-of-function mutations in PODXL, which encodes podocalyxin,

inherited from each parent. This set of symptoms strikingly mimics previously reported mouse Podxl−/− embryos, emphasizing the

essential function of PODXL in mammalian kidney development and highlighting this patient as a human PODXL-null model.

The results underscore the utility of current genomics approaches to provide insights into the genetic mechanisms of human

disease traits through molecular diagnosis.
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INTRODUCTION

The majority of congenital nephrotic syndrome (CNS) or
infantile nephrotic syndrome causative genes, such as
nephrin,1,2 podocin,2,3 the transcription factor WT1,2,4 and
the glomerular basement membrane matrix component
laminin,5–7 encode essential components of glomerular epithe-
lial cells or podocytes. Extrarenal symptoms often accompany
CNS. Examples include microcoria in Pierson syndrome,
which is characterized by LAMB2 defects,5–7 and ambiguous
genitalia or a diaphragmatic defect in patients with WT1
mutations.4

CD34-family sialomucins, including CD34, podocalyxin-like
1 (PODXL) and endoglycan (PODXL2), comprise a small
family of cell surface glycoproteins that confer the unique
functions of blocking adhesion and enhancing mobility.
The functions of these proteins are potentially mediated by
the shielding of integrins and other adhesion molecules with
glycosylated, highly charged mucin domains.8 Although sharing
common expression domains, each member has specific roles

and displays unique phenotypes when deleted in mice. For
example, Podxl is uniquely expressed by kidney podocytes and
embryonic mesothelial cells, and Podxl−/− mice die perinatally
due to defects in these cell types.9 Nevertheless, direct evidence
of a PODXL requirement during human development remains
elusive.10

Recent genome scanning efforts have generated numerous
individual-level genome sequences and enabled so called
‘human knockout projects’, which allows for the screening of
genes that are functionally inactive in healthy individuals.11,12

Likewise, pairing an individual with specific clinical presenta-
tions of rare loss-of-function (LoF) mutations in a specific gene
provides valuable insights into gene function and disease
pathogenesis. For example, individuals who lack the leptin
hormone become extremely obese during early life, phenoco-
pying mouse models.13 Here we report the discovery and
phenotypic analysis of a PODXL-null individual suffering from
CNS and other defects that almost completely phenocopy Podxl
knockout mice.9
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MATERIALS AND METHODS

Study approval
All patient-related procedures were approved by the Seoul National
University Hospital Institutional review board, approval No. 0812-
002-264.

Whole exome sequencing and variant calling
The procedures used for the preparation of genomic DNA, whole
exome capture using an Agilent V5 array, sequencing using an
Illumina HiSeq 2500 platform (San Diego, CA, USA), read alignment,
variant calling, variant filtering and de novo variant calling have been
described previously.14

Sanger sequencing
PCR amplification was performed with 10 pmol of each specific
primer, as listed in Supplementary Table S2. The PCR conditions were
an initial denaturation at 95 °C for 3 min, followed by 35 cycles of
amplification (95 °C for 30 s, 60 °C for 30 s and 72 °C for 30 s) and a
final extension at 72 °C for 5 min. The PCR product was gel extracted
and Sanger sequenced on an ABI3730XL DNA Analyzer instrument
(Applied Biosystems, Foster City, CA, USA).

Immunohistochemistry
The expression of PODXL was assessed by immunohistochemistry
staining with a polyclonal goat antibody against human PODXL (IgG,
Cat.# AF1658, R&D systems, Minneapolis, MN, USA, 1:100 dilution).
A 4 μm section of the patient’s omphalocele tissue was subjected to
antigen retrieval using a cloak chamber in pH 6.0 citrate buffer at 100 °
C for 1 h. Subsequently, the tissue was stained using an UltraVision LP
kit (Lab Vision corporation, Fremont, CA, USA) and a Bond Polymer
Refine Detection kit (Leica, Wetzlar, Germany). A tissue microarray
composed of 59 various normal human and cancer tissues were used
as a control (Superbiochips, Seoul, Korea).

Cell culture, transfection and western blotting
HEK293 cells and HeLa cells were cultured in high-glucose DMEM
media with 1% antibiotics. The media was changed to high-glucose
DMEM without antibiotics for 1 day before transfection. The
GeneINTM transfection reagent GST-1002 was used to transfect cells
with wild-type, M1I and W341X PODXL cDNAs cloned into a
pcDNA3.1+ vector. Forty-eight hours after transfection, the cells were
lysed with RIPA buffer, separated on an 8% SDS-PAGE gel,
transferred, and probed using antibodies diluted in 5% skim milk.
The antibodies used were goat anti-PODXL (R&D, AF1658, 1:2500),
mouse anti-α-tubulin (Santa Cruz, sc-8035, 1:20 000), rabbit anti-goat
IgG conjugated to HRP (Abcam, Cambridge, UK, ab6741, 1:5000), and
goat anti-mouse IgG conjugated to HRP (Bio-Rad, Hercules, CA, USA,
170-6516, 1:5000).

qPCR analysis
qPCR was performed with a cDNA library from transfected HeLa
cells, according to the manufacturer’s instructions (Bioneer
AccuPower RocketScript RT PreMix, Alameda, CA, USA). The
primers for PODXL were 5′-AACCCGGCCCAAGATAAGTG-3′ and
5′-GGCAGGGAGCTTAGTGTGAA-3′, forward and reverse,
respectively. The reverse primer for PODXL was designed to span
exon6-exon7. The primer sequences for GAPDH were
5′-ACAACTTTGGTATCGTGGAAGG-3′ and 5′-GCCATCACGCCA
CAGTTTC-3′, forward and reverse, respectively. The primer for
GAPDH was designed to span exon1-exon7.

RESULTS

A patient with unknown congenital nephrotic syndrome
A newborn male infant was admitted to the neonatal intensive
care unit for prematurity and congenital omphalocele. The
infant was born as a preterm spontaneous delivery at a
gestational age (GA) of 36 weeks and a bodyweight of
2.81 kg. The placenta was large, with a weight of 800 g. The
child was conceived via in vitro fertilization and embryo
transfer (IVF-ET) and carried by a 37-year-old mother with
Turner syndrome (45,X/46,XX) mosaicism. Congenital
omphalocele was diagnosed by prenatal screening ultrasono-
graphy at GA 22 weeks. A previous pregnancy by the infant’s
parents, also through an IVF-ET, produced an in utero fetal
death at GA 38 weeks. Other family history was denied. On
physical examination, the newborn presented with omphalo-
cele (Figure 1a), a webbed neck, bilateral simian creases, a flat
round face, flat nasal bridge, up-slanting palpebral fissures,
epicanthal folds and microcoria. The laboratory tests after birth
revealed a serum albumin concentration of 2.6 g dl− 1 and
proteinuria 3+, with microscopic hematuria on urinalysis. The
initial serum creatinine (Scr) levels were 0.41 mg dl− 1

(Figure 1b). The kidneys were relatively large, with increased
cortical echogenicity and poor corticomedullary differentiation
on ultrasonography (Figure 1c). After primary repair of the
omphalocele on day 3, the patient developed aggravated
hypoalbuminemia and Scr up to 1.3 mg dl− 1, with a gradual
decrease in urine output (Figure 1b). On day 18, severe
pulmonary hypertension with right to left shunt through the
patent ductus arteriosus was noted and managed with sildena-
fil, nitric oxide inhalation and mechanical ventilator care.
Generalized edema became evident despite regular albumin
replacement by 2 weeks of age. On day 22, continuous renal
replacement therapy was applied and later switched to perito-
neal dialysis. Thyroid hormone and immunoglobulin were
replaced regularly; however, the patient’s feeding was poor, and
he suffered from repeated infections, including pneumonia,
central catheter infection by Acinetobactor baumanii and
subsequent peritoneal dialysis-related peritonitis by Stenotro-
phomonas maltophilia and Candida parapsilosis (Figure 1b). On
day 48, seizures developed without an identifiable cause, and
his mental status deteriorated. The patient experienced
repeated septic shock events as well as brain atrophy
(Figure 1d), ventriculomegaly, and encephalomalacia. The
patient expired due to sepsis at the age of 130 days.

PODXL is mutated in the patient
The presentation of microcoria with CNS led us to suspect
Pierson syndrome,5–7 but targeted screening of LAMB2, a
known culprit of Pierson syndrome, did not reveal a patho-
genic variant. We next sought the genetic cause of the patient’s
defects using a trio-based whole exome sequencing (WES)
approach (Supplementary Table 1). Out of 45,676 variants
called, the base-read quality score and population-based
filtering using the 1000 Genomes, Exome Aggregation Con-
sortium (ExAC)15 and Korean in-house databases as references
led to the identification of 149 rare variants. Among these
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variants, three genes with potentially disease-causing variants
were identified, either in the form of de novo or compound
heterozygous variants (Supplementary Table 2). No notable
structural variation was identified (Supplementary Figure 1).
The patient sample was also analyzed by ~ 47× coverage
whole-genome sequencing and was found to be negative for
balanced translocations (data not shown). The variants in
PODXL (podocalyxin like) were a missense mutation at the
initiation codon c.3G4T (p.Met1Ile) and a nonsense mutation
at c.1023G4A (p.Trp341Ter), inherited from the father and
the mother, respectively (Figure 2a). The next ATG initiation
sequence was found at the c.98 position in a different frame,
which would generate a truncated protein of 31 amino acids.
Both of the variants were validated by Sanger sequencing
(Figure 2b, Supplementary Table 3) and are not listed in the
public databases or an in-house database of 1060 healthy
Koreans, as described above. As the two variants are likely to
cause a LoF protein, we searched for the existence of
individuals carrying potential PODXL LoF variants. From the
ExAC database,15 22 out of ~ 120 000 grossly healthy indivi-
duals’ chromosomes harbor one LoF variant in PODXL,
resulting in a very low likelihood of finding individuals carrying
two damaged alleles (Supplementary Table 4, P= 3.4 × 10− 8).
Furthermore, our in-house exome database of 1020 healthy
Koreans did not reveal any individual with more than one
damaging variant in PODXL. Both observations support that
the gene is intolerable to homozygous LoF changes in healthy
individuals. The two other candidate genes, FUT1 and CPEB2,

were ruled out as less relevant based on previous disease
associations and expression patterns (Supplementary Table 2,
Supplementary Figures 2 and 3).

PODXL protein is ablated in the patient tissue
To determine whether the two presumed LoF variants in the
patient inhibit the production of functional proteins, we
introduced these variants in a PODXL expression construct
and assayed mutant protein expression in HEK293 (Figure 2c)
and HeLa cells (Supplementary Figure 4). As expected, and
unlike the wild-type PODXL, both PODXL mutant constructs
failed to induce the expression of PODXL protein. Because
patient kidney tissue was unavailable for biochemical analyses,
we performed an immunohistochemical evaluation of the
patient’s omphalocele tissue (containing small vascular chan-
nels), along with the omphalocele tissues from two individuals
with umbilical hernia (Figure 2d–i, Supplementary Figure 5).
PODXL is known to be expressed by virtually all vascular
endothelial cells in mouse and human.9,16,17 Therefore, its
presence or absence in the patient could be evaluated in
endothelial cells of the patient’s omphalocele tissue. Both
patient and control endothelial cells were positively stained
for endothelial marker CD34, as expected (Figure 2e and h),
but PODXL expression was undetectable in the patient tissue
(Figure 2f and i). Omphalocele tissues consist of varying
proportions of fibrous tissues with microvessels (Figure 2d
and g). Although the histological stains appeared different
between the patient and control tissues, with the control tissue

Figure 1 Clinical findings from a case with a defective PODXL gene. (a) Omphalocele. (b) Clinical course with recurrent infection episodes.
(c) Ultrasonography of the kidneys with increased echogenicity. (d) Brain MRI with enlarged ventricles.
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displaying denser collagenous stroma, this difference seems to
be within the normal morphological variance of omphalocele
tissues and is unlikely to be due to the PODXL mutations.

DISCUSSION

PODXL is a heavily charged transmembrane sialomucin with a
weight of 140–165 kD.16,18 This protein is abundantly expressed
on the apical cell surface of podocytes, vascular endothelial cells,
mesothelial cells lining the coelomic cavity, hematopoietic
precursor cells and the developing brain.9,16,17,19,20 PODXL

contains a highly charged cytoplasmic tail that contains phos-
phorylation sites for protein kinase C as well as an ezrin-binding
domain through which PODXL attaches to an actin
cytoskeleton.21 As PODXL is the predominant glycocalyx protein
on podocytes, the anionic charge of this molecule has been
considered to function as a charge barrier in glomerular filtration
and to play a charge repulsion role that maintains the space
between the podocyte interdigitating foot processes (FPs).22,23

Therefore, it has been postulated that loss or mutation of this
protein may cause nephrotic syndrome or renal failure. This

Figure 2 Loss-of-function PODXL variants do not produce a functional protein. (a) Pedigree of a family with congenital nephrotic syndrome.
The proband had compound heterozygous variants in PODXL, with c.3G4T (p.Met1Ile) from the healthy father and c.1022G4A (p.
Trp341X) from the healthy mother. (b) Sanger sequencing traces confirming the variant calls. (c) Western blot of wild-type or mutant
PODXL expressed in HEK293 cells. Five replicates resulted in almost complete loss of podocalyxin expression following transfection with
either of the mutants. (d–i) Immunohistochemistry of the patient’s omphalocele tissue, demonstrating a complete lack of PODXL
expression. (d–f) Omphalocele tissue from an unaffected control individual (g–i). (d, g) H&E staining. (e, h) CD34 staining for endothelial
cells. (f, i) PODXL staining (original magnification ×400).
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hypothesis is also partially supported by the report that a
PODXL variant may cause familial focal segmental
glomerulosclerosis.24 Direct supporting evidence for this hypoth-
esis comes from our previous study demonstrating that the
disruption of Podxl in mice results in a loss of FPs in podocytes,
anuric renal failure and perinatal mortality. The conserved
function of human and mouse Podxl in podocytes is further
supported by a recent in vitro analysis of PODXL-null human
iPSC-derived podocytes.25 Finally, the negative charge of Podxl is
also thought to provide an anti-adhesive surface during retrac-
tion of the gut through umbilical ring, and ~30% of the
Podxl−/− pups display omphalocele.9 These results provide
compelling evidence that PODXL LoF variants caused CNS with
omphalocele in this patient.

During the preparation of this manuscript, a study reporting
PODXL LoF mutations in a family with juvenile Parkinsonism
but apparently normal kidneys was published.26 While the link
to Parkinsonism is intriguing given PODXL expression in
hippocampal neurons, we noted in a follow-up report that
the ‘null’ phenotype in these patients was based on weak
genetic data from a GC-rich sequencer that likely detected a
more common in-frame variant allele.27 The data described
here are more likely to document a true, germ line null allele in
the PODXL gene in humans, and this conclusion is further
supported by the striking similarities observed between this
patient and Podxl KO mice.

Sanger sequencing and WES both failed to reveal any
potentially pathogenic variants in LAMB2 in our patient
(Supplementary Figure 6). The cause of microcoria in our
patient or in Pierson syndrome remains unclear. Although we
evaluated Podxl−/− pups for a similar defect, the wild-type and
mutant animals displayed comparable pupil sizes
(Supplementary Figure 7).

Pulmonary hypertension aggravated the patient condition. It
is noteworthy that mice with a vascular endothelial-specific
PODXL deletion exhibit increased lung volume, altered matrix
composition, and increased pulmonary vascular permeability,28

implying a role for endothelial PODXL in pulmonary hyper-
tension. Further analyses to reveal the pulmonary mechanism
of hypertension pathogenesis in humans lacking functional
PODXL are required.

The patient described here succumbed to recurrent severe
infections with neurologic defects, which were considered to be
sequelae of sepsis. However, a direct functional role for PODXL
in the brain cannot be ruled out given that PODXL is widely
expressed in the developing brain and the blood–brain
barrier.16,20,29 Pan-neural ablation of this protein has been
reported to result in ventricular enlargement, and LoF reduced
the number of synapses in the brain.16,30 Thus, a possible
functional role for PODXL during brain developmental pro-
cesses should be studied further.

In conclusion, we report the identification of another
causative gene of human CNS, adding an additional layer of
complexity to CNS pathophysiology. This is the first described
case of a PODXL-null individual who phenocopied a constella-
tion of developmental defects displayed by mice that lack the

gene (Supplementary Table 5). The results provide a further
example of a human knockout model that supports what was
previously known about protein functions from the study of
animal model systems. Notably, and adding to the importance
of this case, these similarities held in several biological contexts.
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