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Interleukin (IL)-4 and IL-13 are related cytokines that regulate many aspects of allergic 
inflammation. They play important roles in regulating the responses of lymphocytes, 
myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces the differentiation 
of naïve CD4 T cells into Th2 cells, in B cells, IL-4 drives the immunoglobulin (Ig) class 
switch to IgG1 and IgE, and in macrophages, IL-4 and IL-13 induce alternative macro-
phage activation. This review gives a short insight into the functional formation of these 
cytokine receptors. I will discuss both the binding kinetics of ligand/receptor interactions 
and the expression of the receptor chains for these cytokines in various cell types; both 
of which are crucial factors in explaining the efficiency by which these cytokines induce 
intracellular signaling and gene expression. Work initiated in part by William (Bill) E. Paul 
on IL-4 some 30 years ago has now grown into a major building block of our current 
understanding of basic immunology and the immune response. This knowledge on IL-4 
has growing clinical importance, as therapeutic approaches targeting the cytokine and 
its signal transduction are becoming a part of the clinical practice in treating allergic 
diseases. Just by reading the reference list of this short review, one can appreciate the 
enormous input Bill has had on shaping our understanding of the pathophysiology of 
allergic inflammation and in particular the role of IL-4 in this process.

Keywords: interleukin-4, signal transduction, STAT6, interleukin-4 receptor, cytokine signaling, allergic 
inflammation

inTRODUCTiOn

Allergic inflammation is an inappropriately controlled inflammatory response with characteristic 
hallmarks of eosinophilia, elevated immunoglobulin (Ig)E-levels, increased mucus production, 
and typical cytokine/chemokine expression. Clinically, these basic pathophysiological mechanisms 
result in symptoms varying from mild skin rash (atopic dermatitis) and runny nose (allergic rhinitis) 
to life-threatening problems in breathing (allergic asthma). This inflammatory process from the very 
initiation is critically regulated by cytokines and chemokines. The cytokines regulate cellular responses 
on transcriptional level, while chemokines play a role in recruiting inflammatory cells to the sites 
on inflammation. One of the central cytokines regulating allergic inflammation is interleukin (IL)-4 
and since its cloning, efforts targeting IL-4 have been made to decrease IL-4-induced inflammation. 
In part, these efforts have been slowed down by the receptor of IL-4, which is ubiquitously expressed 
and easily saturated by the ligand. In this minireview, I briefly discuss the receptor system of IL-4 
that is also shared by IL-13, how it elicits signaling, and how it has been recently therapeutically 
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FigURe 1 | Type I and type II interleukin (IL)-4 receptor components and 
cellular distribution. Type I IL-4 receptor is mainly expressed in hematopoietic 
cells, and specifically in lymphocytes (left part) very little or no expression of 
type II receptor is observed. In non-hematopoietic cells, such as epithelial 
cells (right part), very little or no expression of type I IL-4 receptor is 
observed. Instead, type II IL-4 receptor is readily expressed and subsequently 
these cells are also responsive to IL-13 that utilizes type II IL-4 receptor, but 
“drives” it into opposite direction than IL-4. Myeloid cells (not pictured) fall in 
between these two cell types as they express both type I and type II IL-4 
receptors.
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targeted. I also highlight the enormous input of Bill Paul in this 
field; learning the story of IL-4 is not only about IL-4 but has also 
helped in unfolding more profound biological phenomenon in 
how T cells can dynamically respond to changes in environment 
to output an appropriate response.

iL-4 AnD iL-13 PRODUCTiOn

Interleukin-4 and IL-13 are the signature cytokines of the type II 
inflammatory response. They are key players in the inflammatory 
response triggered either by an invading parasite or allergen. The 
cellular sources of IL-4 and IL-13 have been studied extensively 
and along with CD4 T  cells, basophils, eosinophils, mast cells, 
and NK T cells, appropriately stimulated ILC2 cells have the abil-
ity to produce IL-4 and IL-13 (1–9).

The genomic locus, where IL-4 and IL-13 are produced (along 
with IL-5), is called the Th2 cytokine locus, which is located on 
chromosome 5 in humans and on chromosome 11 in mice and 
is under the control of the locus control region (LCR) of the Rad 
50 gene (10, 11). The LCR in CD4 T-cells is indispensable for 
the production of IL-4 and IL-13 in vivo (12). The production of 
the two cytokines is not identical though: IL-4 production is cal-
cineurin dependent, whereas IL-13 production is only partially 
dependent on calcineurin (13). Upon the appropriate stimulation 
of the cells, the LCR of the Th2 cytokine locus is epigenetically 
modified to allow the access of transcription factors to the DNA 
and the subsequent transcription of these cytokines. This com-
plex regulation was recently reviewed in detail (10). Interestingly 
and in line with findings in mice, a polymorphism in the murine 
equivalent of the DNase I hypersensitive site (RHS)7 in humans 
affects DNA methylation and gene expression at 5q31 and subse-
quently IgE levels on a population level (14).

iL-4 ReCePTOR SYSTeM

When IL-4 or IL-13 is released from T cells, cells carrying the 
receptors for these cytokines will respond. For IL-4 and IL-13, 
the unique utilization of the STAT6 transcription factor in the 
signaling they elicit allows them to execute specific functions 
on different cell types; IL-4 is the regulator of lymphocyte func-
tions (Th2 differentiation and B-cell IgG1 and IgE class switch), 
whereas IL-13 is an effector cytokine, regulating smooth cell mus-
cle contraction and mucus production in the airway epithelium, 
for example, in allergic asthma (15). In addition to IL-4 and IL-13, 
one report has shown that at least in human cells, thymic stromal 
lymphopoietin (TSLP) can induce the tyrosine phosphorylation 
of STAT6 (16), TSLP signaling will be discussed in detail below.

The cytokine-binding receptor chain for IL-4 is IL-4Rα. This 
receptor chain is widely expressed, most cells carry at least low 
numbers of this receptor chain. Upon IL-4 binding to IL-4Rα, 
the IL-4/IL-4Rα-complex will bind a secondary receptor chain, 
either IL-2Rγc (γc) or IL-13Rα1 (Figure  1). The expression  
of these secondary chains varies among different cell types. In 
non-hematopoietic cells, γc expression is low or absent, whereas 
higher amounts of IL-13Rα1 are expressed in these cells. By 
contrast, lymphocytes express only low levels of IL-13Rα1 and 
relatively large amounts of γc. Finally, myeloid cells fall in between 

non-hematopoietic cells and lymphocytes, as they express of both 
IL-13Rα1 and γc.

Interleukin-4 and IL-13 regulate cellular functions and acti-
vate transcriptional machinery via cell surface receptors. For 
IL-4, binding of the cytokine to a single cell surface receptor 
chain (IL-4Rα) generates a ligand/receptor complex that requires 
the recruitment of a third receptor chain to form a functional 
receptor complex. The receptor formed by IL-4/IL-4Rα with γc 
is a type I IL-4 receptor and the IL-4/IL-4Rα complex binding 
IL-13Rα1 is a type II IL-4 receptor (17). Thus, based on their tis-
sue distribution, the type I IL-4 receptor is found in lymphocytes 
and myeloid cells, and the type II IL-4 receptor is expressed in 
myeloid cells and all non-hematopoietic cells. The binding of IL-4 
to IL-4Rα occurs with high affinity (Kd in the order of 10⋅10 M−1). 
This effectively means that at very low concentrations of IL-4 it 
can maximally occupy the receptor chains at a given cell surface.

It was originally assumed that the secondary recruitment of 
either γc or IL-13Rα1 into the IL-4/IL-4Rα dimer would occur 
with substantially lower affinity than the primary binding of 
IL-4 to IL-4Rα (18, 19). The expression levels of the secondary 
receptor chain would then become important. As the primary 
receptor chain for IL-4 is saturated easily, the formation of a 
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functional receptor complex could be dictated by the availability 
of the second receptor chain (20). However, the initial binding 
measurements for the IL-4/IL-4Rα complex binding to γc or 
IL-13Rα1 were carried out in free solution. Cell membrane-
bound γc and IL-13Rα1 behave differently in recruiting the 
IL-4/IL-4Rα complex under conditions of maximal ligand 
occupancy (21). While the recruitment of membrane-bound γc 
is relatively inefficient, the recruitment of IL-13Rα1 takes place 
roughly with the same efficiency as does the IL-13 driven IL-13/
IL-13Rα1 binding to IL-4Rα (21). The authors suggested that 
early endosomes concentrated the receptor chains underneath 
the plasma membrane. However, if this is the case, it still remains 
unclear how IL-4 and IL-13 induce the phosphorylation of STAT6 
differently in type I IL-4R-deficient macrophages from different 
locations, namely, BMDM and peritoneal cavity macrophages 
(20). If it is not the differential expression of IL-13Rα1 that 
explains the difference in the cytokine response between these 
macrophage populations, then a more profound difference in 
the IL-4Rα-induced STAT6 signaling pathway must be involved 
which remains uncharacterized. One plausible explanation 
might be differences in receptor endocytosis between the cells. 
For IL-13-induced type II IL-4 receptor signaling, IL-13 variants 
showing decreased IL-4Rα recruitment to the complex indicate 
that STAT6 signaling is regulated by receptor endocytosis (22). 
Quite recently, the role of the receptor transmembrane domain 
in regulating the recruitment of the type II IL-4 receptor has also 
become appreciated, and the cell type specific actin-dependent 
membrane microcompartments may participate in dictating the 
signaling potency of the type II IL-4R (23).

Once completely assembled, the IL-4 receptor complexes will 
induce intracellular signaling. The binding of IL-4 to the ectodo-
main of the IL-4Rα and subsequently to γc or IL-13Rα1, induces 
a conformational change in the intracellular receptor domains 
allowing the activation of intracellular signaling molecules. The 
Jak kinases, associated with γc (Jak3), IL-4Rα (Jak1), or IL-13Rα1 
(Tyk2, Jak2), will auto- and cross-phosphorylate each other, 
resulting in their activation and the subsequent tyrosine (Y) 
phosphorylation of critical Y residues in IL-4Rα chain. Upon 
phosphorylation, the Y residues in the intracellular domains of 
IL-4Rα serve as docking sites for SH domains of intracellular 
signaling molecules (17). STAT6 and IRS molecules, in particular, 
become activated on these tyrosine residues in response to the 
activation of the type I IL-4 receptor. By contrast, the type II IL-4 
receptor is unable to activate IRS significantly, whereas the activa-
tion of STAT6 occurs quite efficiently, which also means that IL-4 
(via type I IL-4 receptor) activates IRS2 efficiently while IL-13 
does not (24). Once activated, STAT6 molecules homodimerize 
and translocate to the nucleus where they bind specific accessible 
DNA sequences, for example, on the CD23 promoter in human 
B-cells and on the arginase1 enhancer in mouse macrophages  
(25, 26). IRS molecules do not translocate to the nucleus, but 
rather, they activate signaling pathways independent of STAT6 
including PI3K, Akt, PKBE, and mTOR [reviewed in Ref. (27)].

In addition to signaling events that elicit transcriptional 
changes, pathways that negatively regulate activated signaling 
pathways are also upregulated by IL-4. Phosphatases, SOCS, and 
PIAS proteins all participate in the downregulation of the elicited 

signal, for detailed reviews on these inhibitory mechanisms, see 
Ref. (28, 29).

iL-13 ReCePTOR SYSTeM

Like IL-4, IL-13 also has two receptors, but unlike IL-4, IL-13 uti-
lizes two separate binding chains, namely, IL-13Rα1 and IL-13Rα2. 
Thus, the decision of whether a type I or a type II IL-4 receptor is 
formed occurs after the IL-4/IL-4Rα complex is formed, whereas 
IL-13 binding upon either IL-13Rα1 or IL-13Rα2 determines 
which receptor IL-13 utilizes. IL-13Rα2 binds IL-13 with higher 
affinity than IL-13Rα1. The role of IL-13Rα2 in IL-13 biology has 
been somewhat elusive, and it has been considered merely a decoy 
receptor that binds free IL-13 strongly, without eliciting signaling, 
and thus would serve as a “neutralizer” of IL-13, by efficiently 
internalizing IL-13 from extracellular spaces. Further studies on 
IL-13Rα2 have shown that the receptor chain is not only a decoy 
receptor. Indeed, Fichtner-Feigl and colleagues showed a role for 
IL-13Rα2-mediated signaling that required the cytoplasmic tail 
of IL-13Rα2 in the production of TGF-β1 providing evidence for 
IL-13Rα2-mediated signaling (30).

The IL-13Rα1-bound IL-13 “drives” the type II IL-4 receptor 
into the opposite direction, as does IL-4 (Figure 1). Thus, IL-13 
binds IL-13Rα1, and the IL-13/IL-13Rα1 complex then recruits 
IL-4Rα into the functional receptor complex. The fully assembled 
receptor complex then activates the STAT6 transcription factor, 
but like IL-4 via the type II IL-4 receptor, IL-13 is a poor inducer 
of IRS activation through this receptor (24). The binding of IL-13 
to IL-13Rα1 is relatively inefficient, indicating that once IL-13/
IL-13Rα1 binding occurs, the ensuing formation of the func-
tional receptor complex is likely. However, lowering the IL-13/
IL-13Rα1-binding capability to IL-4Rα requires a substantial 
decrease in the second binding step to result in lowered STAT6 
activation (22).

iL-4- AnD iL-13-inDUCeD SignALing: A 
COMPARiSOn OF SignALing inDUCeD 
BY THe TwO CYTOKineS

Depending on the cell type, IL-4 and IL-13 both can activate 
STAT6 (Figure 1). As IRS2 is only weakly induced by type II IL-4 
receptor [and thus IL-13; (24)], intracellular signaling elicited 
by the two cytokines is somewhat different. By inducing IRS2, 
IL-4 subsequently activates various pathways including Sos/
Ras, PI3K/Akt, PKB/mTOR, or PKC [reviewed in Ref. (31)]. Of 
these pathways, mTOR has recently been linked to CD4 Th2 cell 
differentiation as well as alternative macrophage activation these 
results were recently thoroughly reviewed (32). Unfortunately, 
experimental therapeutic efforts targeting mTOR in murine 
allergic disease models have failed (33). Here, it is of note though 
that mTOR-based approaches target type I IL-4 receptor (i.e., 
IRS2 signaling), while many disadvantageous IL-4 effects, such as 
compromised epithelial barrier function, arise from IL-4 signal-
ing via type II IL-4 receptor (34).

As pointed out earlier, lymphocytes respond poorly to IL-13. 
The expression of IL-4Rα (i.e., type I IL-4 receptor) plays thus 
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TABLe 1 | Examples of various steps interleukin (IL)-4/IL-13 signaling could 
potentially be targeted.

Molecule 
name

Target 
molecule

Potential Reference

Dupilumab IL-4Ra IL-4- and IL-13-mediated signaling (43)
Pitrakinra IL-4Ra IL-4- and IL-13- mediated signaling (48)
Leprikizumab IL-13 IL-13-mediated signaling (44)
Anrukinzumab IL-13 IL-13-mediated signaling (45)
Tralokinumab IL-13 IL-13-mediated signaling (46)
Pascolizumab IL-4 IL-4-mediated signaling (trials 

aborted)
(47)

AS1517499 STAT6 IL-4- and IL-13-mediated signaling/
transcription/proliferation in prostate 
cancer cells

(49)
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a main role in lymphocyte responses to IL-4. The expression 
of IL-4Rα in naïve lymphocyte is relatively low and in vitro, a 
STAT5-dependent, STAT6-independent signal likely enhances 
IL-4Rα expression, which then in an autocrine manner, further 
upregulates IL-4Rα expression (35). Th2 cells then express large 
amounts of IL-4Rα and are further stimulated via IL-4. In case 
of Th1 or Th17  cells, the lack of IL-4-positive signal inhibits 
the upregulation of IL-4Rα, but in the case of Th1  cells, for 
example, the differentiation does not ablate the ability of the 
cells to respond to IL-4 (36). Interestingly, Th17 cells do express 
IL-13Rα1 (37).

For ILCs, the expression of IL-4 and IL-13 receptor(s) is still 
unclear. Several reports have established the ILC2-derived IL-13 
acting on target cells via type II IL-4 receptor as a mechanism 
for several physiological functions such as beige fat biogenesis 
(38) or hepatic fibrosis (39) but if ILC2-derived IL-13 can act on 
autocrine manner has not been established. Future experiments 
will also be warranted to reveal if IL-4Rα is differently expressed 
between ILC subtypes to tune the cells either to IL-4 or IL-13.

THeRAPeUTiC UTiLiZATiOn OF THe iL-4 
ReCePTOR SYSTeM

The road for IL-4- and IL-4R-based treatments from bench to 
bedside has been a long and winding one (40). IL-4 has been 
considered a therapeutic target for boosting and redirecting 
T and B  cell functions, but the usage of IL-4 itself has been 
problematic, not least due to the harmful side effects of activat-
ing the type II IL-4 receptor in non-hematopoietic cells (34). 
Furthermore, in mice, IL-4, but not IL-13, induced weight 
loss and spontaneous erythrophagocytosis (41). Theoretically, 
in this sense, an IL-4 that could activate only the type I IL-4 
receptor but not the type II receptor could be advantageous. 
Structural studies of human IL-4 receptor complexes (18) 
indicated that once IL-4 is bound to IL-4Rα, the D-helix of IL-4 
faces the secondary receptor chain and forms the interacting 
surface of IL-4/IL-4Rα to the second chain in question. This 
opened up opportunities to mutate the structure of the human 
IL-4 at the D-helix in a way that left the IL-4/IL-4Rα interaction 
intact but allowed the binding efficiencies of the IL-4/IL-4Rα 
complexes toward either γc or IL-13Rα1 to be altered. These 
studies indicated that a 1,000-fold induction in the recruitment 
of the IL-4/IL-4Rα complex to the secondary chain had surpris-
ingly little effect on the immediate signaling induced by such an 
IL-4-mutant, as measured by STAT6 activation (42) and similar 
results were obtained with IL-13Rα1 bound IL-13 mutants with 
varying abilities to recruit IL-4Rα into the type II IL-4 receptor 
complex (22). However, in the case of the type I IL-4 receptor, 
when the availability of the second chain (γc) was decreased 
with a blocking antibody, the difference between the WT and 
the type I receptor-specific IL-4 mutant became more evident, 
suggesting that such IL-4 mutants could be used to redirect IL-4 
responses into cells expressing small amounts of second chains 
for IL-4/IL-4Rα complexes (42).

When considering the harmful effects arising from excess 
IL-4 and IL-13, in for example allergies, knowledge of the 

structural and functional characteristics of the IL-4 receptors 
and their unique signaling via STAT6 has been useful in efforts 
to therapeutically modify IL-4/IL-13 biology. As an example of 
some therapeutic approaches used are indicated in Table  1. A 
set of monoclonal antibodies for blocking different aspect of the 
early events of IL-4 and IL-13 signaling are being considered 
for wider clinical use: dupilumab (43)—a monoclonal block-
ing antibody for IL-4Rα—lebrikizumab (44), anrukinzumab 
(45), tralokinumab (46)—blocking antibodies for IL-13—and 
pascolizumab—a blocking antibody for IL-4 (47) among others. 
Furthermore, pitrakinra, an IL-4 receptor antagonist that upon 
binding IL-4Rα, blocks both type I and type II IL-4 receptors 
has showed initial efficacy in clinical trials (48). The utilization 
of biological approaches to target IL-4/IL-13 pathways requires 
an understanding of the pathophysiological process underlying 
the inflammatory response. The cell type- and tissue-specific 
distribution of the IL-4/IL-13 receptor components adds to the 
complexity of the picture and probably in part explains this long 
and winding road of IL-4R system-based treatments from the 
initial cloning of the receptor and cytokines to the development 
of useful clinical applications. Interestingly, STAT6 inhibitor 
(AS1517499) has shown some potential in inhibiting prostate 
cancer cell growth [Table 1; (49)], which opens new possibilities 
in targeting the IL-4/IL-13 signaling therapeutically even beyond 
allergic diseases.

AnOTHeR SHAReD CYTOKine 
ReCePTOR SYSTeM: iL-7/TSLP

An analogous way of sharing cytokine receptor chains, as seen 
in the IL-4/IL-13 system, can be found in IL-7/TSLP receptor 
signaling. In this system, IL-7-bound-IL-7Rα binds γc and thus 
forms the complete IL-7 receptor, while TSLP binds TSLPR and 
then recruits IL-7Rα to the complex [reviewed in Ref. (50)]. 
Thus, theoretically, the IL-7/IL-7Rα/γc complex resembles 
the type I IL-4 and TSLP/TSLPR/IL-7Rα resembles the type II 
IL-4 receptor “driven” by TSLP. Furthermore, it is intriguing 
that TSLPR and γc are closely related structurally, sharing 24% 
identity to the common γ receptor chain (γc) (51, 52) with cer-
tain specific features associated with TSLPR as opposed to other 
type I cytokine receptors, including the PSxW(S/T) sequence 
cassette as opposed to WSxWS in the membrane proximal 
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domain (53). However, this is where the analogy ends, as IL-7/
IL-7Rα does not recruit TSLPR, but only γc to the receptor 
complex. Functionally, it seems that the IL-4/IL-13 receptor is 
“tuned” for differential purposes than is the IL-7/TSLP system. 
IL-4Rα is expressed ubiquitously and the second receptor chain 
(either γc or IL-13Rα1) is also widely distributed. Thus, IL-4 
has access to virtually all cell types, and it can saturate recep-
tors at low concentrations due to the efficient primary bind-
ing of IL-4 to IL-4Rα. For IL-13, the cytokine concentration 
required to saturate IL-13Rα1 needs to be higher as the binding 
efficiency of IL-13 binding to IL-13Rα1 is lower. In line with 
this, when PBMCs from atopic patients were stimulated with 
a mite allergen, the cells produced over 20 times more IL-13 
than IL-4 (54). The notion of the “effector” function of IL-13 
in, for example, parasite expulsion, combined with the known 
toxicity of IL-4, suggest that the system has evolved in a way that 
protects peripheral tissues from the toxicity of IL-4 by tuning 
the receptors in the periphery to be more responsive to IL-13 
than to IL-4.

In the IL-7/TSLP system, the differential anatomical expres-
sion of the cytokines suggests that the sharing of the cytokine 
receptors might occur, because the cytokines are not expressed 
in same sites and thus would not limit the signaling of each 
other. Regulating the expression of just one receptor chain on 
the cell surface (IL-7Rα), will affect both. However, there are 
likely further lessons to be learned from TSLP and its functional 
receptors. Recently, neutrophils in mice were found to respond to 
TSLP (55), whereas at least in humans, neutrophils do not likely 
express IL-7Rα (56). It was recently also shown that dynamic 
IL-7Rα expression on DCs was required for IL-7 and TSLP 
responses (57), so one possibility might be that IL-7Rα is under 
very stringent regulation and is only upregulated in various cell 
types under very specific conditions.

COnCLUDing ReMARKS

Taken together, the organization and binding events of type I and 
type II IL-4 receptors have been reviewed here. The efficiency by 
which a functional IL-4/IL-13 receptor is formed appears to be a 
sum of three parameters. First, the binding efficiency of a cytokine 
to the cytokine-binding receptor chain dictates the concentration 
of the cytokine required for the saturation of the cytokine-
binding receptor chain. Second, the binding efficiency of the 
cytokine/binding chain to the second receptor chain dictates the 
driving force for the completion of the receptor complex. Third, 
the expression level of the second receptor chain determines the 
availability of the second chains, at least in free fluid. All of these 
three parameters influence the efficiency of IL-4/IL-13 signaling 
and thereby tune the signal of the immune response in allergic 
inflammation.
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