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Abstract: Clinical conditions leading to chronic pain show important sex-related differences in the
prevalence, severity, and degree of functional disability. Decades of epidemiological and clinical
studies have demonstrated that women are more sensitive to pain than men. Arthritis, including
rheumatoid arthritis (RA) and osteoarthritis (OA), is much more prevalent in females and accounts for
the majority of pain arising from musculoskeletal conditions. It is therefore important to understand
the mechanisms governing sex-dependent differences in chronic pain, including arthritis pain.
However, research into the mechanisms underlying the sex-related differences in arthritis-induced
pain is still in its infancy due to the bias in biomedical research performed largely in male subjects and
animals. In this review, we discuss current advances in both clinical and preclinical research regarding
sex-related differences in the development or severity of arthritis and associated pain. In addition,
sex-related differences in biological and molecular mechanisms underlying the pathogenesis of
arthritis pain, elucidated based on clinical and preclinical findings, are reviewed.
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1. Introduction

Pain is a distressing experience associated with actual or potential tissue damage, which is
composed of sensory, emotional, cognitive, and social components [1]. Acute pain is provoked by
a distinct injury and is usually self-limited, while chronic pain lasts longer, often persisting beyond
normal tissue healing time. Pain from a wide range of diseases, including arthritis and low back
problems, accounts for a tremendous burden of disability worldwide. However, pain in the context of
injury is also essential for organismal survival, such that patients with congenital insensitivity to pain
often fail to defend themselves against serious harm from the environment, resulting in permanent
damage and even death. An understanding of the complexity of the mechanisms underlying the
pathogenesis of pain in different clinical settings is therefore of the utmost importance. One area of
pain research that requires clarification is sex-related difference. It has been widely reported that the
prevalence rates of many different pain conditions are higher in women than in men. In addition,
pain is usually more severe for women than men with the same disease condition. For example, in a
population-based study of osteoarthritis (OA) in Johnston Country, North Carolina, the prevalence of
radiographic knee OA was 30.8% higher among females than among males, while the prevalence of
symptomatic knee OA was 38.5% higher among females [2]. This tendency of higher symptomatic
than radiographic OA among females was also observed in Japanese and Korean cohorts [3]. However,
research regarding the mechanisms underlying the sex-related differences in pain is still in its infancy
due to the bias in biomedical research, which has largely been performed in males. In particular,
preclinical studies have failed to use appropriate numbers of female animals, such that 79% of studies
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published between 1995 and 2005 in a journal dedicated to pain research used exclusively male
rodents [4]. In addition, the sex of subjects was omitted in 22–42% of articles in various domains
of research, including neuroscience [5]. Following the implementation of the 1990 policy requiring
that women be appropriately represented in biomedical research studies, the National Institutes of
Health (NIH) released a guide notice, “Consideration of Sex as a Biological Variable in NIH-funded
Research,” in 2015, which sets forth the expectation that sex will be factored into research design,
analysis, and reporting in preclinical studies of vertebrates.

In this review, current advances in clinical research regarding sex-related differences in pain
(especially arthritis pain) are discussed. In addition, the biological and molecular mechanisms
underlying its pathogenesis, elucidated by clinical and preclinical studies, are reviewed.

2. Clinical Evidence of Sex-Related Differences in Pain

2.1. Gender vs. Sex

Although both terms have long been used interchangeably in the scientific literature, recent reports
view these two terms as conceptually distinct. “Sex” refers to anatomical, genetic, or physiological
differences between males and females, and is categorized dependent upon the reproductive system,
chromosomes, and the types of gametes produced [6]. On the other hand, “gender” refers to how
a person views how they fit (or do not fit) into society’s expectations and gender roles based on
biological sex [7]. On the whole, biomedical research still tends to use the two terms interchangeably,
and lacks clarity in the application of terminology related to “sex” and “gender” [8]. For example,
a retrospective cohort study of administrative data used the term “gender” while results were presented
as male and female [9]. Previous databases used in biomedical research have predominantly used
“sex” instead of “gender” in their variable classification. In addition, it is not yet known whether it is
appropriate to classify experimental animals according to anatomy or gender. Therefore, in this article,
the term “sex” is used, unless the relevant literature defines and uses “gender” according to the current
scientific criteria.

2.2. Sex-Related Differences in Clinical Pain Perception

In a review published in 1996, Unruh examined sex-related variations in pain conditions from
105 epidemiological studies for common recurrent pain in women and men, and an additional 13
population studies of menstrual pain. In most studies, women were found to have higher prevalence
rates as well as more severe levels of headaches and migraines. In addition, women report headaches
of greater frequency and longer duration than men [10]. Musculoskeletal pain in the neck, shoulders,
upper limbs, and hips were more frequent in women than in men, and women had more multiple
pain sites, more intense pain, and more frequent pain in the majority of epidemiological studies [10].
On the other hand, there were no significant sex-related differences in the prevalence of low back pain,
which may be more strongly related to occupational factors. A review published in 2012 by Racine
et al. analyzed articles published between 1998 and 2008 examining sex-related differences in the
perception of laboratory-induced pain in healthy subjects [11]. In contrast to epidemiological studies
suggesting higher pain sensitivity in women, the majority of the studies that measured pain intensity
and unpleasantness showed no sex-related differences in non-diseased subjects [11]. For example,
no clear pattern of sex-related differences were detected across various types of experimental pain,
including cold pain perception, ischemic pain, muscle pain, electrical pain, and chemical pain [11].
In addition, the same authors reported that hormonal and physiological factors did not affect the
differences in pain sensitivity between healthy women and men [11]. Some studies suggested that the
phenomena of temporal summation of pain, allodynia, and secondary hyperalgesia could be more
pronounced in females than in males, which may indicate that central sensitization is augmented
in healthy females. Although many studies have examined whether endogenous pain inhibitory
systems could be less efficient in females than in males, the experimental evidence in support of this
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suggestion is mixed and does not necessarily apply to all pain modalities. Experimental manipulation
of gender roles has been shown to impact sex-related differences in pain responses, such that subjects
are willing to withstand a painful task to adhere to a gender-based expectation [12]. It is notable
that past history of childhood sexual abuse was found to affect pain sensitivity in females but not
in males [13], suggesting that pain perception may be more influenced by individual past history in
females. The authors noted that laboratory studies performed in young university students may not
be extrapolated to patient populations suffering from acute or chronic pain. In addition, the lack of
conceptual clarity in measuring gender has historically impeded advances in determining sex/gender
relationships in pain research [14].

2.3. Molecular Mediators of Sex-Related Differences in Arthritis

Arthritis accounts for the majority of pain arising from the musculoskeletal condition. Rheumatoid
arthritis (RA), the hallmark inflammatory and autoimmune arthritis, is typically more prevalent in
women, with a female to male ratio of 3:1 [15]. It is notable that the female to male prevalence ratio
decreases with age, suggesting a role of female sex hormone exposure in RA risk [16]. However,
there is some debate regarding the pathogenetic mechanism underlying the sex hormone effect.
While amelioration during pregnancy and flare postpartum with declining estrogen levels is common
among RA patients, estrogen levels are significantly elevated in the synovial fluid in both male
and female RA patients due to high aromatase activity induced by locally produced inflammatory
cytokines [17,18]. The efficacy of oral contraceptives or hormone replacement therapy for reducing
the severity of RA is also unclear [19]. A study of 10 postmenopausal female RA patients showed
that an elevated prolactin/cortisol ratio early in the morning was accompanied by higher interleukin
(IL)-1β and tumor necrosis factor-alpha (TNF)-α levels, suggesting that prolactin may be another
mediator of the sex-related differences in RA [20]. In contrast to the debatable role of estrogen,
androgen replacement therapy has shown modest efficacy in both male and female RA patients [21,22].
Dehydroepiandrosterone (DHEA), androstenedione, and testosterone inhibit secretion of IL-1β and
TNF-α, and 5α-dihydrotestosterone (DHT) inhibits activation of the human IL-6 gene promoter
stimulated by nuclear factor (NF)-κB [23–25]. Female RA patients have lower than normal levels of
DHEA and/or DHEA sulfate, and male RA patients show a negative association between levels of
serum testosterone and disease severity [26]. A minor allele of SNP rs1790834 in the cytochrome B5
type A (CYB5A) gene, which converts DHEA into the metabolite 7α hydroxy-DHEA, was shown
to be associated with a reduced risk of RA in women [27]. The protective allele increased CYB5A
mRNA expression and activation of steroid 17, 20-lyase activity, which is the decisive step in androgen
synthesis. It was suggested that the minor allele of SNP rs1790834 may help to ensure protective
androgen levels in women, in whom androgen levels are generally lower than in men.

OA is a prototypical non-inflammatory arthritis, with different mechanisms underlying its
pathogenesis compared with those of RA. However, female sex is also a strong risk factor for
OA. Aside from the biomechanical differences, such as knee adduction moment according to sex,
the influence of sex hormones on OA has been studied to elucidate the mechanisms underlying the
sex-related differences. However, conflicting results have been reported, with a cross-sectional study
showing a positive association between estradiol level and radiographic knee OA, while another cohort
study showed a negative association [28,29]. No associations of DHEA sulfate, androstenedione, and
testosterone with tibial and patellar cartilage loss or knee arthroplasty for OA were reported [30,31].
Although menopause is associated with an increase in the prevalence of OA, data regarding the
influence of postmenopausal hormone replacement therapy on the development of OA are inconsistent.
Data from the Women’s Health Initiative placebo-controlled, double-blind, randomized trial showed
that in the estrogen-alone trial, women receiving hormone therapy had significantly lower rates of any
arthroplasty, while in the estrogen-plus-progestin trial, there were no associations with total arthroplasty
or individual hip or knee arthroplasties [32]. In a 4-year randomized, double-blind, placebo-controlled
trial of estrogen plus medroxyprogesterone acetate, no significant effects of hormone replacement
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therapy on knee pain and related disability were observed [33]. Although OA is considered a
non-inflammatory arthritis, some studies show a relationship between pro-inflammatory cytokines and
sex difference. In a study of symptomatic knee OA, serum IL-6 was associated with increased knee bone
marrow lesions (BMLs) in both females and males, while serum IL-17F and IL-23 predicted increased
knee BML scores in females only, suggesting that inflammation is involved in BML pathogenesis in
knee OA, especially in women [34].

2.4. Molecular Mediators of Sex-Related Differences in Arthritis Pain

Arthritis is a good disease model for elucidation of the mechanisms underlying the pathogenesis
of chronic pain and its sex-related differences. A meta-analysis of 16 RA cohort studies including 21,612
females and 6871 males examined sex-related differences in pain, and showed that the standardized
mean difference in pain visual analog scale (VAS) score was significantly higher in females [35].

For OA, women reported higher ratings of pain than men in studies performed in a variety of
regions and ethnic groups [36–38]. Sex-related differences were not found to result from more severe
OA in women [39]. Although psychological factors, including coping with pain, mood, and sensitivity
to pain, may play roles in mediating the sex-related differences in arthritis pain, there is a paucity of
data regarding the molecular aspects underlying the differences in pain mechanisms. The amygdala,
which plays an important role in the emotional-effective dimension of pain as well as cognitive aspects
such as pain-related decision-making through interactions with cortical areas, may also contribute
to sex difference in pain and is an area of future research. In a recent report, increased C-reactive
protein (CRP) levels were shown to be associated with greater painful joint count in OA among women,
but not among men, suggesting a sex-specific association of acute-phase reaction and OA pain [40].
Sex-related differences in body fat mass may be important because obesity is a strong risk factor
for both OA and pain. Interestingly, total fat mass and fat/muscle mass ratio were significantly and
positively associated with musculoskeletal pain only among female subjects in both cross-sectional and
prospective analyses [40,41]. In addition, increased fat/muscle ratio was significantly associated with
disease activity score (DAS) 28-P, which is a derived index from DAS 28 to assess the contributions of
noninflammatory factors to pain, only [42] in female RA patients. As fat tissue is considered to be an
endocrine organ producing proinflammatory adipokines, the stronger inflammatory response arising
from increased fat in women may play a role in the sex-related differences in pain [43]. A study of female
knee OA patients showed that levels of synovial fluid adiponectin were positively correlated with pain,
whereas resistin and visfatin showed significant positive and negative associations with disability,
respectively, after adjustment of potential confounders [44]. Plasma leptin and adiponectin levels were
positively, while adipsin was negatively, associated with regional symptomatic joint count in female
OA patients, while resistin showed a negative association in men [45]. Although a meta-analysis
showed that serum leptin levels were higher in RA patients with high disease activity, another study
showed that it was not correlated with the number of painful joints in RA patients [46,47].

Sex hormones may account for the sex-specific association between fat mass and pain. There are
marked sex-related differences in fat mass parameters, such as a lower amount of visceral adipose
tissue, greater lower body fat stores, as well as higher fat percentage, in women compared to men [48].
While the actions of androgens in white adipose tissue mostly explains sex-related differences in body
fat distribution, estrogen also has an influence on fat accumulation, such that estrogen deficiency after
menopause decreases fat oxidation and increases subcutaneous adipose tissue storage of free fatty
acid [49], leading to a postmenopausal increase in fat mass. This suggests that estrogen deficiency may
mediate the relationship between pain and increased fat mass after menopause.

Despite a number of studies reporting sex-related differences in response to analgesics, there have
been few studies of this aspect in relation to arthritis pain. The multinational, observational
Measurement of Efficacy of Treatment in the Era of Outcome in Rheumatology (METEOR) register
study showed that there were no differences in response to treatment between men and women with
RA; however, separate analysis of pain responses between the sexes was not reported [50]. In a study
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of 340 patients with axial spondyloarthritis (SpA) who were treated with anti-TNF-α drugs, female sex
was associated with lower rates of response to treatment and of disease remission [51]. However, as in
RA, a composite index for assessment of response was used, and pain response data were not available.
A study exploring sex-related differences in placebo response to analgesic medication in knee OA
patients showed that, although placebo effects emerged in both sexes, women showed greater placebo
response represented by 6-min treadmill distance [52]. No consistent treatment-by-sex interaction was
observed for knee OA patients taking rofecoxib, which showed consistent efficacy in both sexes [53].
On the other hand, women with knee OA showed a significantly lower response to treatment than men
for intra-articular injections of sodium hyaluronate and corticosteroid with regard to pain relief [54].
Table 1 briefly summarizes the sex-related differences in human arthritis and pain.



Int. J. Mol. Sci. 2020, 21, 7938 6 of 21

Table 1. Sex difference in human arthritis and pain.

Type of Disease Sex Difference in Joint Pathology Sex Difference in Pain Presumptive Molecular Mediators References

RA

- More prevalent in women with
a female to male ratio of 3:1

- Amelioration of inflammation
during pregnancy and
flare postpartum

- Standardized mean difference in
pain visual analog scale (VAS) score
was significantly higher in females

- Estrogen levels are significantly
elevated in the synovial fluid in both
male and female RA patients

- Androgen replacement therapy has
shown modest efficacy in both male
and female RA patients

[15–17,21,35]

OA

- Female sex is a strong risk factor
for OA

- Menopause is associated with
an increase in the prevalence
of OA

- Women reported higher ratings of
pain than men

- Women with knee OA showed
significantly less pain relief than
men after intra-articular injections
of sodium hyaluronate
and corticosteroid

- Increased C-reactive protein (CRP)
levels were shown to be associated
with greater painful joint count in OA
among women, but not men

- In female knee OA patients, levels of
synovial fluid adiponectin were
positively correlated with pain

- Plasma leptin and adiponectin levels
were positively, while adipsin was
negatively, associated with regional
symptomatic joint count in female OA
patients, while resistin showed a
negative association in men

[40,44,45,54]

Abbreviations: RA, rheumatoid arthritis; OA, osteoarthritis.
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3. Animal Study Evidence of Sex-Related Differences in Pain

3.1. Molecular Mechanism of Sex-Related Differences in Animal Pain Behavior

Studies in animal models to understand how pathogenesis of pain and analgesic efficacy have
added valuable information regarding the complex nature of pain as a human pathology [55]. Although
there is a great deal of interest in sex-dependent pain pathophysiology, few studies have addressed the
issue of sex-related differences in animal models, because much of what is known about the pathological
mechanisms of pain were identified in male animals. In recent years, the underrepresentation of female
animals not only in the field of pain research but also in the majority of other disease models has been
addressed. Therefore, the need to use both sexes remains a key priority for pain investigators working
with experimental animals.

Recent studies using animal models have demonstrated sex-related differences in the induction
and maintenance of chronic pain, such as neuropathic, inflammatory, and arthritis pain. Sex-related
differences in pain have been explored and evidence suggest an influence of sex steroid hormones on
pain perception. There is a paper showing that pain stress related factors including plasma glucose,
fatty acid, and corticosterone were significantly increased together with increased plasma estradiol
in female estrous rats compared with male estrous rats in a formalin-induced chronic pain model.
This result suggests that estradiol is related to a sensibility to pain and that the estrous cycle has an
effect of sex difference modulator on pain and nociceptive sensibility [56].

Sex-related differences involving peripheral and central immune cells, such as microglia,
macrophages, astrocytes, mast cells, and T cells, are essential for chronic pain hypersensitivity.
Multiple lines of evidence have established that spinal microglia cells, macrophage-like immune cells
that reside in the central nervous system, are reactive to peripheral inflammatory responses or nerve
damage induced by spared nerve injury (SNI) and can produce mechanical hypersensitivity [57–59].
In both male and female mice, microglia proliferate in the spinal cord following SNI, but the involvement
of microglia as mediators of persistent pain hypersensitivity has only been demonstrated in male
mice [60]. As supporting evidence that microglia play a role in sex-related differences in pain,
intrathecal injection of three different glial inhibitors after SNI, i.e., minocycline, fluorocitric acid, and
propentofylline, resulted in dose-dependent reversal of mechanical allodynia in male mice, while no
reversal of allodynia was observed in female mice, suggesting that microglia are not necessary for pain
hypersensitivity in females. Furthermore, this function of microglia was confirmed by the observation
that P2X purinoceptor 4 (P2X4R), which are purinergic receptors, are expressed specifically in microglia
and are essential in mediating pain hypersensitivity in response to nerve injury [59]. Inhibition of
spinal P2X4R reverses pain hypersensitivity in male but not female mice, as females do not show
upregulation of P2X4R in spinal microglia. Interferon regulatory factor (IRF)-8 upregulates P2X4R
expression on microglia after nerve injury by activating IRF5, which binds specifically to the promoter
of the P2rx4 gene; however, Irf8 and Irf5 showed equivalent upregulation after SNI in both sexes [60].
Therefore, it is likely that IRF regulate P2rx4 transcription in a sex-dependent manner. Inhibition of
spinal p38 MAP kinase prevents formalin-induced inflammatory pain and chronic constriction injury
(CCI)-induced neuropathic pain only in male mice, but not in female mice. The p38 phosphorylation
level is higher after injury in males than in females [61]. This sex-dependent alleviation of neuropathic
pain by inhibition of spinal p38 MAP kinase was also observed in rats [61].

Toll-like receptor 4 (TLR4) is located primarily on microglia and has been implicated in pain
pathology, with evidence that systemic and intrathecal administration of lipopolysaccharide (LPS)
results in TRL4 activation leading to pain hypersensitivity in rats [62,63], and that TLR4 knockout
mice exhibit decreased pain hypersensitivity after nerve injury. Interestingly, these results were found
only in male animals, suggesting that pain hypersensitivity mediated by TLR4 is sex dependent.
In addition, activation of TLR4 in the spinal cord with intrathecal LPS results in robust mechanical
allodynia only in male mice, while LPS allodynia was not observed in female mice, indicating the
existence of a TLR4-independent spinal pathway for pain processing in females [64]. The role of
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TLR4 in pain hypersensitivity in male mice is dependent on the male hormone testosterone, such that
administration of testosterone to primary macrophages from orchiectomized (ORX) animals elicits
a significant decrease in the expression of TLR4 [65]. There is accumulating evidence that cytokines
may also be differentially regulated in males vs. females following peripheral nerve injury. In a recent
study of neuropathic pain induced by sciatic nerve injury, females exhibited greater numbers of Th17
proinflammatory T cells and specific responses with higher levels of IL-17A compared to males at both
the injured nerve and at the corresponding spinal cord level [66]. In addition, in a neuropathic pain
model, females showed pain relief after treatment with β2-integrin antagonist BIRT377, via marked
reduction in the expression of IL-17A in sciatic and spinal cord tissues in comparison with males.
This study suggested that differences in T cell bias toward a proinflammatory state may underlie
sex-related differences in neuropathic pain [66].

There is a great deal of ongoing effort to elucidate sex-related differences in gene transcription in
the dorsal root ganglion (DRG) using rodent pain models. Stephens et al. performed RNA-Seq analysis
in the lumbar DRG following CCI in both sexes, and both common and sex-specific gene expression
following CCI were identified, including inflammatory cytokines, growth factors, and neurotransmitters.
They showed that the expression level of the cytokine, colony-stimulating factor 1 (csf1), is 1.7 times
higher in females than in males [67]. Csf1 is known to be transported from the DRG to the spinal cord
where it binds to its receptor, located on microglia during neuropathic pain. As csf1 was reported to
be expressed de novo in injured sensory neurons following peripheral nerve injury [68], sex-specific
regulation of csf1 may lead to sex-related differences in susceptibility to neuropathic pain after nerve
injury. In addition, A-kinase anchor protein 9 (Akap9), a molecule involved in the regulation of
membrane potential, is significantly upregulated in females but not in males after CCI. It may play
a role in sex-related differences in pain development by increasing neuron excitability in females
following nerve injury [69]. In male mice, Oprm1-encoding µ-opioid receptor (MOR) is significantly
upregulated compared to females. As several animal studies showed that morphine contributes to
greater analgesia in male animals than in females [70,71], Oprm1 may influence sex-related differences
in peripheral mechanisms of morphine analgesic efficacy and of endogenous analgesic mechanisms [72].
Other recent sex differences include the female-specific analgesic effects of pharmacological treatment
in a peripheral inflammatory pain model. Cerebrolysin is a multimodal neuropeptide preparation,
which can modify the neuroprophic factor to produce a neuroprotective effect, and Morales-Medina
et al. has reported that cerebrolysin reversed the mechanical allodynia in females but not in males in
carrageenan-treated rats [73]. Other analgesic effects were also shown in female mice, but not in male
mice via administration of fluoxetine in formalin-induced chronic pain model mice [74]. Fluoxetine,
one of the serotonin reuptake inhibitors, increased the expression of metabotropic glutamate receptor
type 2 (mGlu2) in the dorsal horn and DRG of female mice together with a decreased expression of the
epigenetic-modifying enzyme, histone deacetylase 2 (HDAC2), suggesting a molecular explanation
for the analgesic effects in female mice [74]. Table 2 briefly summarizes the sex-related differences in
animal pain.
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Table 2. Sex difference in animal pain.

Type of Pain/
Type of Disease Animal Species Model (Trigger) Pain Assay/Measurement Findings References

Inflammatory pain Male and female
Rat, Wistar Formalin

- Biochemical parameters
(plasma estradiol,
glucose, fatty
acid, corticosterone)

- Female estrous rats show pain stress related factors
including plasma glucose, fatty acid, and
corticosterone were significantly increased together
with increased plasma estradiol compared to male
estrous rats

[56]

Neuropathic pain Male and female mice SNI - von Frey - Inhibition of spinal P2XRs reverse mechanical
hypersensitivity in males but not in females [59]

Neuropathic pain Male and female rats,
Sprague Dawley CCI or SNI - von Frey

- No sex difference in microglial activation
- No sex difference in mechanical hypersensitivity
- Increase of P2X4R expression and activity in male but

not female rats
- Inhibition of spinal microglia reverse mechanical

hypersensitivity in males but not in females

[60]

Inflammatory and
neuropathic pain

Male and female
Mice (CD-1) or Rats
(Sprague Dawley)

- CCI
- Formalin

- spontaneous
pain behavior

- von Frey

- Phosphorylation of p38 is higher after injury in males
than females

- Inhibition of spinal p38 MAP kinase prevents both
inflammatory pain and CCI induced neuropathic pain
only in male mice and rats but not in female mice
and rats

[61]

Neuropathic pain Male and female
mice, CD-1 LPS - von Frey - TLR4 knock out males decreased pain hypersensitivity,

while females do not [64]

Neuropathic pain Male and female
mice, C57BL/6 CCI - von Frey

- Females exhibit greater Th17, a profound
pro-inflammatory T cell, and specific responses with
higher levels of IL-17A compared to males

- Females showed pain relief by treatment with a
β2-integrin antagonist, BIRT377, as compared to males

[66]
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Table 2. Cont.

Type of Pain/
Type of Disease Animal Species Model (Trigger) Pain Assay/Measurement Findings References

Neuropathic pain Male and female rats,
Sprague Dawley CCI - RNA-seq analysis

- Csf1 (colony-stimulating factor 1), Akap9 (A-kinase
anchor protein 9) is significantly upregulated in
females compared to males

- Oprm1 is significantly upregulated in males compared
to females

[67]

Inflammatory pain Male and female
Rat, Wistar Carageenan - von Frey - Cerebrolysin reversed the mechanical allodynia in

females but not in males [73]

Inflammatory pain Male and female
Mice, CD-1 Formalin

- spontaneous
pain behavior

- Fluoxetine, one of the serotonin reuptake inhibitors,
increased the expression of metabotropic glutamate
receptor type 2 (mGlu2) in the dorsal horn and DRG of
female mice but not in males

- Fluoxetine decreased expression of the epigenetic
modifying enzyme, histone deacetylase 2 (HDAC2) in
females but not in males

[74]

Abbreviations: SNI, spared nerve injury; P2XRs, purinergic receptors; CCI, chronic constriction injury; CD-1, MAP kinase; mitogen-activated protein kinase; LPS, lipopolysaccharide; TLR4,
toll-like receptor 4; Th1/17 T helper (Th)1, 17; IL-17A, Interleukin 17A; BIRT377, the LFA-1 antagonist; Csf-1, colony-stimulating factor 1; Akap9, A-kinase anchor protein 9; Oprm1, a
molecule encoding µ-opioid receptor.
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3.2. Molecular Mechanisms of Sex-Related Differences in Animal Models of Arthritis

Animal models of RA can be roughly divided into immunization or transfer models.
Collagen-induced arthritis (CIA), the most commonly used animal model of RA, is induced by
intradermal injection of heterologous type II collagen (CII) in complete Freund’s adjuvant (CFA) leading
to an autoimmune response in the joints [75,76]. Antigen-induced arthritis (AIA) is triggered by the
injection of exogenous antigens leading to subsequent pathology, including immune complex-mediated
inflammation followed by articular T cell activation [77]. The most widely used transfer model is the
collagen antibody-induced arthritis (CAIA) model, which is induced by injecting a cocktail of anti-CII
antibodies and LPS [78]. A convenience of this animal model for RA induction is that this model is
applicable independent of mouse strain or genotype. The K/BxN serum transfer arthritis model is
induced by injecting anti-glucose-6-phosphate isomerase (anti-GPI)-positive serum from K/BxN mice
into commonly used mouse strains [75,79]. The sex-related differences have been confirmed in an
animal experiment of RA, and most of them have been focused on the influence of sex hormones,
because they function as inhibitors or suppressors of immune responses. Sex hormones contribute to
the development and activity of the immune system, and both innate and adaptive immune systems
bear receptors for sex hormones and respond to hormonal cues [80]. Generally, male mice are known to
be more susceptible to CIA than female mice [81] and ovariectomy of female DBA/1 mice exacerbated
RA induced by CIA, suggesting a role for estrogen in attenuating autoimmune arthritis. When females
were treated with low doses of estrogen, the pathogenic incidence and severity of RA were significantly
reduced [82]. The results of this animal study were inconsistent with human RA, in which the efficacy
of estrogen has been demonstrated [18]. In contrast with mice, in a rat CIA model, more robust Th1/17
responses were observed in female rats and females exhibited a higher incidence of arthritis compared
to their male counterparts [83]. In a CAIA animal model, male mice showed an increased incidence
of arthritis compared to female mice before LPS injection; however, this sex-related difference was
abolished after LPS injection. When male CAIA mice were treated with 17β-estradiol (E2), it led to less
severe disease with no influence on arthritis development [84]. A number of studies have indicated a
role for cyclooxygenases (COX) in inflammatory arthritis, most of which supported an important role
for COX-2, an inducible enzyme. Both COX-1 and COX-2 have an effect on inflammatory arthritis
severity in a sex- dependent manner. For example, chronic Freund’s adjuvant-induced arthritis in
COX-1−/− and COX-2−/− showed attenuation of edema and joint destruction only in females. Notably,
neither male nor female COX-2−/− mice developed thermal hyperalgesia or mechanical allodynia,
suggesting the importance of COX-2 in the generation of pain. Interestingly, female COX-1−/− mice
showed reduced contralateral allodynia compared with male COX-1−/− or wild-type mice [85].

Animal models of OA include surgical destabilization of medial meniscus (DMM),
meniscectomy (MNX), anterior cruciate ligament transection (ACLT)] and chemically induced models
(monoiodoacetate-induced arthritis (MIA), collagenase-induced OA (CIOA)) as well as spontaneous
models. Huang et al. investigated whether age affects OA progression following DMM in female or
male mice [86]. Aged male mice developed more cartilage degeneration with subchondral bore changes
compared to aged females. In a study of young (~4 months) mice, ORX male and ovariectomized
(OVX) female mice were used to investigate the roles of sex hormones in the development of OA after
DMM. Female mice were found to be less prone to developing OA following DMM compared to their
male counterparts, and OA was more severe in OVX females and less severe in ORX males, suggesting
that both sex hormones play critical roles in the progression of OA. Most spontaneous models of OA,
whether naturally occurring or induced by generic modifications [87], show that male mice exhibit
more severe OA. STR/ort male mice exhibiting spontaneous OA show a higher prevalence of OA with
alteration of bone structure, including an earlier increase in angular degrees of internal tibial torsion
compared to females. In IL-6-deficient mice, which also develop spontaneous OA, more extensive
cartilage loss is observed in males than in females upon aging. In addition, IL-6−/− males show more
extensive extracellular matrix (ECM) depletion and subchondral bone sclerosis compared to females,
and cartilage proteoglycan (PG) synthesis and bone mineral density are decreased to a greater extent in
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males than in females, suggesting a protective role of IL-6 in age-related OA in male mice [88]. Another
genetically modified mouse targeted NOV (Nephroblastoma overexpressed), which is a member of
the CCN family of matricellular proteins. Novdel3−/− males exhibited severe OA-like pathology at
12 months, affecting all tissues of the joint, including destruction of the articular cartilage, meniscal
enlargement, osteophyte formation, and expansion of fibrocartilage in comparison to females [89].

3.3. Molecular Mechanism of Sex-Related Differences in Animal Models of Arthritis Pain

As the majority of arthritis animal studies used male animals, the mechanisms of arthritis
pain have mostly been examined only in males. RA features increased immune cell infiltration in
the synovium and elevated production of various proinflammatory mediators, including cytokines.
This inflammatory response is a risk factor for both joint destruction and pain. However, the degree of
inflammation is not always concordant with that of pain. For example, in animal models of RA as
well as in human RA patients, despite resolution of inflammation, pain may still persist, indicating
that more complex mechanisms other than overt inflammation contribute to pain. Woller et al. noted
that in the K/BxN serum transfer model, acute inflammation, and concurrent tactile allodynia are
indistinguishable between male and female C57BL/6 mice [90]. However, in the post-inflammatory
phase, a significant reversal of the tactile allodynia was shown in the female mice but not in males,
suggesting underlying different systems processing nociceptive information between the sexes [90].
Both male and female mice showed increased spinal TNF-αmRNA expression at acute and intermediate
phases, which declined at the chronic phase. On the other hand, an increase in spinal interferon
(IFN)-β mRNA expression, which induces anti-inflammatory gene expression, in the chronic phase
was observed only in females, but not in males. Coadministration of intrathecal IFN-β and anti-TNF
antibodies reversed tactile allodynia, suggesting that spinal TNF-α and IFN-β may be involved in
the transition from acute to chronic tactile allodynia and pertinent sex-related differences in pain
behavior [90].

A study reported sexual dimorphism of pain behavior mediated by spinal pain signaling
molecules in CAIA mice. The study focused on the late phase of arthritis and showed that the
intensity of ionized calcium-binding adapter molecule 1 (IBA1) and glial fibrillary acidic protein
(GFAP), which are markers of activated microglia and astrocyte, respectively, in the spinal cord did not
differ between male and female animals [91]. However, a significant reversal of mechanical thresholds
by intrathecal administration of glial inhibitors, minocycline and pentoxifylline, was observed only
in male mice, suggesting microglia-dependent pain regulation in males. To investigate differences
in the transcriptome of microglia between males and females in the context of RA pain, RNA-seq
analysis of sorted CD45+, CD11b+ microglia from the lumbar dorsal horn of CAIA mice during the
post-inflammatory phase was performed [91]. Although genome-wide RNA sequencing analysis has
indicated several transcriptional differences, including Ddx3y, Eif2s3y, and Xist, between microglia
from males and females, no convincing differences were identified between control and CAIA groups.
Taken together, these findings indicate that a subtle sex-related differences seems to exist in microglial
expression profiles independent of RA. A study examining the contribution of sensory neurons in the
ankle joint and adjacent tissue to the development of pain in a female CIA rat model [92] showed that
joint innervating neurons exhibited enhanced calcitonin gene-related peptide (CGRP) expression in the
dorsal horn, and blockade of this CGRP expression attenuated established mechanical hypersensitivity,
suggesting that central mechanisms play critical roles in RA-like chronic inflammatory pain. To examine
whether this finding is involved in sex-related differences in analgesic efficacy of CGRP blockers, further
studies regarding pain hypersensitivity should be performed in CIA model animals of both sexes.

There is a paucity of data on sex-related differences in animal models of OA pain. Temp et al.
recently reported the effect of sex on pain sensitization in C57BL/6J mice with OA induced by
medial meniscal transection (MMT) surgery [93]. In males, MMT triggered biphasic mechanical
hypersensitivity and decreased the load on OA limbs, with acute postoperative (1–5 days) and chronic
(3–12 weeks) OA phases separated by a period of remission in the intermediate phase (1–2 weeks).
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On the other hand, females showed a less pronounced biphasic pattern, with greater mechanical
hypersensitivity, but not poorer limb use, than males in the intermediate phase. In both sexes,
neither heat hypersensitivity nor changes in locomotor activity were observed in the chronic phase.
Cartilage damage was more severe in males than in females, but knee damage was not correlated
with pain. The molecular mechanisms underlying these sex-related differences in pain were not
explored. In a study of the effects of sex and age on pain sensitivity in rats by monoiodoacetate (MIA)
injection, more pronounced and longer lasting hyperalgesia was observed in older than in young rats,
while greater pain responses and higher susceptibility were observed in female than in male rats [94].
These results suggested that female sex and aging are associated with an elevated pain response in OA.
On the other hand, in our recent study, joint damage and pain hypersensitivity after destabilization of
medial meniscus (DMM) surgery were similar in both male and female C57/BL6 mice [95]. Although
DMM surgery increased the expression of transient receptor potential cation channel subfamily V
member 1 (TRPV-1) in the DRG of both males and females, the analgesic effect of capsazepine (CPZ),
a TRPV-1 antagonist, was observed only in male mice with reduced expression of TRPV-1 in DRG after
treatment [95]. Sannajust et al. reported sex-related differences in pain using a temporomandibular
joint MIA model in rats. The results showed that females developed ongoing pain at a fivefold lower
concentration of MIA than males. Treatment with MIA led to the spread of tactile hypersensitivity
from the face to the forepaws and hind paws, indicating the development of central sensitization in
both sexes [96]. Table 3 briefly summarizes the sex-related differences in arthritis and arthritis pain in
animal models.
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Table 3. Sex difference in arthritis and arthritis pain in animal models.

Type of Pain/
Type of Disease Animal Species Model (Trigger) Pain Assay/ Measurement Findings References

RA Male and female
mice, DBA/1

CIA
(CII)

- Histology of joint - Males are more susceptible to CIA than females [81]

RA Female mice,
DBA/1 CIA - Histology of joint

- Castration of female DBA/1 mice exaggerated RA
- Females treated with low doses of β-oestradiol, showed reduced the severity of RA [82]

RA
Male and female

rats,
DA

CIA
(CII/adjuvant)

- Th17/Treg ratio
- Th17 cell redifferentiation
- Treg trans-differentiation

into exTregs

- Females exhibit greater susceptibility to CIA induction that males
- More robust Th1/Th17 responses were observed in females than males [83]

RA Male and female
mice,

CAIA
(Anti-CII Ab +

LPS)
- Histology of paws

- Males are more susceptible to than females
- The E2-treated castrated females had a clearly decreased RA related incidence
- In the non-castrated male mice, the E2 treatment led to less severe disease

[84]

RA Male and female
mice, CFA

- Hargreaves
- Von frey
- Inflammatory edema,
- Histology of joint

- COX-1−/− and COX-2−/− showed reduced edema and joint destruction in females, but
not in males

- No sex difference in thermal hyperalgesia or mechanical allodynia in COX-2−/−

- Female COX-1−/− mice show reduced contralateral allodynia compared to male or
WT mice

[85]

RA
Male and female

mice, C57BL/6 and
TLR4 null

K/BxN
- von Frey
- hind paw swelling

- All mice (both sex of WT and TLR4−/−develop an initial tactile allodynia
- Female WT and both sex of TLR4−/− mice partially resolve their allodynia in the

post-inflammatory phase
- Female TLR4−/− mice began to recover earlier than male TLR4−/− mice
- No sex difference between strains or sexes in hind paw swelling

[90]

RA

Male and female
mice, C57BL/6,

Balb/c,
and CBA

CAIA
(Anti-CII Ab +

LPS)

- von Frey
- Microglia isolation
- RNA-seq analysis

- No sex difference in level of microglia cell in spinal cord
- Mechanical hypersensitivity is reversed by microglia inhibitors only in males
- No convincing difference in gene expression between male and females in

RNA-seq analysis

[91]
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Table 3. Cont.

Type of Pain/
Type of Disease Animal Species Model (Trigger) Pain Assay/ Measurement Findings References

OA Male and female
mice, 129S6/SvEv

DMM
(surgical)

- Cartilage explant
- PG quantitation
- Histology of cartilage

- OVX female mice had significantly more severe OA lesions than the control females
- ORX males developed significantly less severe OA than control males
- ORX males supplemented with exogenous DHT, the severity of OA was restored to

the level of control males

[87]

OA Male and female
mice, IL-6−/− null Spontaneous

- Histology of cartilage
- PG density
- knee BMD

- IL-6−/− males developed more severe spontaneous OA than females
- IL-6−/− males showed more extensive ECM deposition and subchondral bone

sclerosis than females
- IL-6−/− males showed reduced cartilage PG synthesis and BMD than females

[88]

OA Male and female
mice, Novdel3 null Spontaneous

- X-ray
- Histology of cartilage

- Novdel3−/− males exhibited severe OA-like pathology including cartilage destruction,
meniscal enlargement, osteophyte, and expansion of fibrocartilage compared to
females at 12 months

- Subchondral sclerosis, changes in ECM composition and proliferating articular cell
was greater in Novdel3−/− males that females

[89]

OA Male and female
mice, C57BL/6 and

MMT
(Surgical)

- Dynamic weight bearing
- von Frey
- locomotor activity
- Hargreaves
- Histology of cartilage

- No difference in heat sensitivity between sexes in acute phase but more delayed
intermediated phase in females than males

- Females showed greater mechanical hypersensitivity and locomotor activity in acute
phase than males

- Male exhibited more severe cartilage destruction than females
- Load on limb decreased in males than females

[93]

OA Male and female
rats, Fischer 344

MIA
(Chemical)

- Hargreaves
- Pressure
- Nocifensive behaviors

by capsaicin

- Old rats lasted longer with hyperalgesia than young rats
- Reduction in weight-bearing response was greater in old rats than in young rats
- Females showed greater thermal hypersensitivity and higher susceptibility to OA

than males
- No sex difference in capsaicin induced nocifensive response

[94]

Abbreviations: DBA/1, RA, rheumatoid arthritis; CIA, collagen-induced arthritis; CII, collagen type II; Th17/Treg, T helper 17/regulatory T cell; Th1/17, T helper Th1/17; CAIA, collagen
antibody-induced arthritis; E2, 17β-estradiol; CFA, complete Freund’s adjuvant; COX-1 and 2, cyclooxygenases-1 and -1; TLR4, toll-like receptor 4; OA, osteoarthritis; DMM, destabilization
of medial meniscus; OVX, ovariectomize; ORX, orchiectomized; DHT, dihydrotestosterone; IL-6, interleukin-6; ECM, extracellular matrix; PG, proteoglycan; BMD, bone mineral density; Novdel3

CCN family of matricellular proteins, MMT, medial meniscal transection; MIA, monosodium iodoacetate.
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4. Conclusions

Clinical conditions leading to chronic pain show important sex-related differences in both
prevalence and degree of functional disability. A number of animal models mimicking human arthritis
pain have been developed, and there is increasing interest in elucidating the mechanisms underlying the
sex-dependent differences in arthritis pain using these animal models. This review presented distinct
molecular mechanisms leading to sex-related differences in arthritis pathology and arthritis pain based
on both clinical and preclinical research findings. We suggest that molecular mechanisms, including
different immune cell types, TLR4-dependent/or independent pathways, and inflammatory cytokines,
contribute to the sex-related differences in arthritis-induced pain in animal models. There are still not
enough studies to elucidate the molecular mechanisms underlying the pathogenesis of sex-related
differences in pain, even in animal models. Uncovering such underlying mechanisms would lead to
more targeted therapeutic approaches based on sex in many chronic pain conditions.
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