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Abstract
Consumption of diets containing medium-chain TAG (MCT) has been shown to confer neuroprotective effects. We aim to identify the global
metabolic perturbations associated with consumption of a ketogenic diet (medium-chain TAG diet (MCTD)) in dogs with idiopathic epilepsy.
We used ultra-performance liquid chromatography-MS (UPLC-MS) to generate metabolic and lipidomic profiles of fasted canine serum and
made comparisons between the MCTD and standardised placebo diet phases. We identified metabolites that differed significantly between
diet phases using metabolite fragmentation profiles generated by tandem MS (UPLC–MS/MS). Consumption of the MCTD resulted in
significant differences in serum metabolic profiles when compared with the placebo diet, where sixteen altered lipid metabolites were
identified. Consumption of the MCTD resulted in reduced abundances of palmitoylcarnitine, octadecenoylcarnitine, stearoylcarnitine and
significant changes, both reduced and increased abundances, of phosphatidylcholine (PC) metabolites. There was a significant increase in
abundance of the saturated C17 : 0 fatty acyl moieties during the MCTD phase. Lysophosphatidylcholine (17 : 0) (P= 0·01) and PC (17:0/20:4)
(P= 0·03) were both significantly higher in abundance during the MCTD. The data presented in this study highlight global changes in lipid
metabolism, and, of particular interest, in the C17 : 0 moieties, as a result of MCT consumption. Elucidating the global metabolic response of
MCT consumption will not only improve the administration of current ketogenic diets for neurological disease models but also provides new
avenues for research to develop better diet therapies with improved neuroprotective efficacies. Future studies should clarify the involvement
and importance of C17 : 0 moieties in endogenous MCT metabolic pathways.
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The initial use of ketogenic diets (KD) for epilepsy in humans
was in the 1920s, in order to mimic the metabolic state and
biochemical changes associated with fasting, as fasting was
shown to possess anticonvulsant properties(1). A plethora of
anecdotal reports and published literature have since high-
lighted the use of different diet therapies and KD for epilepsy,
all showing varying levels of anticonvulsant properties in
humans(2,3). Canine epilepsy is thought to be similar in
pathology, heterogeneity, aetiology and clinical manifestations
to its human counterpart, and thus acts as a good translational
model(4). It has therefore been proposed that KD may also act
as an alternative treatment strategy for canine epilepsy(5,6).
A novel KD (medium-chain TAG diet (MCTD)) developed for
canine consumption, with relatively low fat and medium-chain
TAG (MCT) levels, was recently shown to significantly reduce
both seizure frequency and the number of days with seizure
occurrence in dogs with idiopathic epilepsy(7). This MCTD

contained caprylic (8 : 0), capric (10 : 0) and lauric (12 : 0) SFA(7),
which is in accordance with the MCT content present in other
MCT KD(8,9). The use of MCT KD transcends beyond purely
anticonvulsant purposes and has been shown to improve
behaviour in dogs(10). Importantly, it has also been shown to
enhance cognitive functioning not only in humans diagnosed
with epilepsy(11) but also for patients with Alzheimer’s disease
and type 1 diabetes(12,13). Furthermore, beyond neurological
properties, medium-chain fatty acids (MCFA) have also shown
positive effects in obesity and cancer-related disease models in
humans(14–16).

With regard to the anticonvulsant effects of MCFA, published
literature thus far supports the hypothesis that caprylic, capric
and lauric FA, the main constituents within the MCT KD,
possess direct mechanistic effects(8,9,17). An ex vivo rat hippo-
campal slice model of epileptiform activity showed that
capric acid, acting as a non-competitive antagonist, binds to
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α-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors,
which exerts inhibitory effects on excitatory neurotransmis-
sion(17). Research endeavours focusing on in vitro and mouse
models of MCT in epilepsy have also highlighted anticonvulsant
effects of specific branched-chain fatty acids, such as the C9
(4-methyloctanoic), C10 (4-methylnonanoic) and C12 (2-buty-
loctanoic) fatty acids (FA)(9,17,18). However, it is unknown
whether these potentially related metabolites are in fact impli-
cated in the anticonvulsant effectiveness of MCT KD in an
in vivo model of epilepsy. Others have suggested that MCFA
indeed play a less direct role and hypothesised that MCFA exert
downstream effects, by way of plasma albumin binding site
metabolite displacement, on tryptophan metabolism, which in
turn increases seizure thresholds(19–21).
The global and likely multiparametric metabolic response

associated with MCT and/or MCFA consumption remains
unclear. Using research techniques, such as metabolic profiling,
to fully characterise the global metabolic response of medium-
chain lipid consumption is a crucial initial step in elucidating
diet-induced neurological effects of MCFA, which are likely to
be variable and multifactorial(22). Metabolic profiling research
techniques, also commonly known as ‘metabolomics’ or ‘meta-
bonomics’, incorporate the measurement of a ‘multiparametric
metabolic response of living systems to pathophysiological,
genetic or environmental stimuli’(23). Ultra-performance liquid
chromatography coupled to MS (UPLC-MS) is an analytical tech-
nique commonly used in untargeted metabolic profiling studies.
Although a biological sample can be directly infused into a mass
spectrometer, a chromatographic step is typically used before
mass analysis(24). Chromatography facilitates the separation of
metabolites within biological samples on the basis of their intrinsic
metabolic properties, which further improves the quality of
downstream mass analysis of metabolites present(24). Further-
more, different chromatographic techniques can be used to
facilitate improved separation of a specific metabolite class, which
may be present in a biological sample, such as lipid profiling (LP)
chromatography, which facilitates the separation and detection of
lipids(25). Elucidating the pathways of MCT metabolism and the
global metabolic response of MCT consumption in canine epi-
lepsy will provide insights into how MCT may confer neurological
effects(7). The primary aim of this study was therefore to deter-
mine the global metabolic response of ketogenic MCTD con-
sumption on serum biofluid metabolic profiles in dogs with
idiopathic epilepsy.

Methods

This study was conducted in accordance with the guidelines
laid down in the International Cooperation on Harmonization of
Technical Requirements for Registration of Veterinary Medical
Products GL9 Good Clinical Practices (GCP) and the European
Agency for the Evaluation of Medical Products (EMEA). The
study protocol was approved by the local Ethics and Welfare
Group (EWG) (URN 2011 1132). The 6-month, randomised,
double-blinded, placebo-controlled, cross-over, novel medium-
chain TAG diet trial study for dogs with idiopathic epilepsy has
previously been reported(7). Briefly, the study population con-
sisted of twenty-one dogs of seventeen different breeds detailed

in the online Supplementary Table S1. The study population
consisted of fifteen males, of which ten were neutered and five
were intact, and six females, of which four were neutered and
two were intact (online Supplementary Table S1). The dogs had
a mean age of 4·59 (SD 1·73) years and weighed a mean of 29·79
(SD 14·73) kg at the start of the trial (online Supplementary Table
S1). The experimental placebo and MCTD formulas were dry
extruded kibble (Nestle Purina PetCare) formulated to contain
<10% moisture, at least 28% crude protein, at least 15% crude
fat and 50% carbohydrates, with <2% as crude fibre(7). The
only composition difference is that zero MCT were added to
the placebo formula, and lard was used as fat substitute to
ensure that the formulas were isoenergetic (1561 kJ/100 g
(373 kcal)/100 g), whereas the test formula contained 5·5%
MCT. MCT content was about 10% of total formula calories
(based on fat as 35·5 kJ (8·5 kcal)/g and MCT as 28·4 kJ/100 g
(6·8 kcal)/g). Proximate analysis of both formulas indicated that
they were of similar composition, with the exception of MCT, as
the placebo diet was void of C12, C10 and C8 FA (each
<0·100% of placebo formula). In this study, canine serum
samples were analysed using an untargeted UPLC-MS metabolic
profiling approach. The reversed-phase (RP) chromatography
facilitated the separation of non-polar /moderately polar
molecules, whereas the LP chromatography facilitated the
separation of lipids(24,25).

Serum sample collection and preparation

Blood samples were collected from the dogs over the duration
of the study at visit two on day 90 (SD 2) d and at visit three on
day 180 (SD 2) d, corresponding to either placebo diet phase or
MCTD phase samples. This study consisted of a cross-over
placebo controlled diet trial design where the first diet initiated,
either placebo or MCTD, was randomised. Blood was collected
after overnight fasting before consumption of respective diets
and routine concomitant antiepileptic drugs (AED) the next day.
Fasted samples were used in this study in order to interrogate
the global shifts in metabolism rather than immediate/short-
term changes associated with diet consumption. Further infor-
mation regarding the collection of canine serum samples can be
found in the online Supplementary Table S2. Canine serum was
combined with pre-chilled methanol to facilitate protein pre-
cipitation. Proteins were removed by centrifugation where the
supernatants were subsequently dried by centrifugal evapora-
tion. Dried metabolite extracts were re-suspended in UPLC-
grade water for RP chromatography and in methanol–water
(1:1) for LP chromatography. Pooled quality control (QC)
samples were made using 10 μl of each study sample(26). Fur-
ther information regarding the preparation of canine serum
samples can be found in the online Supplementary Table S2.

Canine serum ultra-performance liquid chromatography-MS
data acquisition and extraction

Ultra-performance liquid chromatography separation was
performed using an Acquity UPLC system (Waters Corporation).
A high strength silica column was used for RP liquid
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chromatography and a charged surface hybrid column was
used for LP liquid chromatography (online Supplementary
Table S3). MS was carried out on a Xevo G2-S Q-TOF (Waters
MS technologies) mass spectrometer for RP experiments and on
a Q-TOF Premier (Waters MS technologies) mass spectrometer
for LP experiments (online Supplementary Table S4). Data
extraction was performed by peak picking and grouping using
the XCMS package in R programming language (open-source
software R, version 3.3.2) (online Supplementary Table S5).
A QC filtering protocol was used in all UPLC-MS analyses(26).
Briefly, pooled QC samples were injected ten times before
UPLC-MS analysis of study samples to facilitate the conditioning
of the chromatographic column. QC samples were subse-
quently injected approximately once every ten study samples
analysed and at the end of the study. A CV of ≥30% within QC
for all extracted metabolite features formed the major criteria for
removal of metabolite features that were considered unreliable.
Furthermore, metabolite features that were not present in
(QCn-1) QC samples were also considered unreliable and
removed from further data analysis. The resultant metabolite
features list, classified as reliable metabolic features passing the
QC filtering protocols, was normalised by median fold change
using an in-house normalisation script executed in the R pro-
gramming language (open source software, R, version 3.3.2).

Statistical analysis

Patterson et al.(27) performed power calculations using the
results that were acquired from their study, which showed that
twenty-two dogs in each group would be sufficient to show
significant differences between diet groups using seizure fre-
quency as the major outcome variable. We report only twenty-
one dogs, as one dog was excluded owing to an error in the diet
dispensed, which came to our notice only during data analysis
after completion of the study(7). Statistical analysis of canine
serum data included paired Student’s t test analysis with
Benjamini–Hochberg (BH) false discovery rate (FDR) multiple
t test P value correction comparing metabolite intensities
between diet groups(28). An FDR multiple test correction
method is commonly applied in metabolomic studies owing to
the large number of metabolite features that are detected and
analysed simultaneously. The BH critical value was calculated
by (i/m)Q, where i is the relative rank of a P-value generated
from a single t test, m is the total number of statistical tests
calculated and Q is the pre-determined FDR (Q= 0·05). The
largest statistical test P value result that is P< (i/m)Q is con-
sidered significant, with all subsequent P-values that are smaller
also considered significant and adjusted accordingly(28).
Significant metabolite features (P< 0·05) were identified by
UPLC-tandem MS (UPLC-MS/MS) analysis. Subsequent UPLC-
MS/MS verification required a m/z (mass-to-charge) match of
±0·01m/z and a retention time match of ±0·5min to the original
UPLC-MS-detected metabolite feature to be considered reliable.
Metabolite identification was facilitated by mass spectra frag-
mentation patterns and matching m/z ratio to metabolites
found in online databases, including LIPID MAPS (http://www.
lipidmaps.org), HMDB (http://www.hmdb.ca/), METLIN
(https://metlin.scripps.edu/index.php) and other published

literature(29). Relative metabolite abundance fold change was
calculated on the basis of the average fold changes for indivi-
dual paired samples and was relative to the lower-abundance
diet phase group.

Results

Consumption of the MCTD resulted in significant changes to the
fasted canine serum metabolic profiles when compared with
the standardised placebo diet, which contained zero MCT. In
all, sixteen metabolites, detected using UPLC-MS/MS techni-
ques, were altered with statistical significance between placebo
diet and MCTD phases (Table 1). All metabolites were identified
based on UPLC-MS/MS fragmentation experiments and belong
to the classes of compounds known as phosphatidylcholine (PC)
and acylcarnitine metabolites; examples of these metabolites can
be found in the online Supplementary Fig. S1. Palmitoylcarnitine
(C16 : 0), octadecenoylcarnitine (C18 : 1), stearoylcarnitine
(C18 : 0), LysoPC(18 : 2), LysoPC (18 : 3), PC (16 : 0/18 : 2), PC
(16 : 0/18:1) and PC (18 : 0/18 : 2) were shown to be higher in
abundance during the placebo diet phase (Fig. 1). Conversely,
LysoPC (17 : 0), LysoPC (20 : 1), LysoPC (22 : 5), PC (17 : 0/20 : 4),
PC (18 : 0/20 : 5), PC (18 : 0/20 : 4), PC (18 : 0/22 : 6) and PC
(18 : 0/22 : 5) were shown to be higher in abundance during the
MCTD phase (Fig. 2).

Discussion

It is interesting that the fundamental difference in diet compo-
sition between the MCTD and placebo diet was the presence or
absence of MCT, and that this difference was not directly
apparent between the metabolic profiles. As fasted serum
samples were used in this study to interrogate the global shifts
in metabolism associated with diet consumption, the lack of
MCT and MCFA detection may be attributed to the natural
metabolic rate of these metabolites. MCT, as opposed to long-
chain TAG (LCT), are used to a greater and more efficient
degree30,31. The transport process from intestinal lumen to the
liver for MCT, in comparison with LCT, is much faster and more
efficient(30,31). Furthermore, transport of MCFA into the mito-
chondrial matrix for β-oxidation does not require the carnitine
shuttle system that is necessary for long-chain FA (LCFA)(30).
MCT are therefore metabolised at a quicker rate when com-
pared with LCT. Furthermore, all dogs included in this study
were chronically treated with the AED phenobarbital (PB). It is
thought that PB, primarily metabolised in the liver, also pro-
motes induction of the cytochrome-P450 (CYP) enzyme sys-
tem(32). As it has been shown that MCT are metabolised by
some CYP4 isoforms, the dogs in this study, all chronically
treated with PB, may have had increased rates of MCT meta-
bolism(33). Unfortunately, it is not yet entirely clear whether the
exact CYP enzymes involved in their metabolism are the same.
Considering the rate at which MCT are normally metabolised
compared with LCT, even if MCT and/or MCFA metabolites
were initially detected in the fasted serum samples, their
intensities may have been too low to either pass metabolite
feature QC filtering protocols applied in this study or to be
considered significant in subsequent statistical tests.
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When considering global shifts in lipid metabolism, as a result
of MCTD consumption, MCT and/or MCFA metabolites may
have been metabolised into downstream products by de novo

hepatic synthesis and/or lipogenesis pathways (online Supple-
mentary Fig. S2). In a rat hepatocyte model study, C14-radio-
labelled lauric FA (C12 : 0) was shown to be rapidly converted

Table 1. Metabolites shown to be significantly different in abundance between placebo diet and medium-chanin TAG diet (MCTD) phases*

Metabolite names
Molecular
formula

M v. P
(P)

FDR (M v. P)
(P)

LC protocol
(ESI mode)

Adduct
(detected)

Mass m/z
(detected)

Mass m/z
(theoretical) Δppm

Fold
change

CV
(%)

Metabolites higher in abundance during the placebo diet phase
Acylcarnitine (16 : 0) C23H45NO4 <0·001 <0·001 LP (+) [Met +H] 400·3432 400·3421 3 1·62 17
Acylcarnitine (18 : 1) C25H47NO4 <0·001 0·005 LP (+) [Met +H] 426·3585 426·3578 2 1·68 14
Acylcarnitine (18 : 0) C25H49NO4 <0·001 0·005 LP (+) [Met +H] 428·3736 428·3734 0 1·43 8
LysoPC (18 : 3) C26H48NO7P 0·002 0·02 LP ( +) [Met +H] 518·3243 518·3241 0 1·20 19
LysoPC (18 : 2) C26H50NO7P <0·001 0·005 LP (+) [Met +H] 520·3406 520·3393 2 1·22 20
PC (16 : 0/18 : 2) C42H80NO8P <0·001 <0·001 LP (+) [Met +H] 758·5724 758·5694 4 1·24 13
PC (16 : 0/18 : 1) C42H82NO8P <0·001 0·003 RP (−) [Met + FA-H] 804·5747 804·5760 2 1·14 2
PC (18 : 0/18 : 2) C44H84NO8P <0·001 0·012 RP (−) [Met + FA-H] 830·5904 830·5917 2 1·18 3

Metabolites higher in abundance during the MCTD phase
LysoPC (17 : 0) C25H52NO7P <0·001 0·013 RP (−) [Met + FA-H] 554·3457 554·3463 1 1·33 4
LysoPC (20 : 1) C28H56NO7P <0·001 0·006 LP (+) [Met +H] 550·3893 550·3867 5 1·43 17
LysoPC (22 : 5) C30H52NO7P <0·001 0·012 RP (−) [Met + FA-H] 614·3457 614·3462 1 2·62 6
PC (17 : 0/20 : 4) C45H82NO8P 0·002 0·032 RP (−) [Met + FA-H] 840·5754 840·5760 1 1·39 2
PC (18 : 0/20 : 5) C46H82NO8P <0·001 <0·001 LP (+) [Met +H] 808·5895 808·5851 5 1·44 11
PC (18 : 0/20 : 4) C46H84NO8P <0·001 0·019 RP (−) [Met + FA-H] 854·5901 854·5917 2 1·13 3
PC (18 : 0/22 : 6) C48H84NO8P <0·001 <0·001 LP (+) [Met +H] 834·6078 834·6007 8 2·15 14
PC (18 : 0/22 : 5) C48H86NO8P <0·001 <0·001 LP (+) [Met +H] 836·6215 836·6164 6 1·90 16

FDR, false discover rate; M, MCTD phase; P, placebo diet phase; ESI, electrospray ionisation; m/z, mass:charge ratio; Δppm, deviation between measured mass and theoretical
mass in ppm calculated; CV (%), CV calculated based on total number of pooled quality control samples acquired during experimental run; P value correction; LP, lipid profiling;
Met, metabolite; PC, phosphocholine; RP, reversed phase; FA, formate; UPLC–MS, ultra-performance liquid chromatography-MS.

*Metabolites were detected in ESI+ and ESI− modes using LP-UPLC-MS and RP-UPLC-MS (percentages). Significant metabolites were determined using paired Student’s t test
with FDR P value correction (P< 0·05) and identified in UPLC–MS/MS experiments, respectively.
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Fig. 1. Metabolites detected by ultra-performance liquid chromatography-MS (UPLC-MS) in fasted canine serum, which were significantly higher in abundance during
the placebo diet phase when compared with the medium-chain TAG diet (MCTD). Relative metabolite intensities are presented as scatter dot plots with means and
standard deviations, where paired samples are highlighted with the connecting line. PC, phosphatidylcholine; LysoPC, lysophosphatidylcholine.
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to palmitic FA (C16 : 0) by two successive elongations(31).
In another randomised cross-over study, over-feeding of an
MCT-enriched diet also resulted in elevation of serum C16 : 0,
C18 : 0 and C18 : 1 FA(34). Hill et al.34 hypothesised that it was
highly likely that excess dietary MCT results in de novo hepatic
synthesis of LCFA by chain elongation and/or desaturation of
MCFA. Others have since shown that MCT consumption not
only increases MCFA in portal circulation but also C16 : 0,
C18 : 0, C18 : 1 and C20 : 4 FA moieties in the lymphatic TAG(35).
It was shown that levels of linoleic acid (C18 : 2) in lymphatic
TAG correlated with the type of TAG consumed, with more
C18 : 2 moieties seen in LCT consumption when compared with
MCT consumption(35). Results presented by You et al.(34) and
Hill et al.(35) are in accordance with the results presented in this
study, whereby the diet containing relatively higher levels of
LCT resulted in higher abundance of C18 : 2 moieties, and diets
containing MCT resulted in higher abundances of C18 : 0 and
C20 : 4 moieties. Therefore, we speculate that MCT may have
been metabolised, by way of de novo lipogenesis, potentially
into fatty acyl moieties shown to be significantly higher in
abundance during the MCTD, such as PC metabolites contain-
ing C18 : 0 fatty acyl moieties (online Supplementary Fig. S2).
Consumption of the MCTD, when compared with the stan-

dardised placebo diet, resulted in significant differences in
serum metabolites, predominantly PC metabolites. Most inter-
estingly, lysoPC (17:0) and PC (17:0/20:4) were higher in
abundance during the MCTD phase. Fatty acid metabolism

typically involves multiple rounds of 2-C cleavage from FA by
β-oxidation to produce acetyl-CoA, which can be used in other
metabolic pathways such as the Krebs cycle, and the acyl-CoA
molecule where the FA moiety becomes two carbons shorter
(online Supplementary Fig. S3). Therefore, under normal bio-
logical pathways, it is uncommon to see FA or PC with an odd
number of fatty acyl moieties. Previously, it was thought that
odd-chain FA, such as C15 : 0 or C17 : 0, were only introduced
into the body through dietary consumption, predominantly
from ruminant fats(36). However, recently it was shown that
some odd-chain FA, such as C17 : 0, are substantially endo-
genously biosynthesised, whereas others, such as C15 : 0, are
indeed introduced through dietary intake(37). Although the
exact mechanisms of C17 : 0 biosynthesis are unknown, it has
been hypothesised that propionyl-CoA elongation and/or
α-oxidation of C18 : 0 contributed to C17 : 0 FA biosynthesis(37).
In lipid metabolism, α-oxidation refers to a metabolic process
that results in the removal of a single carbon unit from a fatty
acyl chain, whereas β-oxidation refers to the metabolic removal
of two carbon units. Jenkins et al.(37) showed that phytanic acid,
a substrate for α-oxidation, significantly decreased C17 : 0 bio-
synthesis by competitive inhibition, further suggesting that
C17 : 0 is biosynthesised by α-oxidation. Here we present data
showing significant increases in C17 : 0 moieties during the
MCTD phase when compared with the placebo, where the only
difference between the diet phases was the presence or
absence of medium-chain (C8, C10 and C12) fatty acyl moieties.
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Fig. 2. Metabolites detected by ultra-performance liquid chromatography-MS (UPLC-MS) in fasted canine serum, which were significantly higher in abundance during
the medium-chain TAG diet (MCTD) when compared with the placebo diet phase. Relative metabolite intensities are presented as scatter dot plots with means and
standard deviations, where paired samples are highlighted with the connecting line. PC, phosphatidylcholine; LysoPC, lysophosphatidylcholine.
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This further suggests that C17 : 0 may indeed be biosynthesised
via lipogenesis processes (online Supplementary Fig. S2). Fur-
thermore, we also showed higher abundances of PC metabo-
lites containing C18 : 0 moieties during the MCTD phase, further
allowing the potential for α-oxidative biosynthesis of C17 : 0
from C18 : 0 moieties, as suggested by Jenkins et al.(37).
Detection of C17 : 0 moieties in lipid metabolites is particu-

larly interesting when considering the neuroprotective proper-
ties of triheptanoin, a TAG consisting of three heptanoate
(C7 : 0) FA, especially as C17 : 0 fatty acyl moieties can be
metabolised to C7 : 0 moieties after five cycles of β-oxidation
(online Supplementary Fig. S2). It is hypothesised that tri-
heptanoin may influence anaplerotic mechanisms in the brain
by replenishing tricarboxylic acid cycle substrates and inter-
mediates and in effect improve and/or support mitochondrial
metabolic pathways(38,39). In a rat model of cortical spreading
depression, it was shown that triheptanoin decreased brain
cerebral excitability during short-term KD treatment(40). Con-
versely, Costa et al.(41) showed that heptanoate is pre-
dominately metabolised by glia and proposed that the
anticonvulsant effects of triheptanoin may in fact stem from glial
metabolism. Although the exact mechanisms are currently
unknown, a myriad of published literature have highlighted
positive neurological effects of triheptanoin(38,39,42–45).
As discussed, LCFA are unable to cross the mitochondrial

membrane and require the carnitine shuttle system before being
metabolised by β-oxidation in the mitochondrial matrix. One
study investigating the effects of sunflower oil (LCT) consumption
in healthy children showed that a general increase was seen in all
straight-chain acylcarnitines(46). It has been hypothesised that
efflux of acylcarnitines occurs in healthy individuals as a
mechanism of freeing the substrate CoA for other metabolic
processes and that acylcarnitine efflux is thought to depend on
intracellular acylcarnitine concentrations(47). Alternatively, acyl-
carnitine metabolites detected in the blood may also originate
from intestinal re-absorption of bile acylcarnitines(47). We showed
that three acylcarnitine metabolites, with acyl chains of C16 : 0,
C18 : 1 and C18 : 0, were significantly lower during the MCTD
phase. The placebo diet, presented in this study, was completely
void of MCT but instead supplemented with lard, which contains
LCT(7). Higher abundances of acylcarnitine metabolites seen in
the placebo diet may be attributed to increased acylcarnitine
formation from the additional 5·5% LCT present in the placebo
diet, and subsequent exportation of these acylcarnitines out of
cells and into the blood.

Conclusion

Considering the consistent neuroprotective effectiveness seen in
different MCT KD, it is likely that the overall mechanistic path-
ways involved are multifactorial. We showed that consumption of
the MCTD by dogs with idiopathic epilepsy resulted in an
increase in C17 : 0 fatty acyl chain containing metabolites in their
serum, when compared with a standardised placebo diet. Future
studies should aim to characterise the involvement and impor-
tance of C17 : 0 fatty acyl chain or odd-number fatty acyl chain
moieties in MCT metabolism. Elucidating the exact mechanisms of
MCT metabolic pathways and the mechanisms of action resulting

in neuroprotective effects will undoubtedly facilitate the devel-
opment of novel treatment strategies for both canines and
humans with undesirable neurological conditions.
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