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A B S T R A C T   

Aims: This study explored the molecular and biologic mechanisms underlying the association 
between circadian rhythm disorders (CRD) and increased risk for hepatocellular carcinoma 
(HCC). 
Background: CRD are linked to increased risk for HCC, but the molecular and biologic mechanisms 
underlying this association are limited. 
ObjectiveThe study constructed and validated a CRD related gene model as an independent 
prognostic factor for HCC, providing insight into the molecular mechanisms linking CRD to 
increased HCC risk and identifying potential indicators for the efficacy of immunotherapy and 
anticancer drugs. This helps provide important clues for personalized treatment strategies for 
HCC patients. 
Methods: Gene sets correlated with circadian rhythm were obtained from the Molecular Signa-
tures Database (MSigDB) to intersect with differentially expressed genes (DEGs) between tumor 
samples and control samples in The Cancer Genome Atlas (TCGA) and HCCDB18 from Hepato-
cellular Carcinoma Cell DataBase (HCCDB). The CRD related gene model was developed by 
univariate Cox and stepwise multivariate analysis. Immune checkpoint blockade (ICB) therapy 
and anticancer drugs were analyzed using the tumor immune dysfunction and exclusion (TIDE) 
and pRRophetic, respectively. Seurat determined the cell type of HCC by analyzing single-cell 
data, and malignant cells were identified using Copykat. To detect the mRNA levels of genes in 
the CRD related gene model, quantitative real-time polymerase chain reaction (qRT-PCR) was 
carried out. 
Results: The activity of circadian rhythm in HCC tissue was significantly lower than that in control 
tissue. Subsequently, EZH2, IMPDH2, TYMS and SERPINE1 were selected to construct the CRD 
related gene model, which was an independent factor for HCC prognosis. Notably, low-risk pa-
tients had lower levels of immune cell infiltration and lower TIDE scores compared to high-risk 
patients with HCC, indicating that patients with a low risk may derive more benefit from 
immunotherapy. IMPDH2, TYMS and SERPINE1 expressed significantly higher in malignant cells 
than in benign epithelial cells. 
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Conclusions: This study presents a CRD related gene model to reveal the molecular perspective of 
the dependent mechanism of the association between CRD and cancer, which provides a potential 
indicator for understanding the preclinical efficacy of ICB and anticancer drugs.   

1. Introduction 

Liver disease accounts for 4 % of all deaths worldwide [1,2]. Hepatocellular carcinoma (HCC) usually develops from chronic liver 
disease and is a major death cause from liver disease, accounting for approximately 90 % of whole primary liver cancer cases [3–5]. 
Hepatitis B, cirrhosis, and liver cancer constitute the “trilogy pattern” of HCC development [6]. Only 8.1 % of HCC patients survived 
for more than 5 years after the date of diagnosis [7]. A variety of factors such as lack of curative treatment in patients with early 
detection, inadequate early detection strategies, inconsistent application of curative treatment and concurrent liver disease all 
contribute to a high death rate of HCC patients [8]. Further substantial reduction of HCC cases requires more widespread use of 
effective treatment of HBV and HCV-related chronic hepatitis and liver cirrhosis, reduction of alcohol consumption, more effective 
exercise, universal HBV vaccination, promotion of correct eating habits, and enhanced understanding of the molecular biology of HCC 
[9–11]. 

Suprachiasmatic nucleus in the hypothalamus regulates circadian rhythms and clock gene expressions [12]. Numerous studies has 
demonstrated that circadian rhythms related biological clock genes could modulate DNA repair [13] as well as inflammation related 
pathways to facilitate the progression of the cell cycle and cancer [14–16]. Given the essential role of circadian clock genes in tumors, 
certain of them have been identified as prognostic biomarkers for kinds of tumors [17–19]. It is worth noting that, although the brain 
detects light through the retina and regulates whole-body rhythms, the liver has an independent circadian rhythm [20,21]. Liver 
circadian rhythm disorders (CRDs) accelerate the development of liver diseases such as liver cirrhosis, hepatitis, fatty liver, and liver 
cancer, which disrupt clock function in turn [22]. Studies by Kettner et al. have shown that chronic CRD could induce spontaneous 
liver cancer in mice even without dietary manipulation, germline gene mutation or exogenous genotoxic stress [23]. A study showed 
that HCC was the second common cause to the death to the circadian gene mutant mouse models [24]. Circadian dysrhythmia is 
considered a hallmark of HCC, and the circadian mechanism itself has the ability to control and alter cancer markers [15]. Therefore, 
manipulation of the circadian rhythm may bring new hope for preventing the development of HCC and designing new strategies for the 
treatment of HCC [25]. 

In this study, we based on two public databases and obtained CRD-related genes that were analyzed by univariate and multivariate 
regression analyses to screen key prognostic genes for prognostic risk modeling. We assessed the level of immune infiltration and 
potential response to immunotherapy in patients from different HCC risk groups. Importantly, we analyzed the reliability of key CRD- 
associated genes using cellular experiments and at the single-cell level, respectively. In short, our study provided a new molecular 
perspective for comprehending the diagnosis and treatment mechanisms of HCC. 

2. Materials and methods 

2.1. Download and preprocess the raw data of HCC 

The expression matrix and clinico-pathological data of HCC tissues were retrieved from the TCGA-LIHC cohort archived in TCGA 
database (https://cancergenome.nih.go) [26] and the HCCDB18 cohort archived in the HCCDB one-stop online resource (http:// 
lifeome.net/database/hccdb/home.html). After removing the samples whose survival time and status were not recorded, 371 
tumor samples and 50 cancer-adjacent control samples were retained in the TCGA-LIHC cohort, and 203 HCC samples and 177 control 
samples were retained in the HCCDB18 cohort. 

The GSE125449 data set of the GEO database [27] provides the single-cell transcriptomic data of 9 HCC and 10 patients with 
intrahepatic cholangiocarcinoma, we extracted the single-cell transcriptomic data of 9 HCC, constructed the counting matrix from the 
original reading, and submitted the transcriptional data and transcript data for genes expressed in at least three cells, as well as for 
single cells with at least 200 genes to Seurat [28] for progressive analysis. 

2.2. Conclusion of CRD score 

The gene sets associated with CRD were acquired by visiting the Molecular Signatures Database (MSigDB, https://www.gsea- 
msigdb.org/gsea/msigdb), and the enrichment scores (ES) of CRD were calculated for a single sample using the single sample gene 
set enrichment analysis (ssGSEA) method of “GSVA” [29], in which the ranking of gene lists and the calculation of ES were dependent 
on the expression values of genes in the sample. 

2.3. Screening of differential CRD genes 

The DEGs between the control and HCC samples were analyzed by “limma” package [30,31] in R program, and the genes in the 
interval of adj. pval <0.05& | log2FC | > 1 were set as DEGs. Subsequently, the “ggplot2” package was employed to map the volcano 
[32]. The DEGs set in the HCCDB18 cohort, the DEGs set in the TCGA-LIHC cohort and the CRD gene set were uploaded to the biovenn 
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website to generate the Venn diagram and the intersection of the three sets was the differential CRD genes. 

2.4. Development and validation in an external of CRD related gene model 

Differential CRD genes were uploaded into the “survival” package [33] for univariate Cox regression analysis under p < 0.05. This 
step was followed by stepwise multivariate regression analysis of genes to develop a CRD-related gene model. The variables included in 
the model were the expression of the gene and the corresponding Cox coefficient. The CRD related gene model was used to calculate 
the risk scores of samples in the HCCDB18 cohort and TCGA-LIHC cohort. After ranking, the median risk score in each cohort was used 
as the grouping node, and the risk scores segments above the nodes were defined as the high-risk group, and the risk scores segments 
below the nodes were defined as the low-risk group. Overall survival (OS) was compared between risk groups using the log-rank test 
and visualized as Kaplan-Meier curves. The performance of the CRD related gene model was depicted by taking the true positive rate 
and false positive rate as the horizontal and vertical coordinates. 

2.5. Drawing of nomogram 

To identify independent clinical prognostic indicators of HCC from the TCGA-LIHC cohort, univariate and multivariate Cox analysis 
were implemented. The R package “rms” [34] was used to integrate the independent prognostic indicators to draw a Nomogram, and 
the predictive value of survival was calculated by generating a functional transformation relationship between the total score of the 
independent prognostic indicators and survival rate. 

2.6. Immune infiltration analysis 

27 immune-associated gene sets were obtained from the study of He et al. [35], and The Cancer Immunome Atlas was obtained 
from the study of Charoentong et al. [36], then the ssGSEA algorithm was utilized to calculate scores for different immune metrics 
based on these immunogenomic in the TCGA-LIHC cohort. For a supplement, ESTIMATE for inferring tumor purity and stromal and 
immune cell admixture [37] and CIBERSORT [38] evaluating the proportions 28 kinds of immune cells were also conducted. 

2.7. Evaluation of therapeutic response to HCC 

T cell dysfunction and T cell exclusion could be quantified by the genome-wide expression signatures of the TIDE to reflect and 
evaluate immune checkpoint blockade (ICB) clinical response [39]. The pRRophetic method based on ridge regression was also used to 
calculate the potential drug response of the sample based on the transcription profiles of the high-risk and low-risk samples [40], and 
the calculate the IC50 value and visualize it using the “pheatmap” package for heatmapping. 

2.8. Analysis of single cell transcriptome 

We further revealed cellular heterogeneity within HCC as well as pinpointed CRD-related gene expression based on single-cell level 
analysis [41]. For single-cell RNA sequencing (scRNA-seq) data in GSE125449 dataset, several filtering criteria were followed to ensure 
quality: the number of genes expressed in each cell was between 200 and 6000, the mitochondrial gene content calculated by the 
PercentageFeatureSet function was within 15 %, and the total UMI per cell was above 200. Seurat then applied NormalizeData function 
to normalize the count matrix with default parameters, and ScaleData function to convert normalized gene expression to z-score. 
Principal component analysis (PCA) was run using the “RunPCA” function with dim = 10. Considering the batch effect, the dimen-
sionality reduction integration of harmony package is used for batch correction. Batch correction was performed using dimensionality 
reduction integration of the “harmony” package. Clusters were identified by “FindClusters” algorithm using a resolution of 1, and were 
annotated based on CellMarker database [42]. 

2.9. Cell culture and transfection 

The Dulbecco’s Modified Eagle Medium (DMEM, Gibco, USA) dissolved with penicillin/streptomycin and fetal bovine serum 
(Gibco, USA) was used for culturing the human hepatocytes (L02) and HCC cells (Huh7) at 37 ◦C with 5 % CO2. The human hepatocytes 
(L02, Cellcook Biotech Company, Guangzhou, China) and HCC cells (Huh7, Typical Culture Reserve Center of China, Shanghai, China). 
Lipofectamine 2000 (Invitrogen, USA) was utilized in the transfection of negative control (si NC) and EZH2 siRNA (Sagon, China) into 
the cells. 

2.10. Quantitative real-time polymerase chain reaction (qRT-PCR) 

Total RNA separation from the cells were performing employing TRIzol (Thermo Fisher, USA) reagent. The cDNA was then syn-
thesized from the RNA (500 ng) using HiScript II SuperMix (Vazyme, China). PCR amplification conditions were 46 cycles of 94 ◦C for 
10 min, 94 ◦C for 10 s (s), and 60 ◦C for 45 s. The sequences of primer pairs for the genes targeted were listed in Table 1. GAPDH was an 
internal reference. 
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2.11. Statistical analysis 

All data were analyzed with R program, and most common figures were plotted applying R package. Specially, the DEGs set in the 
TCGA-LIHC cohort and the CRD gene set were uploaded to the biovenn website to generate the Venn diagram. The ROC curve of CRD 
related gene model was generated by “timeROC” package [43]. Survival curves were generated using the survminer package [44], and 
heatmap was generated by the “pheatmap” package [45]. Differences in variables conforming to a normal distribution were tested by a 
two-tailed t-test, and differences in variables not conforming to a normal distribution were determined by a Wilcoxon test. A statis-
tically significant p value < 0.05 was considered to be meaningful. 

3. Results 

3.1. Circadian rhythm was maladjusted in HCC tissues 

We compared the enrichment of circadian rhythm-related pathways between HCC tissues and control tissues in the TCGA-LIHC 
cohort and the HCCDB18 cohort, and found that the activity of biocarta circadian pathway, circadian sleep wake cycle sleep, reac-
tome circadian clock, circadian rhythm gene, circadian rhythm, circadian sleep wake cycle rem sleep, circadian sleep wake cycle, 
circadian regulation of gene expression, circadian rhythm mammal were significantly lower in HCC tissues than in normal tissues. 
Interestingly, dysregulated circadian clock genes have been considered as essential clinic indicators in the oncogenesis and devel-
opment of HCC [46–48]. Therefore, altered “circadian regulation of gene expression” and “circadian rhythm gene” pathways in HCC 
groups, also drove us to study the CRD related genes with abnormal expressions. In addition, both metabolic and physiological 
processes are critically regulated by circadian rhythms [49]. The reduced activity of this pathway in HCC tissues suggests that 
circadian disorders may lead to hepatic metabolic dysfunction, which promotes tumorigenesis and progression. However, positive 
regulation of circadian sleep wake cycle sleep, circadian sleep/wake cycle, and non-rem sleep showed the completely opposite situ-
ation (Fig. 1). In general, we can clearly observe the obvious dysregulation of circadian rhythm-related pathways in HCC tissues, which 
provides important clues to our understanding of the role of CRD in the initiation and progression of HCC. 

3.2. Differential CRD-related genes and their genomic variants 

We screened 1862 DEGs between tumor tissues and paracancerous tissues in TCGA-LIHC cohort (Fig. 2A). 894 DEGs were identified 
between tumor samples and control samples in HCCDB18 dataset (Fig. 2B). 13 genes were in the intersection among the two DEGs sets 
and the integrated set of 274 CRD-related genes (Fig. 2C). TOP2A, ASS1 and NGFR were the three genes showed single nucleotide 
mutation (1 %) among 13 genes (Fig. 2D). We also observed only slight amplification or deletion of gene fragments occurred that these 
13 genes (Fig. 2E). Despite the low frequency of mutations in genes including TOP2A, ASS1, and NGFR, they may still have a critical 
role in a particular setting or in a particular patient, and therefore it is advantageous to further build the comprehensiveness and 
predictive power of the risk model by including these genes. 

3.3. Construction and optimization of CRD related gene model 

4 of the 13 differential CRD genes were selected to construct the CRD related gene model by univariate Cox regression analysis and 
stepwise multivariate regression analysis (Fig. 3A), with the formula was: Risk score = 0.589*EZH2 +0.186*IMPDH2 -0.194*TYMS 
+0.075*SERPINE1. The risk score, which assigned by the CRD related gene model to each HCC sample in the TCGA-LIHC cohort 
showed a significant negative correlation with OS, that was, the low-risk sample had significantly lower death rate than the high-risk 
group. This prediction was reasonable because the area under the ROC curve (AUC) of the CRD related gene model reached the 
standard in 1, 3 and 5 years, which is 0.72,0.69,0.67 respectively (Fig. 3B). The ability of CRD related gene model to separate risk 
categories was also better in HCCDB18 dataset, with the model AUC reaching 0.75, 0.65 and 0.73 at 1, 3 and 5 years, respectively. 
Under the discrimination of the CRD related gene model, we observed significant OS differences between the low- and high-risk groups 
in the HCCDB18 dataset (Fig. 3C). Among several clinical factors for HCC provided by TCGA, only AJCC stage was an independent 
factor for HCC prognosis, as was risk score (Fig. 3D and E). Nomogram integrated these two factors together to predict OS. In this 
nomogram, a scale was used to mark the line corresponding to each variable to represent the values range of the variable, and the 

Table 1 
The sequences of primer pairs for target genes.  

Gene Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′) 

EZH2 GACCTCTGTCTTACTTGTGGAGC CGTCAGATGGTGCCAGCAATAG 
IMPDH2 GACGACGGACTCACAGCACAG CTTGGTCAGAGCAGAAGTCAGGTC 
SERPINE1 GCAACGTGGTTTTCTCACCC CTCTAGGGGCTTCCTGAGGT 
TYMS GCCTCGGTGTGCCTTTCA GATGTGCGCAATCATGTACGT 
BMAL1 TGGATGAAGACAACGAACCA TAGCTGTTGCCCTCTGGTCT 
CLOCK TCTCAGACCCTTCCTCAACA TGACCTTCTTTGCACCATCTT 
CRY TTCTTCCCATCAAAACTGG AAACGCATCCGATTGTAACC 
GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC  

Z. Ye et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e33682

5

contribution of the factor to clinical outcome events was reflected in the length of the line segment. The Risk score contributed much 
more to the nomogram than the AJCC stage (Fig. 3F). The prediction results of nomogram for 1-year, 3-year and 5-year OS in the 
calibration curve were close to the diagonal (Fig. 3G), indicating the good prognosis prediction ability of nomogram. 

3.4. Immune indication and therapeutic response based on CRD related gene model 

Immunogenomic analyses were performed according to risk groups based on the CRD related gene model. In the results, we found 
that compared to the low-risk group, the high-risk group significantly highly enriched activated dendritic cells (aDCs), APC co 
stimulation, macrophage, MHC class I, regulatory T cells (Tregs), while the levels of B cells, mast cells, cytolytic activity, NK cells, 
neutrophils, naive CD8 T cell, Th17, DC, monocyte, type I IFN response, NK cell and gamma delta cells were significantly lowered in 
the high-risk group (Fig. 4A and B). Similarly, naive CD8 T cell, Th17, Monocyte and Gamma_delta immunocytes were also had high 
proportions in low – risk groups (Fig. 4C). Collectively, ESTIMATE analysis also confirmed the relatively higher immune infiltration 
level in low-risk groups (Fig. 4D). Significant differences in TIDE score and ICB treatment response were also shown between the two 
samples grouped by the CRD related gene model, with lower TIDE scores and higher rates of response to ICB treatment in the low-risk 
group (Fig. 4E and F). The IC50 value is a measure of the potency of a drug or compound, specifically, the lower the IC50 value, the 
more potent the drug is as it can effectively inhibit cell growth or enzyme activity at a lower concentration. Among the drugs that 
showed significant IC50 differences between the high-risk and low-risk groups, Vinorelbine, Etoposide, Gemcitabine, and Doxorubicin 
showed significantly lower IC50 values in the high-risk group than in the low-risk group and were therefore more suitable for the 
treatment of high-risk samples. Compared to the high-risk group, the low-risk group had significantly lower IC50 values of Erlotinib, 
TGX221, CGP_60,474, and DMOG, so they might be more suitable for the low-risk group (Fig. 4G). These findings could facilitate the 
prediction of clinical outcomes and more personalized treatment regimens for patients in different risk groups of HCC. 

3.5. Potential regulation mechanism of CRD related gene model in HCC 

To explore the mechanism of the mobilization of the CRD related gene model, GSEA was performed separately for the high-risk and 
low-risk groups. Almost all the pathways significantly activated in the high-risk group were those driving cell proliferation, including 
MYC targets, PI3K-Akt-mTOR signaling, TGF-β signaling, E2F targets, DNA repair, etc (Fig. 5A). The enrichment scores of Hallmark 
gene sets in TCGA-LIHC cohort samples were calculated by ssGSEA, and 29 of them between high-risk and low-risk samples showed 
significant differences. Most of the 17 pathways positively related to risk score were carcinogenic pathways, while the 12 pathways 
negatively related to risk score, the strongest correlation with risk score was metabolic pathways, including xenobiotic metabolism, 

Fig. 1. Differences in circadian pathway activity between HCC tissues and control tissues from the TCGA-LIHC cohort and the HCCDB18 
cohort ** <0.01, *** <0.001, **** <0.0001, ns: no significance. 
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oxidative phosphorylation, fatty acid metabolism, bile acid metabolism (Fig. 5B). 

3.6. Verification of genes in CRD related gene model at single cell level 

To further support the important role of the key genes we screened in the development of HCC, we verified the expression capacity 
of these genes in HCC by single-cell level analysis. Through clustering analysis for cells in GSE125449 dataset, we identified 19 clusters 
(Fig. 6A). After annotation, six cell types were identified: tumor-associated macrophages (TAMs), hepatic cells, endothelial cells, 
epithelial cells, T cells, and B cells (Fig. 6B). Genes that were detected to be specifically highly expressed in each type of cell were 
shown in Fig. 6C. Given the significant enrichment of proliferative pathways in the high-risk samples, we extracted the key cellular 
players in the unrestricted proliferation of HCC, namely epithelial cells, and then used copykat package to identify malignant cells 
among them. We found that among the four genes in the CRD related gene model, IMPDH2, TYMS and SERPINE1 were expressed at 
significantly higher levels in malignant cells than in normal epithelial cells (Fig. 6D), validating the important role of these genes in 
hepatocellular carcinoma development and progression. This suggests that the single-cell level analysis supports the plausibility of our 
constructed model of CRD-associated genes, revealing the specific expression patterns and potential functions of these genes in the 
tumor microenvironment. 

3.7. Verification of the expression levels of the four model genes in HCC cells clines 

The expression of EZH2, IMPDH2, SERPINE1 and TYMS was detected using qRT-PCR in HCC cells (Huh-7) and human normal 
hepatocytes (L02). It was observed that these four genes were all up-regulated in HCC cells lines compared with normal L02 cell lines 
(Fig. 7A–D). As EZH2 is essential for maintenance of circadian clock function [50], we applied siRNA to knock down the expression of 
EZH2 in Huh-7 cell lines and detected the levels of circadian clock genes. We could see that in comparison with si-NC cells, the ex-
pressions of BMAL1, CLOCK and CRY were distinctly upregulated in si-EZH2 cells (Fig. 7E–G), demonstrating the vital role of EZH2 in 
circadian clock regulation. 

Fig. 2. Differential CRD genes and their genomic variants (A) DEGs between tumor tissues and paracancerous tissues in TCGA-LIHC cohort, 
where blue dots are down-regulated DEGs, red dots are up-regulated DEGs, and gray dots are non-degs. (B) DEGs between tumor samples and 
paracancerous samples in HCCDB18 cohort. (C) Identification of intersection among DEGs sets for TCGA-LIHC cohort, HCCDB18 cohort, CRD- 
related genes set. (D) The single nucleotide variation of 13 differential CRD genes. (E) Histograms show the probability of copy-number amplifi-
cations and deletions occurring in differential CRD genes. 
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4. Discussion 

Circadian rhythm is an evolutionarily conserved timing system, and epidemiological studies have shown that disruption of 
circadian rhythm in humans is associated with increased cancer risk [51]. The molecular understanding of circadian rhythm will 
provide a new therapeutic frontier for cancer [52]. Circadian rhythm changes in gene expression are the common features of different 
tumor types, and tumor genetic and genomic analysis showed that the circadian rhythm changes in gene expression more widely than 

Fig. 3. Construction and optimization of CRD related gene model (A) Multivariate Cox regression analysis of the four genes in the CRD related 
gene model. (B) ROC curve and Kaplan-Meier curve of CRD related gene model in distinguishing the mortality risk of samples in the TCGA-LIHC 
cohort. (C) ROC curve and Kaplan-Meier curve of CRD related gene model in evaluating OS of samples from HCCDB18 dataset. (D, E) Univariate Cox 
regression analysis of several clinical factors provided by TCGA and risk scores for HCC. (F) Nomogram constructed by integrating two independent 
prognostic factors, the line corresponding to each variable was marked with a scale, representing the range of values of the variable, and the length 
of the line segment reflected the contribution of the factor to clinical outcome events. (G) Calibration curves to evaluate the performance of the 
nomogram in predicting 1 -, 3 -, and 5-year OS of HCC. 
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circadian gene mutations [53]. Therefore, this study established a risk model for predicting HCC prognosis based on CRD-related 
genes. By analyzing the immune microenvironment of patients with different risks and evaluating their potential response to 
immunotherapy. Importantly, we also validated the rationality of the key genes and the model by in vitro cellular experiments and at 
the single-cell level. This not only strengthens the biological basis of the model, but also provides important clues for further research 
on the functional mechanism of CRD-related genes in HCC and personalized therapeutic strategies. 

We found that the circadian rhythm was significantly suppressed in HCC tissues, which also in line with previous studies reporting 
that carcinogenic processes directly impair circadian rhythms [53]. We found 13 differential CRD genes between HCC tumor tissues 
and para-cancerous tissues, of which 4 were selected to construct CRD related gene model as well as a nomogram. Also, scRNA-seq data 

Fig. 4. Immune indication and therapeutic response based on CRD related gene model (A) Differences in enrichment scores of 27 immune- 
associated gene sets between the high-risk and low-risk groups grouped by the CRD related gene model. (B) The Cancer Immunome Atlas analysis 
based on CRD related gene model. (C) CIBERSORT analysis. (D) ESTIMATE analysis. (E) TIDE score differences between two groups of samples 
grouped by CRD related gene model. (F) Response to ICB treatment in samples grouped by the CRD related gene model. (G) The IC50 value of drugs 
in high-risk group and low-risk group samples. * <0.05，** <0.01，*** <0.001，**** <0.0001, ns: no significance. 
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also verified the significance of these 4 genes, 3 of which could help discriminate malignant cells, hinting a cancer promoting effect. 
In detail, EZH2 (enhancer of zeste homologue 2) has been found to have oncogenic effects on HCC, the direction of regulation includes 

tumor microenvironment (TME) and cancer cell growth, and has a strong association with ICB treatment as well as circadian rhythm 
biological clock regulation [50]. In terms of TME regulation, EZH2 weakens PKLR expression to inactivate NK cells residing in the HCC 
and promotes tumor immune evasion by inducing IL-6 production [54,55]. EZH2 negatively regulates the expression of PD-L1 in HCC 
patients with immune-activated microenvironment [56]. Inhibition of EZH2 in HCC impaired HCC cell growth and induced cell 
apoptosis in a dose-dependent manner [57]. Additionally, EZH2 was demonstrated to be critical for mammalian liver circadian 
regulation and hematopoiesis through gene silencing [58]. Circadian clock gene BMAL1 was reported to repress cancer development 
and improve paclitaxel sensitivity in tongue squamous cell carcinoma via suppress EZH2 levels [59]. Here, our in vitro experiment also 
proved the role of EZH2 on the modulation of circadian clock gene such as BMAL1, CLOCK and CRY. The upregulated expression of 
IMPDH2 (Inosine monophosphate dehydrogenase type II) increases the proliferation and tumorigenicity of HCC in vitro by promoting cell 
growth rate and colony formation, and is closely related to the poor survival outcome of patients [60]. TYMS (Thymidylate synthase) 
was identified as a CD8 T cell-related genes [61] and the Silencing of TYMS in HCC significantly reduced DNA synthesis and extra-
cellular matrix (ECM) degradation, thereby inhibiting tumor metastasis [62]. SERPINE1 (serpin family E member 1) encodes plas-
minogen activator inhibitor-1 (PAI-1), which is secreted by tumor-associated macrophages (TAMs) to enhance the malignant behavior 
of HCC cells [63]. All together, these references disclosed the significance of screened 4 genes on the progression of HCC with similar 
overexpressed phenomenon in HCC cell lines. 

We also evaluated the immune infiltration level in high and low risk groups. Previous researches have pointed that CRD related 
genes are usually expressed in immune cells and display circadian transitions with fixed rhythms, and they involve in a series of 
immune regulatory processes, such as synthesis, phagocytosis, apoptosis, and release of cytolytic factors, cytokines, chemokines 
[64–66]. Here, higher Tregs scores and lower CD8 T cell scores were discovered in high risk groups. A pan-cancer analysis has revealed 

Fig. 5. Potential regulation mechanism of CRD related gene model in HCC (A) Bubble plot of the top 10 pathways significantly activated in the 
high-risk group. (B) The correlation between risk score and 29 pathways showing significant differences in enrichment scores between high-risk and 
low-risk samples. 
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that Tregs were correlated with poor prognosis, while CD8 T cell were related to favorable outcomes [36]. Combined with aforemented 
immune or inflammatory functions of CRD related genes, we further confirmed the close connections between CRD and immune state 
in HCC patients. 

The relationship of the CRD related gene model to immune escape and ICB treatment was reflected in the TIDE score, as TIDE 
evaluates the ICB efficacy of tumor samples by simulating two immune escape mechanisms. The higher TIDE score, the bigger chance 
for immune escape [39,67]. The TIDE score has a higher accuracy in evaluating prognosis of tumor patients treated with ICB agents 
[68,69] than using PD-L1 expression level and its application in assessing the ICB therapy efficacy has been confirmed in many re-
searches [70–72]. In our research, there was a significant positive correlation between CRD related gene model and TIDE score, it can 
be said that high-risk samples had a higher TIDE score, a higher chance of immune escape, and a lower response rate to ICB treatment 
than low-risk samples as defined by the CRD related gene model. In addition, the CRD related gene model indeed also showed sig-
nificant positive correlations with pathways that promote cell proliferation, including TGF-β signaling, E2F targets, PI3K-Akt-mTOR 
signaling, DNA repair, MYC targets, and so on. These cancer promoting pathways maybe the main causes of worsening prognosis in 
high-risk groups. It has been reported that CRD may promote the transformation of normal cells into malignant cells [73]. By analyzing 
the scRNA-seq data of HCC, we found a total of 6 major cell types. Among which, we extracted the key cellular role in the unlimited 
proliferation of HCC - epithelial cells, and identified the malignant cells. Through single-cell transcriptome analysis, we found that the 
expression levels of IMPDH2, TYMS and SERPINE1 of the four genes in CRD related gene model in malignant cells were significantly 
higher than those in normal epithelial cells. In particular, the high expression of EZH2 and IMPDH2 in tumor-associated macrophages 
suggests that they may promote tumor growth and metastasis by affecting the tumor immune microenvironment. This suggests that 
CRD-related genes are expressed in the immune microenvironment of HCC, providing important clues for understanding the role of 
CRD in tumor immunoregulation. It is worth noting that the shortcomings of this study are inevitable. The risk model and nomogram 
were established based on limited retrospective data. In the future, more clinical sample are needed to verify their predicting abilities. 
In addition, the single-cell transcriptome data used only covered a portion of the HCC samples, which will be incorporated into further 
studies with more HCC samples and diverse patient populations to comprehensively capture the cellular heterogeneity of the tumors 
and gene expression characteristics. Finally, further experimental functional validation is necessary, and we will conduct experiments 
in vivo and in vitro to confirm the specific biological functions and mechanisms of CRD-related genes, which can increase the credibility 
of the study results. This research constructed a prognostic model of HCC using CRD-related genes and screened four key signature 
genes: EZH2, IMPDH2, TYMS, and SERPINE1. The expression levels of these genes significantly affected HCC prognosis and played a 
critical part in tumor development and circadian rhythm regulation. In addition, our study revealed the important role of CRD-related 
genes in the immune microenvironment of HCC, especially the differential expression of these genes in different immune cell types, 
which further revealed the complex mechanism of CRD in regulating tumor immunity. 

Fig. 6. Verification of genes in CRD related gene model at single cell level (A) UMAP plot shows all 19 clusters in the GSE125449 dataset. (B) The 
UMAP plot indicates that 19clusters were annotated as 6 cell types. (C) Genes that are specifically highly expressed in each cell subtype. (D) The 
expression of four genes in CRD related gene model in malignant cells and normal epithelial cells. 
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