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OBJECTIVE—Experimental infection of rats with human ade-
novirus type 36 (Ad-36) promotes adipogenesis and improves
insulin sensitivity in a manner reminiscent of the pharmacologic
effect of thiozolinediones. To exploit the potential of the viral
proteins as a therapeutic target for treating insulin resistance,
this study investigated the ability of Ad-36 to induce metaboli-
cally favorable changes in human adipose tissue.

RESEARCH DESIGN AND METHODS—We determined
whether Ad-36 increases glucose uptake in human adipose tissue
explants. Cell-signaling pathways targeted by Ad-36 to increase
glucose uptake were determined in the explants and human
adipose–derived stem cells. Ad-2, a nonadipogenic human ade-
novirus, was used as a negative control. As a proof of concept,
nondiabetic and diabetic subjects were screened for the pres-
ence of Ad-36 antibodies to ascertain if natural Ad-36 infection
predicted improved glycemic control.

RESULTS—Ad-36 increased glucose uptake by adipose tissue
explants obtained from nondiabetic and diabetic subjects. With-
out insulin stimulation, Ad-36 upregulated expressions of several
proadipogenic genes, adiponectin, and fatty acid synthase and
reduced the expression of inflammatory cytokine macrophage
chemoattractant protein-1 in a phosphotidylinositol 3-kinase
(PI3K)-dependent manner. In turn, the activation of PI3K by
Ad-36 was independent of insulin receptor signaling but
dependent on Ras signaling recruited by Ad-36. Ad-2 was
nonadipogenic and did not increase glucose uptake. Natural
Ad-36 infection in nondiabetic and diabetic subjects was
associated with significantly lower fasting glucose levels and
A1C, respectively.

CONCLUSIONS—Ad-36 proteins may provide novel therapeu-
tic targets that remodel human adipose tissue to a more meta-
bolically favorable profile. Diabetes 57:2321–2331, 2008

O
besity is associated with adverse metabolic
profile of adipose tissue, including impaired
adipogenesis, lower fatty acid synthase (FAS)
and adiponectin, and increased secretion of

inflammatory cytokines. Consequentially, this contributes
to an increase in insulin resistance and a reduction in
glucose uptake by the tissue (1–4). Although intentional

weight loss could improve insulin resistance and attenuate
the adverse metabolic profile, achieving meaningful fat
loss and maintaining it long term is very challenging.
Instead, a particularly appealing approach proposes to
“remodel” the adipose tissue to a more favorable or
healthy metabolic profile. For instance, the thiazolidinedi-
one (TZD) class of drugs increases glucose uptake in
response to insulin stimulation (5), induces peroxisome
proliferator–activated receptor (PPAR)�2, increases adi-
pogenesis (6), activates phosphotidylinositol 3-kinase
(PI3K) (7), reduces the release of inflammatory cytokines
(8,9), and upregulates adiponectin secretion (10) and FAS
expression (4) in adipose tissue. The metabolically bene-
ficial effects of the TZDs and other remedial candidates,
such as benzopyran-derived T33 (11), suggest that adipose
tissue remodeling may be a pragmatic approach against
the growing epidemic of diabetes. Among the other effects,
expansion of adipose tissue by the TZDs appears to offer
“storage space” for lipids (5,12) and offset ectopic lipid
accumulation in muscle and liver, thereby contributing to
insulin sensitivity.

Recently, there is considerable interest in the role of
adipose tissue expansion in improving insulin sensitivity.
Medina-Gomez et al. (13) showed that PPAR�2 controls
adipose tissue expansion and thereby improves insulin
sensitivity in ob/ob mice. Kim et al. (14) achieved dramatic
improvement in metabolic profile through expansion of
adipose tissue in transgenic mice. Despite the massive
increase in adiposity, the improved metabolic profile com-
prised of greater glucose disposal and adiponectin secre-
tion; reduction in serum cholesterol, triglycerides, and
inflammation; and induction of expression of PPAR�2 and
its target genes (14).

Human adenovirus type 36 (Ad-36) is another novel
candidate for improving metabolic profile by expanding
adipose tissue. Although Ad-36 increases adiposity (15–
17), it enhances insulin sensitivity in experimentally in-
fected rats (18) and reduces serum cholesterol and
triglycerides (15–17). Indeed, a single inoculation of Ad-36
increased fat depot weight of rats by �60% but reduced
the fasting insulin levels and homeostasis model assess-
ment index by �50% for up to 7 months later (18), a robust
and long-term effect that is reminiscent of TZDs. More-
over, Ad-36 upregulates PPAR�2 expression and induces
differentiation and lipogenesis in human and rodent pre-
adipocytes (19–23) and increases glucose uptake in rat
adipocytes (22), even in the absence of insulin, which
possibly contributes to its insulin-sensitizing effect.

Harnessing certain properties of viruses for beneficial
purposes has been creatively used for several years. For
instance, even before the advent of antibiotics, the use of
bacteriocidal properties of bacteriophage virus has been
reported and had a recent resurgence in interest (rev. in
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24). Furthermore, the first report of the oncolytic ability of
a mutant adenovirus (25) was followed by numerous
studies extending the use of oncolytic properties of vari-
ous viruses. Herpes simplex virus, Newcastle disease
virus, reovirus, and vaccinia virus were used for the
treatment of various cancers (rev. in 26), alone or in
combination with various synergistic drugs (27,28). The
potential of Ad-36 proteins to enhance glucose disposal
and improve adipose tissue metabolic profile could be
exploited as therapeutic targets for humans, a natural host
of the virus. To investigate this possibility, we first deter-
mined whether Ad-36 increases glucose uptake in primary
adipose tissue explants obtained from healthy and diabetic
subjects. Next, we elucidated the cellular signaling path-
ways involved in an Ad-36–induced increase in glucose
uptake. Finally, as a proof of concept, nondiabetic and
diabetic subjects were screened for the presence of Ad-36
antibodies to ascertain if natural infection with Ad-36 was
a significant predictor of improved glycemic control.

RESEARCH DESIGN AND METHODS

Human adipose tissue samples were obtained from nine healthy, nondiabetic
female patients and one type 2 diabetic female patient undergoing elective
liposuction surgeries. The samples were received as material to be discarded
and without identifiers. Therefore, approval of the human investigations
committee was not required for the study. The donors were Caucasian, were
aged 28–50 years (mean 39 � 9.5), and had BMI 19.5–28.2 kg/m2 (mean 23.7 �
3.3). Small chunks of adipose tissue were cultured as explants, as described
below, and used to elucidate the effect of Ad-36 infection. Human adipose–
derived stem cells (hASCs) were obtained from subjects with BMI 25–30
kg/m2, aged 47–58 years. At least three or more technical replicates were used
for all experiments. Samples from two or more subjects were used for Ad-36
experiments, except for the diabetic sample. The effect of Ad-2 infection was
tested in adipose tissue and hASCs of two separate individuals. An outline of
the experiment is presented below, followed by a detailed description of the
techniques and assays.
Effect of Ad-36 on metabolic profile associated with insulin sensi-

tivity. Adipose tissue explants were infected with Ad-36 or mock infected.
Infection was confirmed by determining viral gene expression. D-[3H]-deoxy-
glucose was used to determine glucose uptake by the adipose tissue of
nondiabetic and diabetic subjects. Adipogenesis was assessed by determining
the time course of expressions of adipogenic genes (PPAR�2, aP2 [fatty
acid–binding protein], lipoprotein lipase [LPL], and glycerol 3-phosphate
dehydrogenase) and by counting adipocytes. Considering their important
roles in glycemic control, activation of PI3K and gene expression and protein
abundance of adiponectin and FAS in adipose issue explants were deter-
mined. The gene expression assays conducted for Ad-36 infection were
repeated and compared in Ad-2 versus mock-infected adipose tissue explants.
Requirement of PI3K activation for Ad-36–induced alteration in met-

abolic profile. Requirement of PI3K in Ad-36–induced metabolically favor-
able remodeling of adipose tissue was determined by using Wortmannin, a
specific inhibitor of PI3K activity. The effect of Wortmannin on expressions of
selected cellular genes (PPAR�2; aP2; LPL; platelet endothelial cell adhesion
molecule [PECAM]-1, as a marker for angiogenesis induction; macrophage
chemoattractant protein [MCP]-1, a marker of proinflammatory cytokine;
adiponectin; FAS; and E4orf-1, a viral gene) was determined in adipose tissue
explants infected with Ad-36 or mock control subjects. Finally, the effect of
Wortmannin on glucose uptake by the explants was determined.
Role of Ras and insulin receptor signaling in activation of Ad-36–

induced PI3K activation. Roles of two major signaling pathways in Ad-36–
induced PI3K activation were determined. Phosphorylations of insulin
receptor (IR), IR substrate (IRS)-1 and -2, and protein abundance of Ras were
compared in explants infected with Ad-36 or mock infected. Additional
experiments were conducted in hASCs to better elucidate the effect of Ad-36
on signaling pathways. The role of Ad-36 in activation of IRS-1 and PI3K was
determined with and without stimulation by insulin, a well-known activator of
the pathway. Finally, the requirement of Ras, another key activator of PI3K,
was determined in Ad-36–induced PI3K activation and glucose uptake by
hASCs. Effect of Ras knockdown on PI3K pathway activation and glucose
uptake was also determined in Ad-2–infected hASCs.
Association of natural Ad-36 infection with glycemic control in humans.

Considering the enhanced insulin sensitivity in rats experimentally infected
with Ad-36, we hypothesized better glycemic control in humans who are

naturally infected with the virus. As a proof of concept, serum samples from
nondiabetic and diabetic human subjects enrolled in unrelated studies were
screened post hoc and in a blinded manner for the presence of antibodies to
Ad-36. A constant-virus-decreasing-serum method was used to determine the
presence of Ad-36–neutralizing antibodies as previously described (15,16).
Serum neutralization assay is a gold standard and sensitive method for
determining neutralizing antibodies. Due to antigenic uniqueness of Ad-36, it
is highly specific for detecting Ad-36 antibodies. Available biochemical and
anthropometric parameters including glucose and A1C levels were compared
between the seropositive and seronegative groups.
Techniques and assays. A detailed description of the assays conducted is as
follows.
Ex vivo culture of human adipose tissue explants. Before infection,
explants (�100 mg for gene expression assays, �20 mg for glucose uptake)
were cultured for 3 days in DME/F-12 (no. SH30023.01; Hyclone), 1:1, plus 20%
fetal bovine serum (no. SH30070.03; Hyclone) plus antibiotics/antimycotics at
37°C in 5% CO2, unless otherwise indicated. For PI3K inhibition, 0.01 �mol/l
Wortmannin (no. W1628; Sigma) was added to cultures postinoculation.

Adipose tissue explants dedifferentiate in culture (29) and reduce adipo-
genic gene expression for a few days in culture. The fall in gene expression
can be stabilized by supplementation of the explant media with isobutylmeth-
ylxanthine (IBMX) (29). We assessed this in two separate preliminary exper-
iments (online appendix Fig. 1A and B [available at http://dx.doi.org/10.2337/
db07–1311]). First, we cultured explants up to 15 days to determine the drop
in gene expression and observed stabilization of PPAR� mRNA expression
after 3 days. In the second experiment, we verified if the addition of IBMX will
stabilize the gene expression of explants. Expression of PPAR� was indeed
stabilized by IBMX addition. Therefore, for glucose uptake, adiponectin
secretion, and Western blot assays, explant media was supplemented with 0.1
mmol/l IBMX (no. I5879; Sigma) (29). Media was replaced every 2 days. The
IBMX supplementation was avoided for the gene expression experiments due
to the well-known effect of IBMX on adipogenic gene expression, and the
explants were inoculated with virus �3 days after initiating incubation.
Isolation and culture of hASCs. hASCs were isolated from liposuction
aspirates as previously described (30). Briefly, the stromo-vascular fraction
was resuspended in DME/F-12, 1:1, plus 10% fetal bovine serum plus antibi-
otics/antimycotics and plated at a density of 0.156 ml of tissue digest/cm2 as
passage 0 (p0) and used for experiments within passages 2–4 (p2–p4). No
Ad-36 DNA was detected in these tissues before experimentation.
Virus preparation. Ad-36 was obtained from the American Type Culture
Collection (catalog no. VR913) and the plaque purified and propagated in A549
cells (human lung cancer cell line) as described and used previously (15,16).
Ad-2 was also obtained from the American Type Culture Collection (catalog
no. VR846) and propagated in A549 cells. Viral titers were determined by
plaque assay (16) and cell inoculations expressed as plaque-forming units
(pfu)/cell, unless otherwise indicated.
Ad-36 or Ad-2 infection of human adipose tissue explants. Explants
were incubated for 1 h with 100 �l/cm2 DME/F-12, 1:1 (mock), or 100 �l/cm2

DME/F-12, 1:1, plus Ad-36 or Ad-2 (106 infectious particles). Following the
infection, media and virus were removed and replaced with DME/F-12, 1:1,
plus 10% fetal bovine serum plus antibiotics/antimycotics.
Infection of hASCs. hASC cultures were seeded at 15,000 cells/cm2. At
confluency, culture media were removed and cells were incubated for 1 h with
100 �l/cm2 DME/F-12, 1:1 (mock), or DME/F-12, 1:1, plus Ad-36 or Ad-2 (2.7
pfu/cell, unless noted otherwise). Following infection, media and virus were
removed and replaced with DME/F-12, 1:1, plus 20% fetal bovine serum plus
antimycotics/antibiotics.
qRT-PCR. Gene expression was determined using ABI PRISM 7700 sequence
detector (Applied Biosystems) and a SYBR green detection system (Bio-Rad).
A standard was generated using cDNA pooled from experimental samples.
Relative expression levels were determined by normalization to cyclophilin
and expressed as arbitrary units.
Primers for qRT-PCR. Primers for human PECAM-1 were purchased from
Applied Biosystems. All other primer sequences were as follows. Ad-36E4orf-1
forward: 5�-GGCATACTAACCCAGTCCGATG-3�; Ad-36E4orf-1 reverse: 5�-AAT
CACTCTCTCCAGCAGCAGG-3�; Ad-2E4orf-1 forward: 5�-cctaggcaggagggtttttc-3�;
Ad-2E4orf-1 reverse: 5�-atagcccgggggaatacata-3�; human cyclophilin B forward:
5�-GGAGATGGCACAGGAGGAAA-3�; human cyclophilin B reverse: 5�-CGTAGT
GCTTCAGTTTGAAGTTCTCA-3�; human PPAR�2 forward: 5�-GATACACTGTCT
GCAAAACATATCACAA; human PPAR�2 reverse: 5�-CCACGGAGCT
GATCCCAA-3�; human LPL forward: 5�-TATCCGCGTGATTGCAGAGA-3�; human
LPL reverse: 5�-AGAGAGTCGATGAAGAGATGAATGG-3�; human aP2 forward:
5�-TGGTTGATTTTCCATCCCAT-3�; human aP2 reverse: 5�-TACTGGGCCAG
GAATTTGAT-3�; human G3PDH forward: 5�-CTATACAGCATCCTCCAGCACAA-
3�; human G3PDH reverse: 5�-GGCCCTCGTAGCACACCTT-3�; human
adiponectin forward: 5�-TCTGTTTCCCACCTCACCTGA-3�; human adiponectin
reverse: 5�-CAGGACGTCATCATAGAACCACTT-3�; human FAS forward: 5�-
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TATGCTTCTTCGTGCAGCAGTT-3�; human FAS reverse: 5�-GCTGCCA
CACGCTCCTCTAG-3�; human MCP-1 forward: 5�-CAGCCAGATGCA
ATCAATGC-3�; and human MCP-1 reverse: 5�-GTGGTCCATGGAATCCTGAA-3�.
Western blot analysis. Protein concentrations were quantitated by bicin-
choninic acid assay and loaded to the 4–20% or 10% polyacrylamide gel in
equal amounts. Proteins then were transferred to a polyvinylidene fluoride
membrane. Membranes were blocked in PBS Tween-20 containing 3% BSA
and incubated with antibodies in appropriate dilutions. Signals were quanti-
tated by GelPro 3.1 Analyzer software. Equal loading was assessed by
normalization to �-/�-tubulin or actin abundance. Phosphoprotein abundance
was normalized to signal of total protein of interest.
Antibodies for Western blot analysis. Antibodies to Ser473 protein kinase
B (PKB), total PKB, Ras, secondary antibodies, and �-/�-tubulin were pur-
chased from Cell Signaling (Danvers, MA). Antibodies to adiponectin and FAS
were purchased from Abcam (Cambridge, MA). Antibodies to IR-� were
purchased from Upstate (Chicago, IL). Antibodies to IRS-1 and -2 were
purchased from Santa Cruz (Santa Cruz, CA).
Adipocyte counts. Adipose tissue explants were placed in histological
cassettes and fixed overnight in Bouin’s solution. After fixation, explants were
washed with water for 2 h and placed in 70% ethanol overnight before
processing. Tissues were embedded in paraffin, and 6-�m slices were sub-
jected to standard hematoxylin and eosin staining protocol. Adipocytes were
counted using Metamorph software and adipocyte numbers expressed as cells
per unit surface area. Six slices each from three individual explants were used
for calculation.
Adiponectin secretion. Adiponectin was measured in the media of human
adipose tissue explants cultured for 3 days postinfection by Western blotting
as described above. Adiponectin levels in the media were normalized to total
protein of explants and expressed as arbitrary units.
Glucose uptake assays. D-[3H]-deoxy-glucose was purchased from Amer-
sham (Piscataway, NJ). Glucose uptake assays were performed as previously
described (31). Briefly, human adipose tissue explants (�20 mg) were
incubated at 37°C, 5% CO2 for 30 min in 500 �l DME/F-12, 1:1, plus 2% BSA. In
a pilot experiment, we determined the glucose uptake by adipose tissue
explants to be linear up to 40 min of incubation (online appendix Fig. 2). For
adequate tissue permeability, a 30-min incubation was used. Explants were
washed three times in Krebs-Ringer HEPES buffer plus 1% BSA. Explants were
incubated for 15 min in Krebs-Ringer HEPES buffer plus 1% BSA before the
addition of 2 �mol/l [3H]-D-deoxy-glucose and 50 �mol/l glucose to each well
and further incubation for 30 min. Explants were washed three times in
ice-cold Krebs-Ringer HEPES plus 1% BSA to stop the reaction and to remove
unincorporated label. Explants were blotted and incubated for 30 min at 65°C
in 1 N NaOH before protein quantitation, and 3H radioactivity was determined
by scintillation counting. Data are expressed as picomoles 2-deoxyglucose per
milligram protein.
Ras short hairpin RNA assay. hASC cells were cultured to 80% confluency
in growth media in 100-mm dishes and infected with Ad-36 (3.8 pfu/cell). Four
days postinfection, Ras short hairpin RNA (shRNA) vector transfection was
conducted using 20 �g pKD-Ras-v1 plasmid (catalog no. 62-214) or pKD-neg
control-v1 plasmid (catalog no. 62-002) from Upstate Biotechnology (Lake
Placid, NY). The efficiency of Ras knockdown was confirmed by qRT-PCR.
Four days after the shRNA transfection, glucose uptake was determined in
mock or Ad-36–infected cells, Ad-36–infected cells transfected with Ras
shRNA, or negative control shRNA, without insulin or after 100 nmol/l insulin
stimulation for 15 min. Effect of Ras knockdown on glucose uptake and PI3K
activity was determined. In a separate experiment, hASCs were infected with
Ad-2, Ad-36 (10 pfu/cell), or mock infected and transfected with either
pKD-Ras-v1 plasmid or pKD-neg-control-v1 plasmid. About 4 days postinfec-
tion, glucose uptake was determined and the samples were harvested for
Western blot analysis.
PI3K activity assay. A total of 500 �g of hASCs total protein extract was
subjected to immunoprecipitation with 3 �g of PI3K p85 polyclonal antiserum
(Upstate) to determine PI3K activity as previously described (19). The
PI3K-phospholipid product was visualized by autoradiography and quantitated
by scanning densitometry with Quantity 1 1D software version 4.2.1 using
Bio-Rad gel documentation.
Infectivity of hASCs. Near-confluent hASCs were infected with serial
10-fold dilutions of 100 �l stock of viruses Ad-36 and Ad-2 (triplicate for each
dilution) and overlaid with agar. Starting plaque-forming units (calculated
using A5349 cells) were 6.5 	 107 per ml and 8 	 108 per ml for Ad-36 and
Ad-2, respectively. Cells were fixed 8 days postinfection and stained with
4�,6-diamidino-2-phenylindole dihydrochloride (catalog no. D1206; Invitrogen)
and adenovirus hexon antibodies (rabbit antiserum catalog no. VR1079;
American Type Culture Collection) followed by Alexa-fluor 594 goat anti-
rabbit antibodies (catalog no. A-11012; Invitrogen). The number of plaques
formed (as evident by cells expressing viral proteins) by Ad-36 and Ad2 were

compared for dilutions that used similar plaque-forming units to infect (8 	
103 pfu for Ad-2 and 6.5 	 103 pfu for Ad-36).
Statistics. Assays were performed in triplicate and reported as means � SE.
A one-sided Student’s t test was used to determine significance (*P 
 0.05).
Effect of Ras shRNA on glucose uptake was determined in mock, Ad-36–, or
Ad-2–infected hASCs by two-way ANOVA followed by the Tukey-Kramer test.
Analyses were conducted using functions available in the base package of R
(32) or SAS.

RESULTS

Ad-36 improves the metabolic profile of adipose
tissue. Presence of Ad-36 E4orf-1 gene expression and its
time-dependent increase confirmed successful viral entry
in cells and its spread in tissue (Fig. 1A). The viral
infection increased PI3K activation in the adipose tissue,
as indicated by PKB phosphorylation (Fig. 1B), which
probably contributed to increased glucose uptake in the
adipose tissue of nondiabetic and diabetic subjects (Fig.
1C and D). Ad-36 induced the expression of early
(PPAR�2) and late (LPL, aP2, and glycerol 3-phosphate
dehydrogenase) genes of adipogenic cascade, which was
maintained over 15 days postinoculation (Fig. 2A–D).
Expressions of these genes did not change in the mock-
infected groups. As suggested by activation of the adipo-
genic cascade, Ad-36–infected explants significantly
increased the number of adipocytes by 21 days postinocu-
lation (Fig. 2E–G). Ad-36–infected adipose tissue also
showed greater mRNA expression and protein abundance
of adiponectin and FAS (Fig. 3A–D). Thus, in human
adipose tissue, Ad-36 activates adipogenesis, enhances
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FAS and adiponectin, and increases glucose disposal,
indicating improved metabolic profile of the tissue.

The effect of Ad-36 on adipose tissue cannot be attrib-
uted simply to any viral infection. Ad-2, another human

adenovirus, which is nonadipogenic in vivo and in vitro
(23,33), was used as a negative control. In addition, we
conducted a plaque-forming unit assay in hASCs. The
number of plaques formed in hASCs by nearly equal
number of particles of the two viruses were not signifi-
cantly different ([means � SD] Ad-36vsAd-2 13.7 � 0.6 vs.
8.7 � 3.2; P � 0.12). Collectively, this indicated that the
difference in Ad-36 and Ad-2 in glucose uptake and other
adipogenic effects is not due to their differential ability to
infect human adipose tissue or hASCs. Despite successful
infection of the explants as evident from viral mRNA
expression (Fig. 4A), unlike Ad-36, Ad-2 did not induce
expression of the above-described genes of adipogenic
cascade (Fig. 4B–G). Therefore, subsequently, we focused
only on the effect of Ad-36.
PI3K is required for Ad-36–induced improvement in
metabolic profile. PI3K is a key molecular for several
cellular pathways, which is evident from the fact that its
inhibition by Wortmannin reduced the expressions of aP2,
PECAM-1, adiponectin, FAS, and MCP-1 (Fig. 5A). Also,
Ad-36 E4orf-1 gene expression requires PI3K activation
(Fig. 5B). Furthermore, Ad-36–induced expression of
PPAR�2, aP2, LPL, and PECAM-1 in the adipose tissue was
dependent on PI3K activation (Fig. 5C–F). Via PI3K acti-
vation, Ad-36 suppressed expression of MCP-1, a proin-
flammatory marker. Wortmannin reversed Ad-36–induced
MCP-1 suppression, which also showed that its effect on

S
m

al
le

r 
ad

ip
o

cy
te

s 

0

0

30

60

90

40

30

20

10

80

40

0

200 250

200

150

100

50

0

160

120

120

150

0

30

60

90

120

0

60

120

180

240

300

Mock
Ad-36

Mock
Ad-36

1     3      5     9   12   15

*

*
*

* *

*

*

*

*
*

*

*

*

*

*

R
el

at
iv

e 
P

P
A

R
 γ

2 
E

xp
re

ss
io

n
R

el
at

iv
e 

aP
2 

E
xp

re
ss

io
n

C
el

ls
/F

ie
ld

C
el

ls
/F

ie
ld

R
el

at
iv

e 
L

P
L

 E
xp

re
ss

io
n

R
el

at
iv

e 
G

P
D

H
 E

xp
re

ss
io

n

PPAR γ 2 Expression

aP2 Expression

Cell count Cell count

Mock Ad-36

GPDH Expression

LPL Expression

Days Post Infection

1     3      5     9   12   15

Days Post Infection

1     3      5     9   12   15

Days Post Infection

Day 16 Post Infection Day 21 Post Infection

1     3      5     9   12   15

Days Post Infection

FIG. 2. Increased adipogenic gene expression and adipocyte cell num-
bers in Ad-36–infected human adipose tissue explants. Experiments
were performed as described in RESEARCH DESIGN AND METHODS. All
experiments were representative (n � 3 per group). Data are means �
SE. A–D: Time course gene expressions measured by qRT-PCR and
normalized to cyclophilin. �, mock; f, Ad-36. E and F: Number of cells
per field; n � 3 (explants) per group. Six slices per explant were used
for calculations. �, mock; f, Ad-36. *P < 0.05. G: Representative
sections of adipose tissue used for calculation of the number of cells in
E and F. Sections from Ad-36–infected explants show a greater number
of smaller cells on day 21 postinoculation. Red dots indicate cells
counted as adipocytes.
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cellular gene expression is not universally inhibitory in the
presence of the virus. Importantly, Ad-36 required PI3K to
enhance glucose uptake (Fig. 5G). Collectively, these
results demonstrated that Ad-36 induces metabolic
changes in adipose tissue via activation of PI3K.
Ras, but not insulin receptor signaling, is required
for Ad-36–induced PI3K activation and glucose
uptake. The effect of Ad-36 on insulin receptor signaling
and Ras signaling, the two key activators of PI3K, was
determined in adipose tissue explants and in hASCs. Ad-36
reduced the abundance and activation of IR, IRS-1, and
IRS-2 in explants but greatly increased Ras protein abun-
dance in explants (Fig. 6A), suggesting that the virus uses
Ras signaling rather than insulin receptor signaling for
PI3K activation. In hASCs, under basal or insulin-stimu-
lated conditions, Ad-36 activated PKB phosphorylation but
blocked IRS-1 tyrosine phosphorylation (Fig. 6B–E), con-
firming its lack of contribution in Ad-36–induced PI3K
signaling. Therefore, we tested the participation of Ras
signaling in Ad-36–induced activation of the PI3K path-

way. As hypothesized, Ras-specific shRNA abrogated
Ad-36–induced PI3K activity (Fig. 7A), indicating Ras as an
upstream regulator of Ad-36–induced PI3K activity. Fur-
thermore, as predicted from its role in Ad-36–induced
PI3K activation, knockdown of Ras expression by shRNA
showed that Ad-36–induced glucose uptake by hASCs is
Ras dependent (Fig. 7B). Interestingly, Ad-36 induced a
fourfold increase in glucose uptake by hASCs, which could
not further be enhanced by insulin stimulation (Fig. 7B),
which further demonstrated the robust and insulin-inde-
pendent effect of Ad-36 on glucose uptake.

Finally, we compared the effects of Ad-36 and Ad-2 on
glucose uptake in hASCs. Compared with the mock-
infected hASCs, Ad-36, but not Ad-2, increased glucose
uptake by �2.5-fold (Fig. 7C), and Ras abundance knock-
down was up to 50% (Fig. 7D). As expected, the Ad-36
group showed greater PI3K pathway activation, as indi-
cated by increased Ser-473 and Thr-308 phosphorylation of
Akt/PKB. Ras knockdown reduced Ad-36 protein abun-
dance and Akt/PKB phosphorylation (Fig. 7D), and Ad-2
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did not increase Ras abundance, PKB activation, or glu-
cose uptake. Ad-2 protein abundance was not affected by
Ras knockdown.
Natural infection of Ad-36 is associated with better
glycemic control in humans. Blinded post hoc screening
for neutralizing antibodies to Ad-36 in nondiabetic as well
as diabetic subjects enrolled in unrelated studies showed
�12% prevalence of Ad-36 infection (Table 1). Study 1
included 3 men and 34 women who were nondiabetic or
diabetic (31 Caucasians and 6 African Americans) (Table
1A). Study 2 included 16 men and 32 female diabetic

subjects (30 Caucasians and 18 African Americans) (Table
1B). Seropositive and seronegative individuals were not
significantly different with respect to age, BMI, and blood
pressure in respective studies. However, seropositivity
was a significant predictor of lower fasting glucose (Table
1A; online appendix Fig. 3) or A1C levels (Table 1B; online
appendix Fig. 4). Moreover, within the diabetic group,
Ad-36 seropositivity was significantly associated with
lower serum cholesterol and LDL cholesterol levels (Table
1B). Although not causational, these findings are remark-
ably similar to the virus-induced phenotypic patterns
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by qRT-PCR and normalized to cyclophilin-B. Data are means � SE (n � 3 per group). Ad-36 (2.7
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Experiment representative (n � 3 per group). Data are means � SE. *P < 0.05, mock infection vs.
mock infection plus Wortmannin. **P < 0.01 Ad-36 infection (2.7 pfu/cell) vs. Ad-36 infection (2.7
pfu/cell) plus Wortmannin. Glucose uptake assays performed 5 days postinfection. �, mock; f,
Ad-36; u, mock plus Wortmannin; s, Ad-36 plus Wortmannin.
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observed in experimentally infected animals (18) and
suggest that natural Ad-36 infection may be an important
moderator of glucose disposal in humans.

DISCUSSION

Adipose tissue is comprised various cell types, including
those of adipogenic, endothelial, and immune lineage.
Therefore, adipose tissue explants were mainly used for
better representation of the collective response of the
constituent cell types (31,34,35). The use of explants
allowed for the testing of the potential of Ad-36 to favor-
ably alter the metabolic profile of the entire tissue, includ-
ing the proadipogenic, angiogenic, and anti-inflammatory
effects. A limitation of explant use is their limited utility to
study cell signaling by methods such as RNA knockdown.
Therefore, hASCs were used to further elucidate molecu-
lar mechanism.

Overall, Ad-36 improves the metabolic profile of human
adipose tissue, as indicated by greater glucose uptake;
reduced expression of MCP-1, a proinflammatory marker;
increased FAS and adiponectin levels; and increased ex-
pression of adipogenic genes such as PPAR�2, which are
associated with better glucose disposal (6,36). This effect
of the virus very closely resembles a transgenic mouse
model, which shows improved metabolic profile due to
adipose tissue expansion through adiponectin overexpres-
sion (14). Ad-36–induced glucose uptake is particularly ro-
bust, even in basal conditions, which could not be enhanced

further by insulin stimulation (Fig. 7B), indicating maximal
stimulation of the glucose uptake process by the virus. It is
particularly noteworthy that Ad-36 increased the glucose
uptake by adipose tissue of even a diabetic subject, suggest-
ing its insulin-independent effect. We reported increased and
insulin-independent glucose uptake in human primary skele-
tal muscle cells infected with Ad-36 (37). Ability of Ad-36 to
enhance glucose uptake by adipose tissue and skeletal mus-
cle may collectively contribute to enhanced glucose disposal
observed in experimental (18) and natural (Table 1) Ad-36
infection. The cellular targets of Ad-36 action need to be
identified to harness this potential of the viral proteins for
therapeutic use.

Ad-36 influences adipose tissue metabolic profile in a
PI3K-dependent manner. The activation of the PI3K path-
way induces cell proliferation and adipogenesis (38,39),
increases adiponectin expression (40), reduces inflamma-
tory response (41), and enhances glucose uptake (42) in
adipocytes and participates in a number of other cell
functions. The pivotal role of PI3K in cellular metabolism
was also evident from the reduction in cellular gene
expression in the presence of Wortmannin (Fig. 5A and B).
PI3K activation is also required for cellular entry by some
adenoviruses (43,44), but not all (45), and human adeno-
viruses such as Ad-5, Ad-9, and Ad-19 are known to
activate PI3K (45–48). Since the adipose tissue was in-
fected with Ad-36 before Wortmannin treatment, the effect

A B

D EC

FIG. 6. Effect of Ad-36 on cell signaling involved in glucose uptake. Experiments were performed as described in RESEARCH DESIGN AND METHODS. A:
Western blot analysis shows that Ad-36 decreased insulin signaling proteins and their phosphorylations and increased Ras protein levels in
adipose tissue explants. B–E: Representative Western blot analysis of total protein extracts of hASCs that were mock or Ad-36 infected in
insulin-stimulated and basal conditions. *P < 0.05 Ad-36 infection (2.7 pfu/cell) vs. mock. **P < 0.01, P < 0.001. Experiments were conducted on
three different patients. Densitometry means � SD (n � 3 per group). �, mock; f, Ad-36; o, mock plus insulin; u, Ad-36 plus insulin. B:
Membranes were incubated with antibodies to IRS-1 (pTyr 989), IRS-1, PKB (pSer473), PKB (pThr308), PKB, or �-actin. C: Densitometric
analysis of IRS-1 (pTyr 989) abundance. D: Densitometric analysis of PKB (pSer473) abundance. E: Densitometric analysis of PKB (pThr308)
abundance.
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of PI3K inhibition on cellular entry of Ad-36 was not
relevant.

Insulin is a well-known activator of PI3K activity. The
binding of insulin to the insulin receptor activates insulin
receptor’s internal tyrosine kinase activity. The activated
tyrosine-phosphorylated insulin receptor phosphorylates
IRS, which in turn activates PI3K, eventually leading to
Glut4 translocation and glucose uptake. While IRS-1 is
particularly important for insulin-stimulated PI3K activ-
ity and Glut4 translocation in adipose cells (49), Ras
signaling also plays a prominent role in activation of
PI3K (50,51) and glucose uptake (52). Therefore, the
roles of insulin and Ras signaling were determined in
Ad-36 –induced PI3K activation.

Ad-36 blocked IRS-1 activation by insulin in hASCs,
perhaps due to negative feedback from activated PI3K, as
shown by Tanti et al. (53) and reviewed by Ye (54).
Therefore, enhanced activation of PI3K signaling by insu-

lin in the presence of the virus is unlikely to be IRS-1
mediated. Instead, it is probably mediated via the Ras
signaling pathway, as shown by Sakaue et al. (55), which
showed that tyrosine phosphorylation of IR by insulin
activates Ras via son of sevenless (SOS), a guanine nucle-
otide exchange protein, and such activation is indepen-
dent of IRS-1 activation.

Ad-36–induced glucose uptake as well as the viral gene
expression appears to be dependent on PI3K and Ras,
which are also recruited by various other viruses for their
replication (43,56–58). It is unclear if Ad-36 requires Ras or
PI3K for directly inducing the downstream glucose uptake
or indirectly for viral gene expression itself. Our data
suggest that either or both possibilities may exist. Ad-36
may upregulate the Ras-PI3K pathway to increase viral
gene expression, which in turn, may increase glucose
uptake via either the Ras-PI3K pathway or another un-
known mechanism. To clarify this further, future work
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FIG. 7. Effect of Ras siRNA transfection on glucose uptake in Ad-36–infected hASCs. Three days after Ad-36 infection (3.8 pfu/cell), hASCs were
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should determine whether Ras or PI3K knockdown will
attenuate Ad-36–induced glucose uptake, when the viral
gene or protein expression is maintained by a different
promoter.

Human adenoviruses are known to cooperate with Ras
in cell transformation (59) and to activate PI3K via Ras
signaling (47) and increase glucose uptake in vitro (60). As
predicted, Ras was required for Ad-36–induced activation
of PI3K and the consequential increase in glucose uptake
in basal as well as insulin-stimulated glucose uptake. Thus,
Ras signaling appears to be a key event in Ad-36–induced
increase in glucose uptake by adipose tissue. This asser-
tion is supported by an earlier study (52) that showed that
selective overexpression of Ras in adipose tissue in-
creased glucose uptake by the tissue and improved whole-
body insulin sensitivity of the transgenic mice.

Although like Ad-36, other human adenoviruses activate
Ras and PI3K signaling pathways, which may then in-
crease glucose uptake in vitro, their ability to modulate the
metabolic profile of adipose tissue is unknown. For in-
stance, unlike Ad-36, human adenoviruses Ad-2 and Ad-31
do not show causation or association with adiposity in
animals and humans, respectively (33,61). We showed that
Ad-2 does not increase RAS abundance or glucose uptake
in vitro (Fig. 7C and D). Ad-9 upregulates PI3K via Ras
signaling (47) and enhances adipogenesis in vitro (22), but
its effect on glucose disposal is unknown. Characteristics
unique to Ad-36 that help it increase adipogenesis and
glucose uptake are unclear.

Effect of human adenoviruses on proinflammatory cyto-
kines is varied. Ad-36 reduced MCP-1 expression in ex-
plants, but Ad-19 increases MCP-1 expression (62) and
Ad-7 increases interleukin-8 production (63). On the other
hand, adenovirus types 16, 35, and 37 reduce proinflam-
matory cytokine expressions (64). Interestingly, Ad-37 is
reported to increase adiposity in animals (33). Overall,
unlike Ad-36, other adenoviruses have not been tested
comprehensively for their effects on adipogenic pathways
and glucose metabolism. Recognizing the ability of Ad-36
to modulate metabolic profile of adipose tissue should

provide impetus to evaluate other human adenoviruses for
similar potential.

Increased adiposity is associated with lower adiponec-
tin levels and greater inflammation and insulin resistance,
and reduction in adipose tissue mass reverses the changes
(65–69). However, reduction of adipose tissue and pre-
venting its regain are challenging. Our findings indicate
that akin to some therapeutic agents (5,11), it is possible to
induce a metabolically favorable profile in the adipose
tissue, without a reduction in adiposity. This is a poten-
tially important finding for eventually developing novel
strategies to manage adiposity-induced glucose disregula-
tion. Further studies are required to identify the viral
protein responsible for the effect and to elucidate its
interaction with cellular proteins participating in tissue
remodeling.

Finally, the association of natural Ad-36 infection with
better glycemic control in diabetic and nondiabetic human
subjects provides a proof of concept that is expected to
offer a human relevance to the main observations de-
scribed. The number of Ad-36 seropositive subjects is
relatively small in these studies, and a dedicated larger
prospective study with human samples better character-
ized for glucose metabolism is required to further test the
association. Nevertheless, it is interesting that even with a
small number of Ad-36–positive subjects, this study con-
ducted in a blinded manner yielded 40% lower glucose
levels (Table 1A), 16% lower serum cholesterol, 30% lower
LDL cholesterol, and 10% lower A1C levels (Table 1B) in
Ad-36–seropositive groups.

Better glycemic control in Ad-36–infected animals was
discovered recently (18). Therefore, a seropositivity-de-
pendent difference, if any, in glucose values was not
determined in our earlier study that showed Ad-36 sero-
positivity in 30% of obese and 11% of the nonobese
subjects screened (70). We revisited unpublished data of
this study (R.L. Attinson, B.A. Israel, A.S. Augustus, N.V.
Dhurondhor, unpublished data). Fasting glucose mea-
surements were available for 85 obese subjects (73
seronegative and 12 seropositive for Ad-36) recruited

TABLE 1
Association of Ad-36 infection with glycemic control in humans

Ad-36 positive Ad-36 negative P

A. Ad-36 increases glucose uptake in human skeletal muscle cells
n(%) 5 (13.5) 32 (86.5)
Age (years) 46.7 � 11 49.1 � 9 NS
BMI (kg/m²) 43.6 � 4.6 47.4 � 5.3 NS
Systolic blood pressure (mmHg) 125 � 17 129 � 18 NS
Diastolic blood pressure (mmHg) 79 � 14 82 � 10 NS
Glucose (mg/dl) 74 � 29 124 � 53 0.02

B. Ad-36 seropositivity in diabetic subjects
n(%) 6 (12.5) 42 (87.5)
Age (years) 67 � 10 60 � 17 NS
BMI (kg/m²) 34.6 � 5 35.9 � 6 NS
Waist circumference (cm) 106.2 � 9 111.6 � 14 NS
Weight (kg) 88 � 9 98 � 16 NS
Percent body fat (%) 42.3 � 4 39.5 � 9 NS
Visceral adipose tissue (kg) 6.0 � 0.6 6.7 � 2 NS
Systolic blood pressure (mmHg) 130 � 17 125 � 16 NS
Diastolic blood pressure (mmHg) 79 � 8 78 � 9 NS
Total cholesterol (mg/dl) 167 � 31 199 � 34 0.02
LDL cholesterol (mg/dl) 78 � 37 111 � 27 0.04
A1C (%) 5.7 � 0.4 6.3 � 0.8 0.005

Data are means � SD unless otherwise indicated.
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from Wisconsin. The fasting blood glucose levels were
lower for the Ad-36 –seropositive group (102 � 36 vs.
95 � 7.6; P � 0.06).

Better glycemic control in Ad-36–infected subjects is
intriguing. Ad-36–neutralizing antibody titer was not high
enough to suggest an acute infection. This indicates a
longer-lasting change in systemic glucose handling follow-
ing a natural infection in these subjects. It is noteworthy
that Ad-36 increases adiposity in experimentally infected
animals and improves glycemic control, but only the later
was observed to be associated with Ad-36 infection in
these subjects. Considering the numerous other adipo-
genic stimuli in humans, it is possible that the Ad-36–
negative subjects gained adiposity due to other causes. We
postulate that the Ad-36–induced expansion of adipose
tissue is accompanied by improvement in metabolic pro-
file of the tissue, compared with a similar degree of
adiposity acquired due to other reasons.

Although Ad36 remarkably increases adipose tissue–
glucose uptake independent of insulin in vitro, the virus
does not cause uncontrolled glucose uptake and hypogly-
cemia in experimentally infected rats (18) or humans
naturally infected with Ad-36. Perhaps this is because the
in vivo physiological regulatory controls of circulating
glucose homeostatic mechanisms prevent uninhibited glu-
cose clearance and consequential fasting hypoglycemia.
Moreover, Ad-36 induces glucose uptake in a virus dose–
dependent manner (37). Therefore, the degree of infectiv-
ity may be another determinant of the magnitude of
glucose uptake induced by the virus in vivo. It is likely that
due to immune response, tissue accessibility, or other
factors, a relatively limited fraction of cells are infected in
an organism. Hence, the net result of contributions from
infected and uninfected cells may balance out the robust
effect of Ad-36 on cellular glucose uptake observed in vitro
to a more moderate effect without severe hypoglycemia in
vivo.

We previously reported that Ad-36 increases the com-
mitment of hASCs to adipogenic lineage (71). Moreover,
similar to its effect on adipose tissue, Ad-36 also increases
glucose uptake by human skeletal muscle (37) in a Ras-
mediated, PI3K-dependent manner. Ad-36 increases FAS
levels, suggesting the conversion of increased cellular
glucose to lipids via de novo lipogenic pathway. Taken
together, we postulate that Ad-36 expands adipose tissue
and increases glucose uptake in skeletal muscle and
adipose tissue, which collectively leads to better glycemic
control in vivo. By further identifying the viral proteins
and their cellular targets involved in the effect, novel
therapeutic agents may be developed for enhancing glu-
cose disposal in type 1 or type 2 diabetes and for improv-
ing the adipose tissue metabolic profile associated with
insulin resistance.
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