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Abstract: Skin inflammation occurs due to immune dysregulation because of internal disorders,
infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune
inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although
there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates
are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation
by regulating the expression of protein-coding genes at the posttranscriptional level during patho-
genesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which
are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory
skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies
that can target multiple genes in a given pathway are potential candidates for the treatment of skin
inflammation. This review article offers an overview of the function of miRNA in skin inflammation
regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can
target and modulate miRNAs to achieve the objective of inflammation suppression. This review also
reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression.
The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell
penetration. Consideration was given to improving these drawbacks using the approaches of cell-
penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation
design for successful miRNA delivery into skin and target cells is also described in this review. The
possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity
for the diagnosis and treatment of inflammation-associated skin diseases.

Keywords: microRNA; skin; anti-inflammation; inflammatory disease; keratinocyte

1. Introduction

Ribonucleic acids (RNAs) are able to regulate gene expression at the transcriptional,
posttranscriptional, and epigenetic stages. Noncoding RNAs comprise a major portion of
the human transcriptome. These functional RNAs include ribosomal RNA (rRNA), long
noncoding RNA (lncRNA), small interfering RNA (siRNA), piwi-interacting RNA (piRNA),
and microRNA (miRNA) [1]. Among these, miRNA is a small and highly conserved
noncoding RNA sequence containing 19–25 nucleotides. This single-stranded RNA can
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regulate the expression of protein-coding genes at the posttranscriptional level to join
the maintenance of correct cell homeostasis [2]. Since the discovery of miRNA in 1993,
5000–10,000 miRNAs have been found in mammals. miRNAs comprise 1–5% of all genes
in the human genome [3]. Approximately 20–60% of protein-coding genes are regulated by
miRNAs. miRNAs participate in cell development, morphogenesis, proliferation, apoptosis,
differentiation, immune regulation, and wound healing [4]. Under the condition of disease,
miRNAs can change to induce altered gene expressions, leading to aberrant phenotypes.
On the other hand, they also predominate the protective capacity by reestablishing cell
homeostasis [5]. The balance of miRNA plays a key role in the correct functioning of
cell physiology. The exploration of miRNA has advanced the development of molecular
biology, bioinformatics, and translational investigation.

Most miRNAs are transcribed from deoxyribonucleic acid (DNA) sequences in the nu-
cleus by RNA polymerases [6]. Drosha is a member of the RNase III family that cleaves the
primary miRNA (pri-miRNA) to generate a 70-nucleotide precursor miRNA (pre-miRNA).
The pre-miRNA is transported to the cytoplasm by exportin-5 and is then processed by the
RNase III endonuclease dicer to produce mature miRNA. The mature miRNA is loaded
onto the RNA-induced silencing complex (RISC) as guided by the Argonaute (AGO) family
of proteins for binding to the 3′-untranslated region (3′UTR) of the target messenger RNA
(mRNA) [7]. This can result in the translation-suppression or degradation of the target
mRNA. The biogenesis of miRNA and its impact on mRNA are illustrated in Figure 1.
miRNA dysregulation is involved in a broad range of diseases, including developmen-
tal abnormalities, cancer, metabolic disease, autoimmune disorders, and cardiovascular
dysfunction [8]. The modulation of disease-associated miRNAs is beneficial for the tar-
geted therapy of several diseases. Different from the conventional approaches of turning
off specific targets, miRNAs exert a biological function by tuning protein-coding genes.
miRNA expression modulation has some advantages. Introducing siRNA into cells can
reduce the expression of specific genes. However, an unpredicted effect of siRNA on the
cells via off-target effects may happen. In the case of miRNA, one exogenous miRNA can
modulate several genes that often act in the same biological pathway. In addition, the
action of miRNA is designed by nature itself. The intervention of miRNA-based therapies
usually causes limited toxicity or adverse impacts [9]. Besides its action in cell interiors,
miRNA can be released into plasma, tissue fluid, urine, and milk. miRNA is protected
by exosomes or combined with high-density lipoproteins to avoid enzymatic degradation
in the plasma [10]. The exosomal miRNA secreted by the cells exerts a vital role in cell-
to-cell communication. It is capable of penetrating neighboring cells and can control the
expression of genes [11]. In the past few years, several miRNA-based therapeutics have
been developed and are currently in different phases of clinical trials [12]. Clinical trials
of numerous miRNAs have shown positive results in their initial phases. Some miRNA
molecules are in different stages of clinical trials, including the treatment of hepatitis C
virus infection (phase II), mycosis fungoides (phase II), polycystic kidney disease (phase I),
cutaneous T cell lymphoma (phase I), hepatocellular carcinoma (phase I), malignant pleural
mesothelioma (phase I), ischemia (phase I), heart failure (phase I), and idiopathic pul-
monary fibrosis (phase I) [13,14]. Although a future therapeutic application of miRNAs is
appealing, there are still great practical difficulties to overcome, such as the identification
of proper administration routes, the control of in-body stability, the targeting of specific
cells, and the attaining of the intended intracellular effects.

Inflammation is a protective strategy of the cells to neutralize the stimuli-including
pathogens, toxins, irritants, mechanical stress, and allergens. However, inappropriate
inflammation can cause tissue damage. The activation of excessive inflammation is de-
tected by sensors, such as toll-like receptors (TLRs), which are found in macrophages,
dendritic cells, and mast cells [15]. This activation induces the production of proinflam-
matory mediators, including cytokines and chemokines. Apart from the role of regulating
cell-normalization processes, miRNA exhibits disturbed expression in inflammatory and
autoimmune diseases. Altered miRNA expression is associated with inflammatory signal-
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ing, increased cytokine release, and preservation of the vicious cycle in autoimmunity [16].
On the other hand, miRNA can act as part of a negative regulatory loop to keep inflam-
mation in check by elevating anti-inflammatory mediator generation for the return to
homeostasis [17]. As the largest organ of the human body, the skin requires a large amount
of highly regulated miRNAs for its development and morphogenesis. miRNAs are in-
volved in skin immunity, cell proliferation, aging, pigmentation, wound healing, and
cutaneous microbiomes [18,19]. miRNAs also play a role in skin cancers, inflammatory
skin diseases, and autoimmune skin disorders. Thus, miRNAs can be biomarkers for skin
diseases because of the different expression levels of miRNAs between lesional and healthy
skin. miRNAs can also be cell-specific markers for skin disease diagnosis and prognosis.
The treatment efficacy and the therapeutic outcome can also be evaluated by changes in the
miRNA levels. For example, psoriasis patients show higher levels of miR-125b, miR-146a,
miR-203, and miR-223 in serum as compared with healthy subjects [20,21]. It has also
been observed that miR-424 is largely detected in the hair shafts of psoriasis patients as
compared with normal subjects and those with atopic dermatitis (AD) [22]. The serum
of pediatric AD patients shows upregulated miR-203 and miR-483-5p levels compared
with healthy groups [23]. miR-194-5p is a useful biomarker for AD diagnosis because of
its downregulation in the plasma of AD patients [24]. Another AD biomarker, detected in
peripheral CD4+ T cells, is the significant elevation of miR-155 in AD patients [25].
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To date, no successful therapy has been found to completely cure autoimmune and
inflammatory skin diseases and prevent their recurrence. Current long-term therapy
is also difficult because of the inefficiency after prolonged application and the adverse
effects of the treatments. There is an emerging need to develop efficient therapeutic
strategies to manage chronic inflammatory skin diseases. miRNA-based therapies have
become potential candidates for treating inflammatory skin diseases over the last decade.
The dermatological or cosmeceutical application of active ingredients to regulate miRNA
expression for treating skin diseases has also been largely recognized [26]. There are two
approaches for employing miRNA as a gene modulator: miRNA inhibitors/antagomirs,
and miRNA mimics/agomirs. The miRNA inhibitor/antagomir approach is utilized for
the aberrantly expressed miRNAs that are upregulated in diseases, while anti-miRNA
or miRNA inhibitors specifically bind to endogenous mature miRNA, thus preventing
targeted miRNA expression [27]. In contrast, miRNAs that are reduced in diseases can be
supplied transiently using miRNA mimics and agomirs. Mimics are chemically designed
and synthesized to simulate endogenous miRNAs. This review focuses on miRNA mimics
that exert anti-inflammatory activity for treating cutaneous inflammation-related diseases,
including psoriasis, AD, lupus, skin wounds, and skin aging. Natural or synthetic actives
and drugs that can modulate miRNAs for mitigating skin inflammation are also discussed
in this study. Most naked miRNAs can usually neither permeate the skin nor facilely cross
the cell membrane because of their large size and negative charge [28]. A delivery system
is, therefore, required for miRNA administration. This study additionally highlights the
emerging approach of formulating designs for miRNAs to achieve successful and efficient
delivery into the nidus or target cells.

2. miRNAs and Inflammation

Inflammation is a complicated pathophysiological cascade of the response to infection
or injury. The mechanism of inflammation is closely associated with many human diseases.
The magnitude and network of pro- and anti-inflammatory factors affect the development
and progression of various diseases. Inflammation regulation can be governed by the coor-
dinated control of gene expression in participating immune cells and systems [29]. miRNA
is the key gene regulator to achieve inflammation control. Anti-inflammatory miRNAs are
fine-tuned signaling regulators that allow the resolution and prevention of inflammatory
reactions in immune cells [30]. miRNA has an extensive spectrum of biofunctions for
inflammation regulation in immune cells (Figure 2). miRNAs can either enhance or inhibit
inflammation, depending on the target mRNAs. The immune system employs multiple
miRNAs to manage the functional capacity for constructing a balance between activation
and suppression. Innate defense pathway stimulation, such as that found in TLR signal-
ing, contributes to the altered expression of miRNAs that modulate inflammatory genes.
Some anti-inflammatory miRNAs modulate the translation of transcripts, leading to a
reduction in the immunomodulating factor levels for inhibiting or regulating inflammatory
responses [31].

Some miRNAs inhibit multiple target genes involved in inflammation-related signal-
ing. The manipulation of the miRNA expression level offers an applicable therapy against
inflammatory diseases. The targeting of the inflammatory response through miRNA mim-
ics could be an effective treatment. Anti-inflammatory miRNA mimics for inflammation
mitigation have been previously reported [17]. These include miR-10a, miR-21, miR-24,
miR-106b, miR-124, miR-143, miR-145, miR-146, miR-155, and miR-375. These miRNAs
can be a negative regulator of inflammation by targeting several inflammation-related
pathways, such as TLR, signal transducer and activator of transcription (STAT), nuclear
factor-κB (NF-κB), tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6), and
Janus kinase (JAK). The overexpression of anti-inflammatory miRNAs in turn abrogates the
production of proinflammatory cytokines and chemokines in the immune cells, resulting
in the attenuation of the inflammatory response [32]. Numerous miRNAs function in the
downregulation of inflammatory pathways. For biological consideration, this is an ideal
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and precise coordination system to control inflammation. As inflammation is initiated,
the fast transcriptional upregulation of the proinflammatory mediators occurs. At the
same time, the expression of some miRNAs is initiated by the same transcription. These
miRNAs either restrain the expression of the positive signaling proteins or inhibit the
same pathway [33]. Altered miRNA expression and supplementary anti-inflammatory
miRNA mimics have been successfully used to treat inflammatory and immunological skin
disorders. This can open a new field to explore pathogenesis, develop novel biomarkers for
diagnosis, and design mechanism-driven therapeutic approaches.
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3. miRNAs for Treating Inflammatory Skin Diseases
3.1. Psoriasis

Psoriasis is a chronic autoimmune skin disease delineated by epidermal hyperplasia
and inflammatory cell infiltration. The worldwide prevalence of psoriasis is 2–3%, and
patients with severe psoriasis have a shortened life expectancy [34]. Both genetic and
environmental factors, in association with irregular immune systems, are considered to be
involved in psoriatic pathogenesis. Keratinocytes and immune cells are responsible for the
production of proinflammatory mediators after activation, leading to keratinocyte prolifera-
tion and amplification loops in psoriatic lesions [35]. The suppression of hyperproliferation
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and inflammation is a target for antipsoriatic therapies [36]. Psoriasis is strongly depen-
dent on genomic variation. A growing number of psoriasis-susceptible genes involved in
immunity and keratinocyte function have been discovered [37]. The elucidation of these
genes is essential to understand the pathogenetic mechanisms of psoriasis. miRNA dysreg-
ulation has been detected in psoriasis patients. Since the first discovery of altered miRNA
expression in psoriasis [38], more than 250 miRNAs have been found to be differentially
expressed in the skin and blood of psoriasis patients [39]. miRNAs have the potential to
predominate the proliferation, apoptosis, differentiation, and proinflammatory mediator
production of keratinocytes, as well as the activation of immune cells [40]. Increasing
evidence highlights the successful use of miRNAs as psoriasis biomarkers for diagnosis,
prognosis, and therapeutic response monitoring (Figure 3).
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It has been proven that miR-21, miR-31, miR-146a, miR-155, and miR-203 are greatly
upregulated in the lesional skin of psoriasis patients [41], among which miR-21-3p and miR-
21-5p play a crucial role in epidermal inflammation. miR-31 functions in the positive vicious
loop in psoriatic keratinocytes through proliferative, differentiative, and inflammatory
mechanisms [42]. On the other hand, miR-146a and miR-203 are known to hold negative
potential in epidermal inflammation, participating in the balance of keratinocyte prolif-
eration and differentiation [43]. The overexpression of miR-155 in psoriasis skin reduces
loricrin expression in keratinocytes and disrupts the epidermal barrier’s properties [44]. In
addition to lesional skin, some miRNAs in the serum of psoriasis patients are increased
as compared with healthy patients. The serum levels of miR-33, miR-126, miR-143, and
miR-223 are elevated in psoriasis patients, serving as biomarkers for disease severity and
therapeutic outcome [45]. Both inflammatory and anti-inflammatory miRNAs are asso-
ciated with the initiation, development, and maintenance of psoriasis. When treating
psoriasis, some miRNA mimics can be administered to patients to relieve symptoms via
genomic regulation.
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miR-99a is downregulated in psoriatic lesions by targeting Frizzled (FZD)5 and FZD8.
The wingless-related integration site (Wnt)/β-catenin axis plays an important role in cell
proliferation. This pathway is activated by binding the Wnt ligand to the FZD receptor
protein [46]. Shen et al. [47] delivered miR-99a mimics into keratinocytes (HaCaT) to achieve
miR-99a overexpression. The miR-99a mimics suppressed keratinocyte proliferation via
the reduction of FZDs by about two-fold. The examination of FZD expression in the
lesional skin of psoriasis patients exhibited an inverse correlation of miR99a with FZD5
(p = 0.018) and FZD8 (p = 0.003). miR-125a was found to be intimately related to immunity
and inflammation [48]. The quantitative reverse-transcription polymerase chain reaction
(RT-qPCR) data from 60 psoriasis patients demonstrated the reduction of miR-125a in
lesional skin compared with non-lesional sites [49]. miR-125a was negatively correlated
with TNF-α (p = 0.001), IL-1β (p = 0.014), and IL-17 (p = 0.003) in lesional skin. The miR-125a
mimic transfection into HaCaT led to the inhibited proliferation and increased apoptosis
for abrogating keratinocyte activation.

The miR-146 family consists of miR-146a and miR-146b, which are encoded by genes
located on chromosomes 5 and 10, respectively [50]. Srivastava et al. [51] found a protective
capability of miR-146a for early psoriasis onset. The genetic deficiencies of miR-146a re-
sulted in exacerbated skin inflammation after imiquimod stimulation in miR-146a−/− mice.
Imiquimod is a TLR agonist that induces psoriasiform skin in murine models [52]. The
intradermal injection of synthetic miR-146a in wild-type mice bearing psoriasiform dermati-
tis led to a 14-fold increase in miR-146a expression as compared with the scramble control.
This overexpression caused the mitigation of erythema, epidermal thickness, scaling, and
neutrophil infiltration. miR-146b can assist miR-146a in the suppression of the inflam-
matory response in psoriasis [53]. Interferon (IFN)-γ- or TNF-α-stimulated keratinocytes
were transfected by miR-146b mimics. The result showed a significant inhibition of IL-
1R-associated kinase (IRAK1), fermitin family homolog 1 (FERMT1), IL-8, and chemokine
(C-C motif) ligand (CCL)5 after miR-146b treatment. This effect was similar to the result
of miR-146a mimic intervention, leading to the hindrance of keratinocyte proliferation.
Both miRNAs target similar sets of transcripts. SERPINB2 is a serine protease inhibitor
subgroup member of the serpin superfamily. This inhibitor is upregulated under infection
and inflammation conditions in macrophages, monocytes, fibroblasts, eosinophils, and
keratinocytes [54]. Vaher et al. [55] found that overexpressed SERPINB2 in the psoriatic skin
is positively related to psoriasis severity and negatively related to miR-146a/b. Silencing
the caspase recruitment domain family member 10 (CARD10) and IRAK, the direct targets
of miR-146a/b, reduced SERPINB2 expression in keratinocytes. Thus, miR-146a/b and
SERPINB2 coordinately act in the hindrance of psoriasis-associated inflammation.

Tang et al. [56] demonstrated that miR-187 declines in cytokine-activated HaCaT
and the lesional skin of psoriasis patients. In their study, the exogenous miR-187 agomir
(10 nmol) was intradermally delivered to imiquimod-treated psoriasiform mice to increase
the level of miR-187. The overexpression of miR-187 lessened acanthosis and inflammation
in the mice, and this effect was due to the hyperproliferation inhibition by targeting
CD276. CD276, also known as B7 homolog 3 protein, is an immune checkpoint molecule
belonging to the B7-CD28 family [57]. miR-193b-3p is another anti-inflammatory miRNA
used to achieve the amelioration of psoriasis. Huang et al. [58] transfected miR-193b-3p
mimics in HaCaT and observed suppressed proliferation and NF-κB/STAT3 signaling. The
bioinformatic analysis and dual-luciferase reporter assay indicated that miR-193b-3p could
diminish keratinocyte activation by directly targeting the Erb-B2 receptor tyrosine kinase 4
(ERBB4). Intradermal injections of miR-193b-3p agomirs into the imiquimod-treated mice
dramatically increased miR-193b-3p expression by about six-fold. This overexpression
reduced the epidermal thickness from 160 to 50 µm in the psoriasiform skin. miR-203 is
largely expressed in keratinocytes to inhibit p63 and suppressors of cytokine signaling
(SOCS)3 for regulating cell differentiation [59]. Wang et al. [60] verified the role of miR-
203a in inflammation regulation in psoriasis by pcDNA3.1-miR-203 plasmid transfection
into HaCaT. The 3′-untranslated region (UTR) of kynureninase was the conserved target
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area of the miR-203a. The overexpressed miR-203a (by eight-fold) inhibited kynureninase,
thereby inhibiting the production of IL-1β in the keratinocytes. The in vivo psoriasiform
mouse model also exhibited miR-203a-induced inversed kynureninase expression during
the development of psoriatic inflammation.

The transcriptomic profile of clinical psoriasis verified a downregulation of miR-214-3p
in psoriatic lesions compared with healthy skin [61]. The TNF inhibitor adalimumab can
increase the miR-241-3p levels in the lesional skin of psoriasis patients by 1.7-fold [41].
Zhao et al. [62] demonstrated a negative regulation of forkhead box M1 (FOXM1) by miR-
214-3p, inhibiting keratinocyte hyperproliferation. FOXM1 is a proliferation-specific tran-
scription factor belonging to the forkhead family. The intradermal administration of miR-
214-3p mimics in imiquimod-induced psoriasis-like mice alleviated the signs of erythema,
scales, and epidermal thickness. FOXM1 expression in the lesions was reduced by about
two-fold after miR-214-3p application. Liu et al. [63] indicated the downregulation of miR-
215-5p in cytokine-stimulated HaCaT and imiquimod-treated skin tissue. The treatment of
miR-215-5p agomirs on imiquimod-treated mice decreased the number of Ki67-positive
cells in the epidermis. The luciferase assay suggested that miR-215-5p bound to the 3′UTR
of dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) as the direct
target. Both cell- and animal-based studies showed that miR-215-5p negatively regulated
DYRK1A, inhibiting the downstream pathways of protein kinase B (AKT) and extracellular
signal-regulated kinase (ERK). Bian et al. [64] demonstrated that miR-340 reduced IL-17A
expression in 293T cells through IL-17A 3′UTR. Imiquimod-stimulated skin inflammation
in mice treated with intravenous miR-340 agomir resulted in substantially lower scores for
cutaneous redness, scaling, and thickening. The cumulative psoriasis severity score could
be reduced from nine to six after agomir treatment. miR-383 functions as a suppressor
of tumor progression and cell proliferation [65]. It has been reported that miR-383 can
target the 3′UTR of lipocalin 2 (LCN2) and block JAK/STAT activation [66]. Skin cells from
imiquimod-treated rats were transfected with miR-383 mimics. Overexpressed miR-383
and decreased LCN2 expression were detected by this transfection. Compared with the
control, the miR-383 mimic treatment reduced cell proliferation while increasing cell apop-
tosis. Ye et al. [67] reported downregulated miR-489-3p expression in psoriasis patients.
A further bioinformatic assay and luciferase reporter study indicated the direct targeting
of miR-489-3p to TLR4 in keratinocytes. HaCaT cells transfected with miR-489-3p mimics
inhibited cell proliferation and TLR4/NF-κB signaling. The TNF-α, IL-1β, IL-22, and IFN-γ
levels declined by about two-fold after miR-489-3p transfection. The targets and biological
mechanisms of the anti-inflammatory miRNAs for treating psoriasis are summarized in
Table 1.

3.2. Atopic Dermatitis (AD)

AD is an inflammatory skin disease characterized by erythema, edema, vesicles, and
lichenification. The pathogenesis of AD is involved in inflammation dysregulation and
response to antigens. AD can be featured by skin barrier dysfunction, skin microbiome
alteration, and type 2 immune responses [68]. The increases in immunoglobulin (Ig)E and
eosinophils in the development of AD boost inflammation and skin disruption through
the production of oxidative stress, toxic granule proteins, cytokines, and chemokines [69].
Th2-related cytokines, such as IL-4, IL-5, IL-13, IL-22, and IL-31, are largely expressed in
AD skin [70]. There are increasing reports of AD comorbidities, including neuropsychiatric,
cardiovascular, and malignant disorders [71]. AD is the most common inflammatory skin
disorder, affecting 10–25% of children and 2–10% of adults [72]. Recent investigations
have illustrated the fundamental role of miRNA in AD pathogenesis (Figure 4) [73]. Ele-
vated expressions of miR-10a, miR-24, miR-27a, miR-29b, miR-146a, miR-151a, miR-193a,
miR-199, miR-211, miR-222, miR-4207, and miR-4529-3p were observed in the lesional skin
of AD patients [25,74]. On the other hand, miR-135a, miR-143, miR-184, miR-194-5p, and
miR-4454 were downregulated in clinical AD. miR-155-5p is also highly expressed in AD
lesions, which can activate T cells, increase cutaneous inflammation, and disintegrate tight
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junctions [75]. miR-720 is upregulated in AD, possibly because of its role in keratinocyte cell
cycle regulation [76]. The dysregulation of miR-143, miR-146a, miR-155, and miR-451a in
AD can be used as a biomarker to diagnose this inflammatory disorder [77]. These miRNAs
function in keratinocyte proliferation regulation, cytokine signaling, the NF-κB-dependent
inflammation response, and T cell activation. Since plasma platelets are also involved in
the pathogenesis of AD, recent studies [78] have indicated that platelet-associated miRNAs,
such as miR-24 and miR-191, are responsible for the worsening of AD symptoms due to
platelet activation.

Table 1. The targets and biological mechanisms of anti-inflammatory miRNAs for treating psoriasis.

miRNA Code Targets Experimental
Models Outcome Reference

miR-99a FZD5 and
FZD8

HaCaT cells and
patients

Keratinocyte proliferation
inhibition through
β-catenin signaling

Shen et al.
[47]

miR-125a CAMK4 HaCaT cells and
patients

Keratinocyte proliferation
inhibition and apoptosis

enhancement

Su et al.
[49]

miR-146a
CARD10,
FERMT1,

IRAK1 and
TRAF6

miR-146a−/−
and wild-type

mice and
patients

Inhibited psoriasiform
inflammation,

hyperplasia, and
neutrophil infiltration

Srivastava
et al. [51]

miR-146b
CARD10,
FERMT1,

IRAK1 and
TRAF6

Normal human
epidermal

keratinocytes
and

miR-146a−/− or
miR-146b−/−

mice

Modulation of
inflammatory response

and keratinocyte
proliferation

Hermann
et al. [53]

miR-146a/b
CARD10,
FERMT1,

IRAK1 and
TRAF6

Normal human
epidermal

keratinocytes

SERPINB2 is coordinately
regulated in the psoriatic

inflammation with
miR-146a/b

Vaher et al.
[55]

miR-187 CD276
HaCaT,

wild-type mice,
and patients

Inhibition of keratinocyte
hyperproliferation

Tang et al.
[56]

miR-193b-3p ERBB4 HaCaT and
wild-type mice

Blockade of psoriasis-like
inflammation through

NF-κB/STAT3 signaling

Huang
et al. [58]

miR-203a Kynureninase HaCaT and
wild-type mice

Reduction of IL-1β in
cytokine-activated

keratinocytes

Wang et al.
[60]

miR-214-3p FOXM1
HaCaT,

wild-type mice,
and patients

Inhibition of keratinocyte
hyperproliferation and

psoriasiform
inflammation

Zhao et al.
[62]

miR-215-5p DYRK1A HaCaT and
wild-type mice

Suppression of
proliferation and cell cycle

progression of
keratinocytes

Liu et al.
[63]

miR-340 IL-17A 293T cells and
wild-type mice

Reduction of psoriasiform
symptoms

Bian et al.
[64]

miR-383 LCN2

Cells from the
skin of

imiquimod-
treated

rats

Reduced cell proliferation
and increased cell

apoptosis

Wang et al.
[66]

miR-489-3p TLR4 HaCaT
Inhibition of keratinocyte

proliferation and
TLR4/NF-κB signaling

Ye et al.
[67]

CAMK4, calmodulin-dependent protein kinase IV; CARD10, caspase recruitment domain family member 10;
CD276, cluster of differentiation 276; DYRK1A, dual-specificity tyrosine phosphorylation regulated kinase 1A;
ERBB4, Erb-B2 receptor tyrosine kinase 4; FERMT1, fermitin family homolog 1; FOXM1, forkhead box M1;
FZD, frizzled; IRAK1, IL-1 receptor-associated kinase 1; LCN2, lipocalin 2; NF-κB, nuclear factor-κB; STAT3,
signal transducer and activator of transcription 3; TLR, Toll-like receptor; TRAF6, tumor necrosis factor receptor-
associated factor 6.
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Some miRNAs alleviate inflammation caused by AD through the suppression of the im-
mune response in keratinocytes or immune cells. The mimics or agomirs of these miRNAs
are potential candidates for anti-AD therapy. CCL22 is a macrophage-derived chemokine
correlated with the severity of AD. Yoon et al. [79] assessed the suppression of the CCL22
gene by miRNA for treating AD in mice. A recombinant strain of Salmonella typhimurium
expressing CCL22 miRNA (ST-miRCCL22) was prepared for CCL22 knockdown, and
the successful transport of ST-miRCCL22 into the RAW264.7 macrophages was observed.
The expression of CCL22 in the mouse splenocytes was reduced by about 10-fold after
the ST-miRCCL22 treatment. In the in vivo study of atopic mice, the oral inoculation of
ST-miRCCL22 lowered the total scratching counts for seven days. The numbers of IgE,
IL-4, and Th17 cells were reduced after this treatment due to the CCL22 downregulation
in the activated lymphocytes. miR-10a-5p has been acknowledged as a regulator of cell
proliferation and inflammatory responses, and has been found to be upregulated in AD
patients and in the proliferation of keratinocytes [80]. After the transfection of miR-10a-5p
mimics into IL-1β-stimulated keratinocytes, IL-8 and CCL5 expression was significantly
reduced. In the transfected cells, 48% were in the G1/G0 phase, compared with 38% for the
untreated control, suggesting that proliferation was inhibited by the mimics. The luciferase
assay verified that hyaluronan synthase 3, a positive regulator of keratinocyte proliferation
and migration, is the direct target of miR-10a-5p.

Yang et al. [81] found a decreased expression of miR-124 in the lesional skin of AD
patients compared with the non-lesional sites. The transfection of miR-124 mimics into
keratinocytes elicited a 130-fold increase in miR-124 expression. This increase led to the
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downregulation of IL-8, CCL5, and CCL8 in the IFN-γ- or TNF-α-activated cells. RELA
(the gene name of p65) is the direct target of miR-124 to control the NF-κB-associated
inflammatory pathways in activated keratinocytes. IL-13 is a Th2-derived cytokine that can
impair the epidermal barrier. IL-13Rα1 is a direct target of miR-143 [82]. IL-13 stimulation
on keratinocytes resulted in a decrease in the miR-143 level [83]. The amount of IL-13Rα1
in the IL-13-stimulated keratinocytes was diminished by about 10-fold after transfection
with the miR-143 mimics. The forced miR-143 expression prevented the IL-13-induced
downregulation of filaggrin, loricrin, and involucrin. The skin barrier function was ex-
pected to be restored by this effect. In addition to psoriasis, miR-146a is applicable for
AD treatment because of its involvement in immune regulation [84]. Meisgen et al. [85]
transfected keratinocytes with synthetic miR-146a and found a remarkable suppression
of the TLR2-induced production of TNF-α, IL-8, and CCL20. This downregulation was
mediated by the direct targeting of miR-146a to TRAF6 and IRAK1. The transcriptomic
analysis revealed that the miR-146a mimics regulated the genes involved in cell–cell com-
munication, keratinocyte immunity, cytokines, chemokines, and antimicrobial peptides.
miR-146a overexpression in the keratinocytes also lessened the chemotactic migration of
neutrophils (0.54-fold as compared with the control). The evidence of miR-146a’s ability to
alleviate skin inflammation in AD was further evaluated in vivo [86]. The AD-like model
was established by the topical treatment of MC903, a vitamin D3 analog, on the ears of
wild-type and miR-146a−/− mice. The miR-146a-deficient mice developed a stronger in-
flammation response characterized by increased immune cell infiltration, as well as IFN-γ,
CCL5, and CCL8 expression, in the skin. The keratinocyte-based study testified the direct
targets of CARD10 and IRAK1 for miR-146a.

The lympho–epithelial kazal-type inhibitor (LEKTI) has relatively low expression in
the keratinocytes of AD patients [87]. This decrease might have resulted from the overex-
pression of Yes-associated protein 1 (YAP1), a regulator of the proliferation of epidermal
stem cells [88]. Cheng et al. [89] employed a luciferase reporter assay to approve the
target binding of miR-375-3p with the 3′UTR of YAP1. The miR-375-3p expression was
upregulated six-fold after the transfection of mimics in HaCaT cells. This upregulation
contributed to the inhibition of IL-1β and IL-6, accompanied by a reduction of NF-κ nu-
clear translocation. The cell proliferation was also restrained by miR-375-3p transfection.
miR-1294 has been recognized as a tumor suppressor. The role and regulatory mechanism
of miR-1294 in AD were explored by Yan et al. [90]. In an in vitro 3D skin-equivalent model,
the miR-1294 mimic treatment reduced the thickening of the lamellar bilayer structure stim-
ulated with IFN-γ and TNF-α. The filaggrin level was reduced by IFN-γ and TNF-α was
also recovered by the mimic. The in vivo dinitrochlorobenzene-induced AD-like mouse
model exhibited a reduction of the injury score from three to one after the miR-1294 mimic
treatment. miR-1294 upregulation decreased inflammation and skin barrier destruction by
targeting STAT3 to inhibit NF-κB signaling. The targets and biological mechanisms of the
anti-inflammatory miRNAs used to treat AD are summarized in Table 2.

3.3. Skin Wounds

Commonly observed cutaneous wounds include open wounds, infected wounds,
diabetic wounds, burn wounds, and acne wounds. Wound healing is a complicated
process consisting of four overlapping stages: hemostasis, inflammation, proliferation,
and tissue remodeling. After the occurrence of a skin wound, numerous inflammatory
cells migrate into the wound area to protect against microbial invasion and repair the
damage. The dysregulation of inflammation generates unsuccessful healing, hypertrophic
scarring, and keloids [91]. Appropriate inflammation is important for promoting skin
wound healing. Nevertheless, redundant inflammation responses prompt pathological
damage to wound tissue and delay repair [92]. miRNAs possess a strong potential to
regulate both the induction and resolution of inflammation in skin wound healing [93].
The overexpression of miR-21, miR-29b, miR-106b, and miR-146a has been reported to
accelerate re-epithelialization and reduce excessive scar generation in wound healing [94].
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Contrary to this effect, the downregulation of miR-200c, miR-210, and miR155 is effective in
improving wound healing. Because of the role of regulating inflammation and immunity,
epidermal keratinocytes are the major cells participating in skin wound healing [95]. The re-
epithelialization of the wound area by keratinocyte migration is an essential step of wound
closure. Some miRNAs involved in psoriasis, such as miR-21, miR-31, and miR-203, are also
implicated in keratinocyte migration [96]. Neutrophils are the primary immune cells in the
early inflammatory response during wound repair [97]. The neutrophil-derived miR-142
is required to promote neutrophil migration and increase the ability of the wound site to
resist microbial infection [98]. Macrophages are another type of immune cell governing
the inflammatory phase during wound repair. miR-21 and miR-223 participate in the
regulation of macrophage polarization in cutaneous wounds [99,100]. A clinical trial has
investigated the effect of miR-29 mimics (Remlarsen) on skin wounds [101]. Intradermal
miR-29 mimic injection into the incisional wound site reduced collagen expression and the
development of fibroplasia accompanied by the downregulation of the miR-29 target genes
COL1A1, COL1A2, and COL3A1.

Table 2. The targets and biological mechanisms of anti-inflammatory miRNAs for treating atopic dermatitis.

miRNA
Code Targets Experimental

Models Outcome Reference

ST-
miRCCL22 CCL22

RAW264.7
macrophages and

wild-type mice

Reduction of IgE, IL-4, and
Th17 cells

Yoon et al.
[79]

miR-10a-5p Hyaluronan
synthase 3

Keratinocytes and
patients

Inhibition of keratinocyte
proliferation and

cytokines/chemokines

Vaher et al.
[80]

miR-124
RELA (the

gene name of
p65)

Keratinocytes and
patients

Downregulation of IL-8,
CCL5, and CCL8

Yang et al.
[81]

miR-143 IL-13Rα1 Keratinocytes
Enhancement of the

synthesis of filaggrin,
loricrin, and involucrin

Zeng et al.
[83]

miR-146a IRAK1 and
TRAF6 Keratinocytes

Suppression of
TLR2-induced production

of TNF-α, IL-8, and CCL20.

Meisgen
et al. [85]

miR-146a CARD10 and
IRAK1

Keratinocytes and
wild-type and

miR-146a−/− mice

Alleviation of chronic skin
inflammation through

innate immune response
suppression in
keratinocytes

Rebane
et al. [86]

miR-375-3p YAP1 HaCaT

Inhibition of IL-1β and IL-6
accompanied by a reduction

in NF-κ nuclear
translocation

Cheng et al.
[89]

miR-1294 STAT3
HaCaT, 3D skin
equivalent, and
wild-type mice

Decrease in inflammation
and skin barrier destruction

Chen et al.
[90]

CARD10, caspase recruitment domain family member 10; CCL, chemokine (C-C motif) ligand; IgE, immunoglob-
ulin E; IL, interleukin; IRAK1, IL-1 receptor-associated kinase 1; STAT3, signal transducer and activator of
transcription 3; ST, Salmonella typhimurium; TLR, Toll-like receptor; TNF-α, tumor necrosis factor-α; TRAF6, tumor
necrosis factor receptor-associated factor 6; YAP1, Yes-associated protein 1.

The wound-healing process can be accelerated by treatment with anti-inflammatory
miRNAs. Li et al. [102] signified the potential of miR-23b to inhibit inflammatory reactions
in wound repair. miR-23b agomir transfection into HaCaT showed a wound closure of more
than 90% ten days post-wounding in a scratch wound healing assay. Subcutaneous miR-23b
injections into excisional wounds in mice decreased the immune cell accumulation and
cytokine expression for accelerating healing. α-Smooth-muscle actin (α-SMA) in fibroblasts
can secrete collagen for strengthening the wound [103]. miR-23b can promote the release of
α-SMA in the fiber pattern. miR-23b inhibits inflammation by targeting apoptotic signal-
regulating kinase 1 (ASK1). The miR-31 mimics were effective at enhancing wound healing
via increased keratinocyte migration [104]. A surgical wound was created in healthy
subjects. The basal level of miR-31 in the skin was low, but quickly increased by 1.9-fold
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one day after the injury. The miR-31 expression was continuously upregulated to 7.7-fold
after seven days. miR-31 overexpression was induced using transforming growth factor
(TGF)-β2. Epithelial membrane protein 1 (EMP-1) was the direct target of miR-31 in the
keratinocytes. The in vitro scratch assay indicated that the miR-31 mimic increased the
migration capability of the keratinocytes by 3.6-fold.

miR-34a is a tumor suppressor with the ability to regulate the immune response [105].
An excisional wound was made in mice to check the effect of miR-34a on wound closure [106].
miR-34a was downregulated in the inflammatory stage and returned to the baseline in
the proliferative phase. The miR-34a−/− mice showed impaired healing as compared
with the wild-type animals. The re-epithelialization was faster in the group of wild-type
mice than in the miR-34a-knockout mice (re-epithelialization percentage of 100% versus
10% after seven days). IL-6/STAT3 signaling was essential in the wound healing of the
miR-34a−/− mice. This result indicated the importance of miR-34a in inhibiting the in-
flammation of excisional wounds. Diabetic ulcers in the foot are the main comorbidity
in diabetic patients. The anti-inflammatory property of miRNA could be applicable to
accelerate the healing of diabetic wounds. Ban et al. [107] stated that miR-497 mimics
could reduce the overexpression of TNF-α, IL-1β, and IL-6 in human dermal fibroblasts
under hyperglycemic situations. The therapeutic efficacy of the mimics was investigated by
intradermal injections into wounds in diabetic mice. A faster reduction of the wound area
was observed in the group receiving miR-497 treatment, with healing of 66% as compared
with the negative control group (23%) on day four. The levels of TNF-α, IL-1β, and IL-6
in the injury site decreased by more than 20% compared with the negative control. The
targets and biological mechanisms of the anti-inflammatory miRNAs for cutaneous wound
healing are summarized in Table 3.

Table 3. The targets and biological mechanisms of anti-inflammatory miRNAs for skin wound healing.

miRNA Code Targets Experimental
Models Outcome Reference

miR-23b ASK1 HaCaT and
wild-type mice

Inhibition of cytokines
and enhancement of
α-SMA expression

Li et al.
[102]

miR-31 EMP-1 Keratinocytes and
healthy volunteers

Enhancement of wound
healing via increased

keratinocyte migration

Li et al.
[104]

miR-34a Bcl-2 and
CCND1

Wild-type and
miR-34a−/− mice

miR-34a deficiency
leads to impaired

wound closure

Zhao et al.
[106]

miR-497 AKT2 and
E2F3

Human dermal
fibroblasts and
wild-type mice

Inhibition of cytokines
and acceleration of

diabetic wound healing

Ban et al.
[107]

AKT2, RAC-β serine/threonine-protein kinase; ASK1, apoptotic signal-regulating kinase 1; α-SMA, α-smooth-
muscle actin; Bcl-2, B-cell lymphoma 2; CCND1, cyclin D1; E2F3, E2F transcription factor 3; EMP-1, epithelial
membrane protein 1.

3.4. Other Uses

Hosts with pathogenic infections usually undergo inflammation due to proinflamma-
tory cytokine/chemokine bursts by immune cells [108]. Some anti-inflammatory miRNAs
have the potential to treat microbe-stimulated inflammation in the skin [109]. C. acnes is
reported to represent more than 30% of the facial microbes in acne patients [110]. miR-146a
has been successfully used to repress biofilm-derived C. acnes-triggered inflammation [111].
The overexpression of miR-146a by mimic transfection to keratinocytes showed markedly
reduced TLR2-induced TNF-α, IL-6, and IL-8 expression. The data of the luciferase reporter
assay suggested that miR-146a bound to the 3′UTR of IRAK1 and TRAF6, resulting in the
inhibition of the ERK1/2, NF-κB, and mitogen-activated protein kinase (MAPK) pathways.
Candida species are the most common fungal pathogens evoking skin and system infection.
Dectin-1 is a significant sensor for β-glucan from Candida [112]. Dectin-1 and β-glucan can
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trigger the intracellular transduction pathways of CARD. CARD10 is the direct target of
miR-146a. Du et al. [113] appraised the effect of miR-146a on the inflammation induced
by Candida albicans. The transfection of miR-146a into C. albicans-stimulated THP-1 cells
significantly inhibited Dectin-1-elicited TNF-α and IL-6 production by about two-fold. The
miR-146a mimic inhibited the C. albicans-induced translocation of NF-κB.

Lupus erythematosus is an autoimmune disorder with a wide range of dermatological
manifestations. Lupus erythematosus lesions in the skin share extensive lymphocyte
infiltration with a high predominance of CD4 T cells and cytokines, including TNF-α,
IL-1α, IL-1β, IL-6, and IL-8 [114]. Huang et al. [115] found a correlation between the
increase in Th17 cells and the decrease in miR-590-3p in systemic lupus erythematosus
patients and MRL/lpr mice. miR-590-3p agomir transfection promoted the apoptosis of
Th17 cells by autophagy suppression via direct targeting of autophagy-related 7 (Atg7). The
in vivo treatment of lupus mice using agomir lessened lupus nephritis and the size of skin
lesions. Chronic idiopathic urticaria (CIU) is a polyetiological dermatological inflammation
disorder. A total of 16 miRNAs were found to be differentially expressed in patients with
CIU [116]. Among them, five miRNAs (29c-5p, 361-3p, 2355-3p, 2355-5p, and 4264) were
largely increased in CIU, making them potential biomarkers for diagnosing autoimmune
urticaria. miRNAs are active in the cell regulation of CIU. The CIU patients showed lower
expression of miR-194 and higher thrombospondin 1 (THBS1) as compared with the healthy
control [117]. THBS1 was proven to be the target of miR-194 in the luciferase activity assay
in 293T cells. miR-194 mimics decreased the amount of TNF-α, IL-1β, IL-6, and IL-8 in mast
cells. The mast cell degranulation and histamine release were also lowered by transfection
with the mimic.

4. miRNAs as the Targets to Inhibit Skin Inflammation

Besides the capability of miRNAs to directly block mRNA activity and inhibit in-
flammation, miRNAs can be a target to mediate the anti-inflammatory response [118].
Some chemicals are able to target and modulate miRNAs to attain the aim of inflammation
suppression. It has been proposed that miRNAs could be a group of biological target
molecules for therapeutic intention. The application of compounds that target pri-miRNAs,
pre-miRNAs, miRNA processing, and loading into the RISC structure has potential for
drug design and development. Some bioactive molecules may impact endogenous miRNA
synthesis through downregulation or upregulation, thereby contributing to inflammation
suppression [119]. For instance, resveratrol, from the stilbene group, is considered to
be beneficial for skin health. This polyphenol has been broadly reported as a potential
molecule to treat various skin disorders, including skin cancer, photoaging, allergy, dermati-
tis, melanogenesis, and microbial infections [120]. Wang and Zhang [121] demonstrated the
upregulation of miR-17 by resveratrol for reducing lipopolysaccharide-induced skin inflam-
mation. The resveratrol intervention inhibited the production of TNF-α, IL-6, and IL-8 in the
lipopolysaccharide-activated HaCaT. miR-17 was upregulated three-fold after resveratrol
treatment. miR-17 silencing enhanced the expression of cytokines in the resveratrol-treated
lipopolysaccharide-activated cells. The resveratrol–miR-17 axis was found to stimulate the
phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinases (PI3Ks)/AKT and
mammalian target of rapamycin (mTOR) pathways.

Adalimumab (Humira) is a biological drug used to ameliorate psoriatic inflammation
via TNF inhibition [122]. In a clinical trial of psoriasis patients [123], adalimumab treatment
was found to significantly decrease the psoriasis area and severity score (PASI) and miR-
146a-5p in peripheral blood mononuclear cells (PBMCs). The reduction of the miR-146a-5p
levels was correlated with the improvement of the PASI. miR-146a-5p could be a dynamic
biomarker to predict the therapeutic effectiveness of adalimumab. Ebosin is an exopolysac-
charide isolated from fermentation cultures of Streptomyces sp. 139. This compound could
mitigate lipopolysaccharide-activated inflammation in HaCaT via IκB kinase (IKK)/NF-κB
signaling [124]. Moreover, the PASI score of the imiquimod-treated psoriasiform mice was
decreased from 3 to 1.5 with the application of ebosin. Ebosin reduced inflammation by
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lessening miR-155-3p expression, both in vitro and in vivo. The luciferase activity assay
indicated the direct targeting of TNF alpha-induced protein 3 (TNFAIP3) by miR-155-3p.
Circular RNA (circRNA) is a type of lncRNA. CircRNA has no 5′ or 3′ end, which endows
it with resistance to exonuclease [125]. CircRNA RAB3B, a member of the RAS oncogene
family, has been found to be downregulated in psoriasis [126]. CircRAB3B overexpression
delayed the proliferation and elevated the apoptotic rate of IL-22-stimulated HaCaT [127].
miR-1228-3p was the target of circRAB3B, and this circRNA negatively regulated the expres-
sion of miR-1228-3p in keratinocytes. The luciferase reporter and bioinformatic analyses
showed the direct binding of miR-1228-3p to the 3′UTR of PTEN. The combination of
8-methoxypsoralen and UVA (PUVA) is an effective photochemotherapy used to treat
psoriasis. Chowdhari and Saini [128] detected significant upregulation of has-miR-4516 in
the HaCaT after PUVA application. The transfection of has-miR-4516 mimics decreased
STAT3 and pSTAT3 by 1.5-fold in HaCaT cells. The overexpression of has-miR-4516 raised
the content of apoptotic keratinocytes from 4% to 24%.

Some bioactives are capable of directly modulating the expression of miRNAs for
alleviating inflammatory dermatitis. Berberine is a natural alkaloid derived from Coptis
chinensis. This bioactive compound has been proven to show anti-inflammatory, antioxidant,
anticancer, and hypolipidemic effects [129]. Berberine attenuated ear swelling from 0.48 to
0.33 mm in a mouse model of allergic dermatitis [130]. This treatment also inhibited miR-21
expression, histamine release, and p38 phosphorylation. The result of the miR-21 mimic
transfection in the mast cells indicated that miR-21-mediated suppression in mast cell
degranulation was involved in the anti-inflammatory activity of berberine in dermatitis.

Acupuncture, originating from ancient China, involves inserting needles into the body
to stimulate sensory nerves in the skin and muscles. Electro-acupuncture is an improvement
of traditional acupuncture by the addition of an electrical charge, promoting needle stimula-
tion through electrical impulses [131]. Wang et al. [132] used electro-acupuncture to reduce
the inflammation caused by allergic dermatitis. Treatment with electro-acupuncture at the
ST36 acupoint resulted in the reduction of the ear thickness from 0.3 to 0.2 mm in allergic
dermatitis-like rats. The acupuncture treatment lowered the expression of miR-155 through
the signaling of IL-33 for inhibiting p38 phosphorylation. The rat peritoneal mast cells
transfected with miR-155 mimics abrogated the inhibitory effect of electro-acupuncture
on NF-κB-regulated transcription in response to IL-33. IL-32γ is an anti-inflammatory
cytokine that inhibits skin inflammation [133]. Lee et al. [134] proved that the AD sever-
ity and epidermal thickness of MC903-induced IL-32γ transgenic mice were lower than
those of wild-type animals. The expression of miR-205 was impeded by IL-32γ in the
mouse skin and HaCaT cells. The expression of TNF-α, IL-1β, IL-6, and thymic stromal
lymphopoietin (TSLP) in IFN-γ/TNF-α-activated keratinocytes. Belinostat is a histone
deacetylase inhibitor used for the suppression of hematological and solid malignancies.
It could potentially target miR-335 to restore barrier defects in AD [135]. The luciferase
reporter analysis confirmed the direct binding of miR-335 to SOX6 3′UTR. The miR-335
level was aberrantly lost in the lesional skin of AD patients. In an ex vivo human organ
culture model mimicking the AD phenotype, topical applications of belinostat upregulated
filaggrin and involucrin, the downstream of miR-335. Thus, the barrier function of AD-like
skin could be recovered by this effect.

Cutaneous wound healing can be accelerated by chemicals such as vitamin D and
resveratrol. In addition, some natural extracts are beneficial for treating skin wounds. Ginger
has been proven to resolve the problem of poor wound healing [136]. Al-Rawaf et al. [137]
combined vitamin D and ginger supplements to treat diabetic wounds in rats. The com-
bined treatment in the diabetic wounds accelerated the epithelialization period from 18.8 to
11.3 days. Compared with healthy rats, diabetic rats exhibited greater levels of miR-155
and lower levels of miR-15a and miR-146a. The combined vitamin D and ginger treat-
ment significantly reversed this tendency. Resveratrol has been shown to be favorable for
promoting skin wound repair [138]. Hu et al. [139] discovered the beneficial effect of resver-
atrol on diabetic wounds by raising the expression of extracellular vesicle (EV)-carried
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miRNA-129 derived from mesenchymal stem cells (MSCs). Rat MSCs were isolated and
treated with resveratrol, and the corresponding EVs were isolated to promote skin wound
healing. The size distribution of the EVs ranged between 40 and 150 nm, indicating a nano
size. More than 80% of human umbilical-vein endothelial cells (HUVEC) showed internal
uptake of EVs based on fluorescence microscopy. The use of resveratrol-treated EVs in dia-
betic wounds improved the proliferative and migratory potential of the cells. Resveratrol
promoted wound healing through TRAF downregulation via MSC-EV-carried miR-219.
Curcumin is known to improve diabetic wound repair [140]; however, its low bioavail-
ability and poor aqueous solubility have prevented the clinical application of curcumin.
Huang et al. [141] employed (2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone
(C66), a synthetic analog of curcumin, to resolve these problems. The C66 treatments in
diabetic wounds showed complete closure within 14 days, whereas the non-treatment
control had a low closure rate of 64%. The decreased miR-146a level in the diabetic wound
was upregulated after C66 treatment. The C66 administration also showed pronounced
inhibition of the expression of TNF-α, IL-6, and IL-8. The cell-based study indicated that
C66 reversed NF-κB activation due to the overexpressed miR146a in HUVECs.

Jiang Tang Xiao Ke (JTXK) is a traditional Chinese formula containing extracts of
pueraria, rehmannia, ginseng, and radix salvia miltiorrhizae. This medicine has been
reported to decrease miR-139-5p expression in the pancreatic tissue of diabetic mice [142].
To evaluate the potential of JTXK on S. aureus-infected wound healing, a topical noisome
hydrogel was utilized to load JTXK [143]. The in vivo data supported the decreased
miR-139-5p expression in the infected wound after topical JTXK administration and the
accelerated wound healing rate. Eif4g2, the key downstream mediator of miR-139-5p, was
significantly increased by about two-fold by JTXK treatment. Staphylococcus epidermidis
plays a vital role in controlling the skin inflammation response. Lipoteichoic acid released
from S. epidermidis inhibits C. acnes-mediated inflammation in the skin [144]. Lipoteichoic
acid activated TLR2 to upregulate miR-143. This miRNA, in turn, targeted TLR2 to decrease
the stability of the TLR2 mRNA and then lessen the TLR2 proteins, thus suppressing
the proinflammatory cytokines induced by C. acnes. C. acnes-bearing mice treated with
lipoteichoic acid exhibited decreased erythema and ear swelling as compared with the
control group. UVB irradiation generates skin photoaging by the induction of cell death and
DNA damage. Lee et al. [145] showed the protective activity of troxerutin on UVB-elicited
photoaging in keratinocytes. Troxerutin is a natural flavonoid with anti-inflammatory
and antioxidant characteristics [146]. An eight-hour pretreatment with 5 µM of troxerutin
increased the UVB-irradiated keratinocyte viability by 20%. miRNA gene microarray
analysis showed that 68 miRNAs were modulated after troxerutin treatment of UVB-
exposed keratinocytes. Among them, the miR-205-3p expression was elevated by 4.3-fold,
while miR-483-5p, miR-513b, and miR-3648 were decreased by 16.6-, 23.1-, and 11.6-fold,
respectively. Based on these data, the protective effect of troxerutin could be grouped into
four functions: apoptosis, proliferation, migration, and DNA repair. The miRNA targets
and biological mechanisms of the bioactive molecules for inhibiting skin inflammation in
different skin disease models are summarized in Table 4.

Table 4. miRNAs as the targets of bioactive molecules for inhibiting skin inflammation.

Bioactive
Molecule

Target
miRNAs

Experimental
Models Outcome Reference

Resveratrol miR-17 HaCaT

Resveratrol upregulates
miR-17 for alleviated

lipopolysaccharide-induced
inflammation

Wang and
Zhang [121]

Adalimumab miR-146a-5p Psoriasis
patients

Reduction of miR-146a-5p is
associated with the

improvement of psoriasis

Mensà et al.
[123]

Ebosin miR-155-3p HaCaT and
wild-type mice

Ebosin reduces psoriatic
inflammation through
miR-155-3p/IL-17 axis

Guo et al.
[124]
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Table 4. Cont.

Bioactive
Molecule

Target
miRNAs

Experimental
Models Outcome Reference

CircRAB3B miR-1228-3p HaCaT
CircRAB3B negatively

regulates the expression of
miR-1228-3p

Lu et al. [127]

PUVA hsa-miR-
4516 HaCaT

has-miR-4516 mediates
PUVA-induced apoptosis in

keratinocytes

Chowdhari
and Saini

[128]

Berberine miR-21 Mast cells and
wild-type mice

Berberine mitigates allergic
dermatitis via miRNA/p38

signaling
Li et al. [130]

Electro-
acupuncture miR-155 Mast cells and

wild-type rats

Acupuncture lowered the
expression of miR-155

through the signaling of IL-33

Wang et al.
[132]

IL-32γ miR-205
HaCaT and

wild-type and
IL-32γ

transgenic mice

IL-32γ inhibited AD through
downregulation of miR-205

Lee et al.
[134]

Belinostat miR-335
Keratinocytes

and AD
patients

Liew et al.
[135]

Vitamin D
and ginger

miR-15a,
miR-146a,

and miR-155
Wild-type rats

Combined treatment of
vitamin D and ginger

decreased miR-155 and
increased miR-15a and

miR-146a

Al-Rawaf
et al. [137]

Resveratrol miR-129 HUVEC and
wild-type rats

Resveratrol promoted wound
healing through TRAF

downregulation via
MSC-EV-carried miR-219

Hu et al. [139]

C66 miR-146a HUVEC and
wild-type mice

Decreased miR-146a level in
diabetic wounds was
upregulated after C66

treatment.

Huang et al.
[141]

Jiang Tang
Xiao Ke miR-139-5p

Wild-type and
miR-139−/−

mice

Decreased miR-139-5p
expression in the infected
wound after topical JTXK

administration

Zhang et al.
[143]

Lipoteichoic
acid miR-143

Keratinocytes
and wild-type

mice

Lipoteichoic acid activated
TLR2 to upregulate miR-143 Xia et al. [144]

Troxerutin

miR-205-3p,
miR-483-5p,
miR-513b,

and
miR-3648

HaCaT

miR-205-3p expression was
elevated, while miR-483-5p,

miR-513b, and miR-3648
expressions were decreased

by troxerutin

Lee et al.
[145]

AD, atopic dermatitis; C66, (2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone; HUVEC, human umbil-
ical vein endothelial cell; PUVA, psoralen and ultraviolet A; TLR, Toll-like receptor.

5. Approaches for Improving miRNA Delivery

Topical administration routes provide a direct way to treat skin inflammation. Topical
drug delivery is a noninvasive and convenient strategy for treating cutaneous disorders.
It has the advantages of direct access to the nidus, minimal off-target effects, and the
avoidance of systemic responses [147]. miRNA administration via topical absorption
can be an ideal approach for applying therapies to the skin [96]. However, the intrinsic
barrier function of the stratum corneum, combined with the hydrophilic features of miRNA,
has precluded the successful permeation of miRNA into the skin. Even if miRNA can
penetrate the inflamed skin, miRNA-mediated gene regulation still requires an intracellular
entrance into the target cells. Unfortunately, it is difficult for naked miRNA to permeate
the skin and the cell membrane. A delivery system is, therefore, required for facile miRNA
administration [148]. Effective topical therapies using miRNA require bypassing the skin
barrier and the subsequent miRNA transfection into the target cells. The necessity of using
carriers to enhance miRNA delivery is urgent to achieve extensive application in skin
inflammation treatments.
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Cell-penetrating peptides (CPPs) are one of the strategies for enhancing miRNA pene-
tration into cells and the skin [149]. CPPs are short peptides (<30 amino acids) capable of
translocating themselves into cells and facilitating cargo or CPP/cargo complexes to translo-
cate across the plasma membrane [150]. The skin-permeation of bioactives can be improved
by using CPPs as penetration enhancers [151]. Urgard et al. [152] used the CPP PepFect6
to form a nanocomplex with miR-146a for treating irritant dermatitis. The nanocomplex
exhibited a spherical and homogeneous particle distribution with an average diameter
of 30–50 nm. The facile internalization of the miR-146a mimic/PepFect6 nanocomplex
into the keratinocytes led to the suppression of the direct targets CARD10 (1.8-fold) and
IRAK1 (2.2-fold). In a mouse model of irritant contact dermatitis, the administration of the
nanocomplex increased the miR-146a expression by 1380-fold after 30 h. The ear swelling
was attenuated 2.4-fold after nanocomplex application. Mulholland et al. [153] developed
miRNA-31/CPP nanocarriers within an electrospun nanofiber, with the aim of regenerating
skin wounds. The CPP used in this nanocomplex was CHAT, which is a 15-amino-acid
linear peptide considered useful for enhancing plasmid DNA delivery [154]. The prepared
nanocomplex had a mean size and zeta potential of 74 nm and 9.7 mV, respectively. The
transfection percentage of the nanocomplex to the HaCaT cells was greater than 40%. The
electrospun nanofiber was advantageous for wound healing due to its biocompatibility and
close skin coverage [155]. In vivo, topical treatments of the nanocomplex-loaded electro-
spun nanofiber on the mouse wound increased the epidermal thickness and angiogenesis
as compared with the commercial dressing control.

Nanoparticles are promising delivery systems that could ameliorate the cellular uptake
of miRNA. The use of nanoparticles protects miRNA from degradation and improves
the efficiency of delivery. Zgheib et al. [156] conjugated miR-146a with cerium oxide
nanoparticles for accelerating diabetic wound repair. By scavenging reactive oxygen species
(ROS), this type of nanoparticle could eliminate oxidative stress and regulate the imbalance
between oxidant and antioxidant enzymes in diabetic wounds [157]. The hydrodynamic
diameter of the miR-146a-conjugated nanoparticles was approximately 190 nm. Diabetic
wounds were induced by injecting streptozocin into a pig. After a 10-day application, the
wound surface area of the nanoparticle group (4.8 cm2) was significantly smaller than that
of the control (6.8 cm2). The wound was completely closed on days 14 and 18 after the
nanoparticle and saline treatments, respectively. Niemiec et al. [158] further incorporated
miR-146a-conjugated nanoparticles into silk fibroin to improve diabetic wound repair. Silk
fibroin, composed of biocompatible polymers, is characterized by a strong mechanical
structure and the ability to exhibit strain hardening [159]. In the murine model of diabetic
wounds, the wounds treated with nanoparticle-incorporated nanosilk and saline were
reduced to 31% and 8% of the original size after 13 days, respectively. The human skin
samples treated with nanosilk had increased biomechanical strength (51 N) compared with
the saline control (42 N). The proinflammatories IL-6 and IL-8 in the wound site were also
reduced by the nanosilk application.

Amphipathic bile acid-attached polyethyleneimine (BA-PEI) imparts facile cell mem-
brane permeability by membrane fusion and pore creation [160]. Wang et al. [161] fabricated
BA-PEI nanocarriers to load synthetic miR-21 and accelerate excisional wound healing.
The nanosystem displayed a size of 173 nm with a zeta potential of 27 mV. An 83-fold
increase in miR-21 expression was observed after the treatment with the nanocarriers in
HaCaT compared with the saline control. Subcutaneous injections of the nanocarriers in
the wound sites of the wild-type mice showed a 57% open wound area after eight days,
whereas a 100% open wound area was detected for the group receiving the saline treat-
ment. The nanocarrier-treated wound was fully closed on day 16. There was an open
wound and scar formation in the saline group on day 16. Saleh et al. [162] developed
bioadhesive hydrogels incorporated with miR-223-5p-loaded hyaluronic acid nanopar-
ticles to control macrophage polarization during wound healing. The hydrogels were
composed of gelatin methacryloyl because of its robust attachment to the wound [163].
The miR-223-5p-loaded nanoparticles exhibited a mean diameter of 160 nm and a surface
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charge of −13 mV. The amount of miR-223-5p in the M1 macrophages was increased
by 1541-fold after 24 h of nanoparticle incubation. A murine excisional wound model
demonstrated a greater wound closure percentage due to the nanoparticle-laden hydrogels
(96%) compared with the naked miRNA (67%), hydrogels (61%), and non-treatment control
(45%). The collagen level and epidermal thickness in the wound site were also significantly
increased by the nanoparticle-laden hydrogels. Feng et al. [164] prepared biomimetic re-
constituted high-density lipoprotein nanogels loaded with miR-210 antisense to explore
the anti-inflammatory effect on imiquimod-induced psoriasiform lesions in mice. The
average size of the nanocarriers was about 30 nm. Topical application of the nanogels
significantly reduced the erythema, scales, and immune cell accumulation in the lesions.
The proportion of Th1 and Th17 cells in the lesional skin was decreased by this treatment
and was accompanied by decreased IFN-γ and IL-17A.

Exosomes are membrane-enclosed nanovesicles released by cells into extracellular
spaces or culture mediums for managing cell–cell communication [165]. Genetic materials,
lipids, and proteins are contained inside the exosomes. Because of their biomimetic features
and targeting capabilities, exosomes can be used as nanocarriers for drug delivery [166].
Xia et al. [167] designed an exosome-guided cell technique with miRNA-125b transfection
to elicit cutaneous wound healing. Fibroblast activation to myofibroblasts can alleviate
age-related defects in wound repair. Supplementing wounds with exosomes isolated from
young mouse wound-edge fibroblasts largely improved the myofibroblast abundance
in the aged mice and promoted fibroblast transition to the myofibroblasts, thus acceler-
ating wound closure. The exosomal transfer of miR-125b to the fibroblasts suppressed
sirtuin 7, the direct target of muR-125b, to accelerate myofibroblast differentiation. The
replenishment of miR-125b could be a therapeutic strategy to enhance wound repair. To
prepare the nanocarriers as gene-delivery systems, soluble potato starch was reacted with
a quaternization reagent to produce quaternized starch (Q-starch) [168]. This nanosys-
tem, based on natural polysaccharides, was considered useful as a drug delivery carrier
due to its biodegradability, minimal immunogenicity, and possible receptor-mediated
endocytosis [169]. Lifshiz Zimon et al. [170] assessed the benefits of ultrasound-assisted
miR-197/Q-starch nanocomplexes for improving skin absorption as well as its anti-psoriatic
activity. The ability of low-frequency ultrasound to enhance cell membrane permeability
and skin delivery was elucidated previously [171]. The mean diameter of the nanocomplex
was estimated to be 132 nm, with a zeta potential of 32 mV. The ultrasound-mediated
delivery contributed to the entrance of the nanocomplex to the epidermis, including the
basal cells. The in vivo efficacy of the ultrasound-mediated nanocomplex absorption was
evaluated by the xenograft transplantation of human psoriasis skin to the mice. The patho-
logical score data showed a reduction after the topical application of the nanocomplex in
the presence of ultrasound. The epidermal hyperplasia was also restrained by the combined
ultrasound and nanocarriers. The approaches for improving miRNA delivery into cells
and skin are depicted in Table 5.

Table 5. The approaches for facile delivery of miRNAs into target cells and skin.

miRNA Code Approach Inflammation
Models Outcome Reference

miR-146a CPPs Irritant contact
dermatitis

Facile internalization of
miR-146a/CPP

nanocomplex into
keratinocytes inhibits

inflammation response

Urgard et al.
[152]

miR-31 CPPs Excisional
wound

miRNA-31/CPP
nanocomplex within an
electrospun nanofiber

facilely regenerates wounds

Mulholland
et al. [153]

miR-146a Cerium oxide
nanoparticles

Diabetic
wound

miR-146a-conjugated
nanoparticles correct

wound-healing impairment

Zgheib et al.
[156]
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Table 5. Cont.

miRNA Code Approach Inflammation
Models Outcome Reference

miR-146a
Cerium oxide
nanoparticles
in silk fibroin

Diabetic
wound

Incorporation of
miR-146a-conjugated
nanoparticles into silk
fibroin improves the

diabetic wound repair

Niemiec et al.
[158]

miR-21 BA-PEI
nanoparticles

Excisional
wound

BA-PEI nanoparticles
enhance the effect of miR-21

on wound healing

Wang et al.
[161]

miR-223-5p

Hyaluronic
acid

nanoparticles
in hydrogels

Excisional
wound

Nanoparticle-loaded
hydrogels control

macrophage polarization
during wound healing

Saleh et al.
[162]

miR-210
antisense

Reconstituted
high-density
lipoprotein
nanogels

Psoriasiform
lesion

Topical application of the
nanogels significantly
reduces immune cell

accumulation in lesions

Feng et al.
[164]

miR-125b Exosomes Excisional
wound

Exosomal transfer of
miR-125b to fibroblasts
suppresses sirtuin 7 to

accelerate wound healing

Xia et al.
[167]

miR-197

Ultrasound-
mediated

nanocomplex
delivery

Xenograft
transplanta-

tion
mice

Ultrasound-assisted
delivery enhances
miR-197-loaded

nanocomplex

Lifshiz
Zimon et al.

[170]

BA-PEI, bile acid-attached polyethyleneimine; CPPs, cell-penetrating peptides.

6. Conclusions

The regulation of miRNA expression is a promising and novel therapy for targeting
skin inflammation diseases, such as psoriasis, AD, and cutaneous wounds. The exoge-
nous administration of the anti-inflammatory miRNA mimic is beneficial for inhibiting
proinflammatory mediators, leading to the alleviation of skin inflammation. miRNA-based
anti-inflammatory therapy is also achieved by treatment with bioactive agents that can
modulate the expression of miRNA. In terms of using miRNA treatment for skin diseases,
local administration via the skin could be an efficient approach to achieve satisfactory
availability. Topical delivery of miRNA usually has an incomplete response. This phe-
nomenon is mainly caused by the barrier features of the skin and the target cells. Hence, the
elaboration of delivery carriers that improve skin delivery and cell internalization is impor-
tant. Considering the efficiency of skin penetration and controlled release, the introduction
of nanocarriers could be a potential solution for topical application. Regarding future
applications, effort should be paid to connecting the gap between laboratory investigations
and clinical trials. Most studies on the anti-inflammatory activity of miRNA have been
conducted using cell- and animal-based models, and there have been few clinical studies
until now. The high cost of miRNA synthesis and its questionable stability may hinder the
progress of its application. Although miRNA-based therapies have some limitations, future
approaches aimed at treating cutaneous inflammation in a variety of skin diseases should
be considered.
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