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Abstract 

Objectives:  Traditional brain age estimation methods are based on the idea that uses 
the real age as the training label. However, these methods ignore that there is a devia-
tion between the real age and the brain age due to the accelerated brain aging.

Methods:  This paper considers this deviation and obtains it by maximizing the cor-
relation between the estimated brain age and the class label rather than by minimizing 
the difference between the estimated brain age and the real age. Firstly, set the search 
range of the deviation as the deviation candidates according to the prior knowledge. 
Secondly, use the support vector regression as the age estimation model to minimize 
the difference between the estimated age and the real age plus deviation rather than 
the real age itself. Thirdly, design the fitness function based on the correlation crite-
rion. Fourthly, conduct age estimation on the validation dataset using the trained age 
estimation model, put the estimated age into the fitness function, and obtain the fit-
ness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation 
candidates are involved and get the optimal deviation with maximum fitness values. 
The real age plus the optimal deviation is taken as the brain pathological age.

Results:  The experimental results showed that the separability of the samples was 
apparently improved. For normal control- Alzheimer’s disease (NC-AD), normal control- 
mild cognition impairment (NC-MCI), and mild cognition impairment—Alzheimer’s 
disease (MCI-AD), the average improvements were 0.164 (31.66%), 0.1284 (34.29%), 
and 0.0206 (7.1%), respectively. For NC-MCI-AD, the average improvement was 0.2002 
(50.39%). The estimated brain pathological age could be not only more helpful for the 
classification of AD but also more precisely reflect the accelerated brain aging.

Conclusion:  In conclusion, this paper proposes a new kind of brain age—brain patho-
logical age and offers an estimation method for it that can distinguish different states 
of AD, thereby better reflecting accelerated brain aging. Besides, the brain pathological 
age is most helpful for feature reduction, thereby simplifying the relevant classification 
algorithm.
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Background
Alzheimer’s disease (AD) is a common neurodegenerative  disease. The key for 
prevention and treatment is early diagnosis [1]. Magnetic resonance imaging (MRI) 
is a medical imaging technique used in radiology to visualize the anatomy and the 
physiological processes of the body in both healthy and disease states. It is noninvasive, 
nonradioactive, and highly cost-effective, and it can reflect changes in anatomical 
structures and functions in different biological tissue quantitatively, so it has been 
applied in the early diagnosis of AD with positive results [2, 3]. Research on AD based 
on MRI has been conducted according to the visible changes for diagnosis [4–7]. 
Although research has obtained positive results, the classification accuracy, stability and 
the number of biomarkers are still not sufficient for clinical applications.

Brain MR Images include some changes invisible to the naked eye, such as Aβ plaque 
deposition, asymmetry, age, and so on [8–11]. These changes usually represent more 
essential information about the evolutionary process of AD [12–17]. MRI could be 
helpful for a deeper understanding of the development process of the disease and for 
providing better image biomarkers, thereby realizing better classification accuracy with 
fewer features.

Among these features, brain age is a representative biomarker [16–18]. Pfefferbaum 
et  al. found that the volumes of the major anatomical structures changed as age 
increased. The anatomical structures include gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) [19]. It was found that there are complex relationships between 
changes in the anatomical structures and normal aging [20]. Good et  al. found that a 
linear decrease in GM was predominant in normal aging, as well as a decrease in CSF, 
according to a cross-sectional Voxel-Based Morphometry (VBM) study [20]. In addition, 
local areas of GM decrease with age, and cross-sectional morphometric analysis 
suggested that there are non-linear patterns of neurodegenerative age-related changes in 
GM volume [21]. Cole et al. found that the brain age can reflect the accelerated atrophy 
after traumatic brain injury [22]. Rzezak found that the age-related changes in gray 
matter relate to the education attainment [23]. Duchesne et al. estimated the brain age 
across the life span using MRI technique [24].

There is a strong relationship between age-related changes in the anatomical structures 
and the neurodegenerative diseases, such as Alzheimer’s disease (AD), vascular 
dementia (VD) and schizophrenia [25–27]. Even before the onset of clinical symptoms, 
some anatomical structures begin to undergo accelerating changes, including volume 
decreases compared with normal aging. In other words, the age feature has become 
very important for neurodegenerative diseases, especially AD, so it has received much 
attention until now [20, 21, 26]. Most of the results have been positive and have shown 
the feasibility of early diagnosis. In addition, these results have supported the fact that 
AD is a form of accelerated aging, indicating accelerated brain atrophy [26–29, 36].

Due to the importance of the age feature, some studies of age estimation have been 
conducted using MRI scans in recent years [30–32]. The research has shown that 
it is feasible and effective to noninvasively estimate brain age using MRI scans. Some 
research has further studied how to estimate the brain age on MRI scans in some age-
related diseases, including AD [33–40, 45]. The results have shown that it is feasible to 
estimate age using MRI images. Some of these studies used only NC samples (healthy 
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people) for training age estimation models in order to estimate the distinguishable brain 
age for the diagnosis of AD. The estimated distinguishable brain age could be determined 
in different classes of samples [36–39].

Encouraged by the role of the estimated brain age on diagnosis of AD, the researchers 
further studied the improvements and applications of the brain age estimation method 
[40–46]. Irimia, Andrei et al. combined the structural and connectome information in 
sMRI and DTI images for brain age estimation [40]. Kondo et al. parcellated brain tissues 
into local regions defined by the automated anatomical labeling atlas and extracted 
the features of the local regions for brain age estimation [41]. Nakano et al. conducted 
brain age estimation by using Manifold learning, principal component analysis, and 
multiple regression models [42]. Except from the improved studies above, recently some 
application studies based on the brain age estimation were conducted [43, 44]. Loewe 
et al. further combined estimated brain age and APOE status for classification of AD and 
MCI patients [43]. Luders et al. studied the difference between the estimated brain ages 
of the long-term meditators and the control subjects [44]. The Katja Franke et al. studied 
the effect of the APOE Genotype on individual brain age in normal aging, Mild Cognitive 
impairment, and Alzheimer’s disease. They found that the brain age can be a useful and 
accurate tool for predicting conversion from MCI to AD even if the information of the 
patient’s APOE status is missing [45].

It is worth noting that the studies above were based on the same idea to estimate the 
brain age. The idea was to estimate the brain age by minimizing the difference between 
the estimate age and the real age. Firstly, a regression model was selected to estimate the 
age; the input consisted of the MR image features, and the output is the estimated age. 
Secondly, an error function was designed to train the model such as mean absolute error 
(MAE) which was the difference between the estimate age and the real age. Thirdly, it 
found the best estimated age by minimizing the error.

As to the idea, there are some problems to consider. Firstly, because AD is a type of 
accelerated aging, the deviation between the real age and the brain age changes with 
different states NC, MCI, and AD. Therefore, it is not suitable to use the real age as the 
training label. Secondly, the traditional methods aimed to estimate an age close to the 
real age by minimizing the error function (distance). Because the real age is not suitable 
for the training label, the minimization is meaningless for classification. Thirdly, some 
studies have trained regression models with NC samples and tested people with three 
states (NC MCI AD), indicating that the NC samples contained information about the 
difference between NC, MCI and AD. However, evidence or proof has not been provided 
in these papers. The age estimation was based on regression (machine learning method), 
but the training samples (NC) were quite different from the test samples (NC, MCI, and 
AD). According to machine learning theory, the training process was not reasonable and 
reliable.

Because the fact is that the AD process is a form of accelerated aging, the deviation 
between the real age and estimated brain age should be considered. The training label 
should not be the real age but the real age plus deviation. Because the deviation is 
related to the evolutionary process of AD, it can characterize the three states of AD. 
Therefore, it would be reasonable to determine the suitable deviation by maximizing the 
classification accuracy of the three states of AD. These deviations could quantitatively 
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and directly estimate the extent of accelerated aging, improve the classification ability 
of the estimated age and be helpful for the early diagnosis of AD and for understanding 
neurodegenerative diseases. Because the age deviations are related to the diagnosis of 
AD, the age plus deviation is called the brain pathological age here.

Methods
Subjects/database

In order to validate the algorithm in this paper, the paper selected the publicly accessible 
ADNI database (http://adni.loni.usc.edu/). The samples were chosen with preprocessing 
and feature extraction, while in order to emphasize the role of age and to avoid the 
impact and fluctuation of the multiple features, the samples had only 2 image features 
and had not been processed with feature selection. The two features of the data set were 
the volumes of the left and right parts of the hippocampus. The total number of samples 
in the data set was 1485, consisting of three classes of samples: NC, MCI and AD. The 
number of NC samples was 540, the number of MCI samples was 534, and the number 
of AD samples was 411. The age distribution ranges of the three classes of samples were 
all 65–85 years old. The MRI sequence used is T2 dual echo sequence at 1.5T; the image 
size is about 256× 256× 170 voxels with the voxel size of approximately 1 mm × 1 
mm × 1.2 mm. The image scanner was a GE Medical Systems scanner. With the SPM8 
package and the VBM8 toolbox, two features are extracted from the MRI images, and 
the features are the volumes of left and right hippocampus, thereby obtaining the feature 
data. The feature data is stored with excel format in the ADNI. Since same images 
with different image processing methods will lead to different feature data, thereby 
influencing the comparison of different brain age estimation methods. Hence the feature 
data rather than the relevant images are used for study directly in this manuscript.

To simplify the analysis, the samples were divided into three classes: NC, MCI and 
AD. Moreover, the numbers of the three classes of samples were the same in order to 
eliminate the effects of unbalanced samples. The number of AD samples was 411 or 
less, so the number of different classes of samples was 411. The three classes of samples 
were within similar age distribution ranges of 65–85 years old. To facilitate description, 
the data set is called the “hippocampus dataset” in subsequent sections. Relevant, brief 
information about the hippocampus dataset is shown in Table 1.

The difference between Path_brainAge_estima and BrainAge_estima

BrainAge_estima means the traditional method for brain age, and the Path_brain-
Age_estima means the proposed method for brain age in this paper. The fitness func-
tion of the training model of the BrainAge_estima was the error of estimated age and 
real age,and the algorithm estimated the age by minimizing the error. The purpose was 

Table 1  Basic information about the hippocampus dataset

Class Number Age range (years) Mean age (years) Age standard deviation Men/women

NC 411 65–85 76.092 4.696 185/226

MCI 411 65–85 75.362 7.635 234/177

AD 411 65–85 75.503 7.245 198/223

http://adni.loni.usc.edu/)
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to train the age estimation model to approximate the real age. In this paper, the fitness 
function of the training model of the Path_brainAge_estima was based on the correla-
tion criterion, namely the correlation of the estimated age and the class label. The pro-
posed algorithm estimated the brain age by maximizing this correlation value which 
indirectly reflects the classification capability. Its purpose was to train the age estimation 
model to approximate the optimal classification accuracy. Compared with the Brain-
Age_estima, this Path_brainAge_estima was not only based on the optimization of clas-
sification accuracy but also reflected the fact mentioned in the Introduction section. 
The estimated pathological brain age was more beneficial to improving the classification 
accuracy for the diagnosis of AD (classification of AD).

The fitness functions of the two types of algorithm are briefly described as follows.F1 
is the fitness function of the BrainAge_estima, and F2 is the fitness function of the Path_
brainAge_estima in this paper.

where y is the real age, and ŷ is the age estimated by the regression model.

where ŷ is the age estimated by the regression model, and ylabel is the class label of 
samples.

The Path_brainAge_estima

In this paper, we present an idea for automatically estimating the brain pathological ages 
of subjects with different states of AD using MRI images (scans) for the diagnosis of AD. 
Firstly, the deviation is considered to characterize accelerated aging directly. Secondly, 
the training label is real age plus deviation, so the objective of training the age estimation 
model becomes more reasonable. Thirdly, a fitness function is designed with the 
correlation criterion so that the deviation can contribute to improving the diagnosis of 
AD. As we know, the aim of estimating the brain age is to diagnose AD, so the estimation 
of brain age can be transformed into a maximization problem. Fourthly, the training 
samples include subjects with the three states of AD, so the whole process of estimating 
the brain age not only uses information from NC samples but also information from 
subjects of MCI and AD. The information for training the age estimation model is more 
abundant and helps to improve the quality of the estimated deviation. The real age plus 
the estimated deviation is called the brain pathological age. During optimizing the brain 
age estimation algorithm, different kernel functions and unbalanced/balanced datasets 
are studied to choose the best brain age estimation model.

To verify the performance of this proposed algorithm, subjects from a public dataset 
and cross validation (CV) testing methods were used. The dataset came from a popular 
public dataset of AD-related research: ADNI (Alzheimer’s Disease Neuroimaging 
Initiative, ADNI). In total, data from more than 1200 subjects were included. Two-
class classification experiments (NC-MCI, NC-AD, and MCI-AD) were performed. 
In addition, the three-class classification problem was also considered. Except for the 
classification problems, the deviation was discussed so that the estimated age could show 
strong separability capability for different states of AD. Each experiment was repeated 

(1)F1 = arg[min
(∥

∥ŷ− y
∥

∥

α

)

]

(2)F2 = arg[max
(

corr(ŷ, ylabel)
)

]
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several times to demonstrate the stability, statistical characteristics and significance level 
of the estimated age. Because the traditional age estimation methods for diagnosis of AD 
are based on the same idea, the comparison was not based on one concrete algorithm 
but based on the idea. Therefore, in the experimental part, only one representative 
algorithm in [36] was selected and compared.

To facilitate description, the proposed age estimation idea (algorithm) and estimated 
age are called Path_brainAge_estima and brain pathological age respectively. The 
traditional brain age idea (algorithm) and the estimated age are called BrainAge_estima 
and traditional brain age respectively.

The proposed algorithm in this paper (Path_brainAge_estima) was mainly based on 
a hybrid integrated age deviation selection model, by searching the age deviation to 
maximize the fitness function (2) and to obtain the brain pathological age. It mainly 
included the following parts: (1) the regression model—support vector regression (SVR); 
and (2) a fitness function (evaluation criteria): correlation criterion. Because the brain 
pathological age and real age have a deviation and it changes with the state of AD, the 
deviation is a variable.

For class 1, the deviation is set to w, which ranges from wmin to wmax; the deviation 
for class 2 is set to q, which ranges from qmin to qmax; the deviation for class 3 is set to 
r , which ranges from rmin to rmax,…; the deviation of class n is set to be s, which ranges 
from smin to smax. Assuming that the real age of the i1th samples in class 1 is Age_class1_i1 , 
the i2th sample in class 2 is Age_class2_i2, the i3th sample in class 3 is Age_class3_i3, . . . , 
the inth sample in class n is Age_classn_in, and the training label of the SVR is not 
Age_class1_i1 , Age_class2_i2, Age_class3_i3 . . . , Age_classn_in but Age_class1_i1 + w, Age_class2_i2 + q, 
Age_class3_i3 + r, . . ., Age_classn_in + s, respectively.

Firstly, the samples are divided into a training set, a validation set and a test set ran-
domly. Secondly, the SVR model is trained using the training set based on the current 
combination of deviations: w,’q, r,…, s. Then, the input validation set is inserted into the 
SVR model to obtain the estimated ages to calculate the fitness value based on the fitness 
function.

The deviations w, q, r,…, s are within [wmin,wmax], [qmin, qmax] , [rmin, rmax],…, 
[smin, smax], respectively, and all the candidate deviations belong to the set of  

F2{}
∣

∣

w,q,r,...,s. The F2{}
∣

∣

w,q,r,...,s is defined as follows: 
{

F2 ∈ AF2

∣

∣AF2 : F2
∣

∣

w,q,r,...,s
,w =  

wmin : wmax, q = qmin : qtextmax, r = rtextmin : rmax, . . . , s = smin : smax

}

 .In the set, the 

maximum fitness value F2_max is obtained, and the corresponding optimal deviations are 

wma, qma, rma,…, sma. They are calculated by the following formula:

The main process of the Path_brainAge_estima is described by the following flowchart 
in Fig. 1.

As seen from the flowchart, this Path_brainAge_estima uses the SVR model to esti-
mate brain pathological age and introduces the separability distance criterion to design 

[wma, qma, rma, . . . , sma] = arg
{

F2_max(wma, qma, rma, . . . , sma)
}
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the fitness function. The algorithm fully considers that there are different deviations 
between the real age and brain age in different states of AD. The pseudo-code of this 
algorithm is shown as follows. The process of this algorithm is to calculate the fitness 
value based on a combination of deviations (w, q, r, . . . , s). Therefore, it is necessary to 
repeat the following circles: [wmin,wmax], [qmin, qmax], [rmin, rmax],…, [smin, smax], while 
computing and storing all possible combinations of w, q, r, . . . , s, corresponding to the 
fitness values and the corresponding trained SVR models.

Fig. 1  Flowchart of Path_brainAge_estima
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The pseudo code is described as follows: 

Procedure Brain pathological age estimation
Input: Feature matrix G as a training set, feature matrix H as a verification set, feature matrix T as a test set

Initialization: Current combination of deviations ( ), , ,...,w q r s ;n is the number of the classes of the sample

Process: According to the current combination of deviations ( ), , ,...,w q r s , modify the age labels of the training 

sample G and obtain the new training pairs 1G . The modification is conducted as follows:

For [ ] [ ] [ ] [ ]min max min max min max min max, , , , , ,..., ,w w w q q q r r r s s s∈ ∈ ∈ ∈

( ) ( ) ( ) ( ){ }1
1 1 2 2 3 3G , , , , , ,..., ,n nx y w x y q x y r x y s→ + + + + ;

1G will be sent to the SVR for training, the SVR model is obtained after training;

H SVR→ ,obtain the estimated ages, and calculate and store the fitness value of 2 , , ,...,w q r sF ;

;

if max max max max, , ,...,w w q q r r s s= = = =

Select the maximum value 2 _ maxF from the stored 2 , , ,...w q r sF and its corresponding 

combination of deviations ( ), , ,...,ma ma ma maw q r s and the optimal model optimalSVR

Quit the circle.
end

end

optimalT SVR→ obtain the brain pathological ages of test samples.

Output: The optimal combination of deviations ( ), , ,...,ma ma ma maw q r s and the brain pathological ages of the test 

samples.

Support vector regression (SVR)

Support Vector Machine (SVM) is a highly efficient type of machine learning algorithm 
described by Vapnik. SVR is the regression variation of SVM with outstanding nonlinear 
mapping performance [47]. The purpose of SVR is to determine the plane that can accu-
rately predict the distribution of the data. If the problem is linear, the equation for the 
hyperplane is provided by expression (3):

where �∗ and b∗ are Lagrange multipliers.
If the problem is nonlinear, there are two methods to obtain a linear case. The first idea 

is that the data are projected in a space with a greater dimension; the other idea is the 
introduction of a kernel function. The SVR is used here for its robustness against noise 
and the possibility of processing data that are nonlinear. In this paper, the outputs of 
SVR are the estimated ages.

Fitness function based on dependency criterion

Correlation quantifies the relationship between features in order to identify feature 
candidates that may be the best to achieve desired effects [48, 49]. Linear correlation 
methods are robust and computationally efficient, but only detect the linear correlations. 
Nonlinear correlation methods can detect nonlinear correlations, but require careful 

(3)f (x) = 1

n

n
∑

i=1

�
∗
i yi�x | xi� + b∗
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parameterization. Nonlinear correlations can also be quantified by regression validation 
errors. Correlations do not imply causality, so correlation analysis may reveal false cor-
relations. If the underlying features are known, the spurious correlation can be handled 
in a partially correlated way. Suppose that the covariance matrix Ϲ of a data set X ⊂ RF, 
where each matrix element cij denotes the covariance between the features x(i) and x(j),  
i, j = 1,…, p.

If cij is positive, then there is a strong positive dependency between x(i) and x(j), i.e. 
high values of x(i) coincide with high values of x(j), and low values of x(i) coincide with 
low values of x(j). If cij is negative, then there is a strong negative dependency, i.e. high 
values of x(i) coincide with low values of x(j) and vice versa. If cij is close to zero, then 
there is a weak dependency between x(i) and x(j). If a feature is multiplied by a constant 
factor α, then the covariance between this feature and any other feature will also increase 
by a factor α, although we do not expect this feature to make more useful contributions 
to data analysis. The correlation coefficient compensates the effect of constant scaling by 
dividing the covariance by the product of the standard deviations of both features.

The standard deviations are the square roots of the variances, i.e. the square roots of 
the diagonal elements of the covariance matrix, s(i) = √

cii, so the correlation matrix can 
be directly computed from the covariance matrix.

where sij ∈ [−1,1]. If sij ≈ 1 then there is a strong positive correlation between x(i) and 
x(j). If sij ≈ −1, then there is a strong negative correlation. If sij ≈ 0 then x(i) and x(j) are 
(almost) independent, so correlation can be interpreted as the opposite of independence. 
Notice that for μ–σ—standardized data, covariance and correlation are equal.

This paper designed correlation criteria as fitness functions. Select the correlation 
between the predicted age of the validation set and the category label as the fitness value. 
The fitness function of the expression is:

(4)Cij =
1

n− 1

n
∑

k−1

(

x
(i)
k − x(i)

)(

x
(j)
k − x(j)

)

(5)sij =
cij

s(i)s(j)

(6)
sij =

∑n
k=1

(

x
(i)
k − x(i)

)(

x
(j)
k − x(j)

)

√

(

∑n
k=1 (x

(i)
k − x(i))2

)(

∑n
k=1 (x

(j)
k − x(j))2

)

(7)
sij =

∑n
k=1 x

(i)
k x

(j)
k − nx(i)x(j)

√

(

∑n
k=1 (x

(i)
k )2 − n(x(i))2

)(

∑n
k=1 (x

(j)
k )2 − n(x(j))2

)

(8)sij =
cij√
ciicjj

(9)� = corr(ŷ, ylabel) = si,j
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where λ is fitness value, ŷ is the estimated brain age and ylabel is the categories of samples.

Experimental conditions

In order to demonstrate the advantages of this proposed brain pathological age estima-
tion algorithm, two fitness functions were used: �1 and �2. A two-class experiment and 
three-class experiment were conducted, which were NC-AD, NC-MCI, MCI-AD and 
NC-MCI-AD. The samples were randomly divided into a training set, a validation set 
and a test set 100 times, yielding 100 groups of samples.

In  this  paper,  the  experimental  operating  system  platform  was  the  Windows,  ver-
sion  7  ,  64-bit  operating  system, and  the  memory  size  was  128  GB.  The  algo-
rithm was implemented in MATLAB, version 2014a. Because the Path_brainAge_estima 
is different from the traditional age estimation idea (BrainAge_estima) rather than a 
concrete algorithm, only one representative algorithm based on the traditional idea [36] 
was selected, realized and compared with the Path_brainAge_estima (the proposed algo-
rithm). The kernel functions of SVR include linear kernel, Polynomial kernel and Gauss-
ian kernel; the parameters are set with default values.

Results
Estimation of brain pathological age

Study of kernel function of SVR

For the two classes of samples, the range of age deviation is set according to prior knowl-
edge. The deviation is usually within 10 years or so. Therefore, [wmin,wmax] = [−10, 10],  
[qmin, qmax] = [−10, 10]. In order to compare the results of different kernel functions, 
the experiment was repeated 10 times with different kernel functions respectively for 
NC-AD, and kernels’ parameters are the default. The average results about age detection 
(w, q) are shown in Table 2.

From Table 2, for NC-AD, it can be seen the average values of w were always less than 
q, but the difference between the w and q obtained by the linear kernel function was the 
largest in the three kernel functions. The average values of w was −5.1 and the average 
values of q was 7 with linear kernel function, respectively. w was usually less than zero, 
and q was normally greater than zero. So the pathological age obtained by the linear ker-
nel function could distinguish between healthy people and AD patients best.

The age estimation was based on the training samples and validation samples. The 
training samples were used for training the age estimation model. The validation sam-
ples were used to calculate the fitness value of the deviation candidate and to determine 
the optimal brain pathological age and the optimal age estimation model. To further 
verify the performance of the optimal age estimation model, it is necessary to apply the 
model to the test samples.

Table 2  Results about age detection w,q with different kernel functions for NC-AD

Experiment methods Polynomial kernel Gaussian kernel Linear kernel
Mean Mean Mean

Without age detection (0, 0) (0, 0) (0, 0)

Path_brainAge_estima (w, q) (−2.5, 4.1) (−5.3, 3) (−5.1, 7)

Significant difference (P value) (0.255, 0.0285) (0.0262, 0.0714) (0.0211, 0.0005)



Page 11 of 20Li et al. BioMed Eng OnLine  (2017) 16:50 

In this section, experiments about NC-AD with different kernel functions are con-
ducted. The correlation coefficient is used as dependency criterion here. As discussed 
above, the values based on the dependency criterion can detect the correlation of the 
test samples better, which in turn can improve classification accuracy indirectly. If the 
correlation value is large, then classification accuracy is high accordingly. The mean and 
standard deviation of the correlation values obtained by different kernel functions are 
shown in Table 3.

From Table 3, for different kernel functions, the Path_brainAge_estima showed better 
correlation than the case ‘without age estimation’, which indicate that real age alone was 
not sufficient, In addition, our algorithm had better correlation (see the boldface type) 
than the current popular idea (BrainAge_estima). For normal control- Alzheimer’s dis-
ease (NC-AD), normal control- mild cognition impairment (NC-MCI), and mild cogni-
tion impairment—Alzheimer’s disease (MCI-AD), the average improvements were 0.164 
(31.66%), 0.1284 (34.29%), and 0.0206 (7.1%), respectively.

The improvements are apparent, especially with linear kernel function. It can be found 
that the mean of fitness value with linear kernel was the largest for the three kernel func-
tions. It showed that the brain pathological age from our algorithm with linear kernel 
function was more helpful for the classification of AD. Therefore, it is applied for the 
subsequent experiments.

Estimation of brain pathological age

For the two classes of samples, experiments about NC-MCI and MCI-AD were also 
conducted for 10 times respectively; the range of the deviation was set as the same as 
NC-AD; the average results about age detection (w, q) are shown in Table 4. Considering 
the time cost, for three classes of samples, the range of age deviation was set as follows: 
[

wmin ,wmax

]

= [−8, 8], [qmin, qmax] = [−8, 8], [rmin, rmax] = [−8, 8]. The same experiment 
was repeated 10 times. The average results for the age estimation of (w, q, r) are shown in 
Table 5.

Table 3  Comparison of  brain age with  different kernel functions for  NC-AD (correlation 
coefficient)

Polynomial kernel Gaussian kernel Linear kernel

Mean Std Mean Std Mean Std

Without age estimation (w = 0, q = 0) 0.059 0.0363 0.0592 0.0363 0.0592 0.0363

BrainAge_estima 0.558 0.0179 0.6746 0.0230 0.518 0.2354

Path_brainAge_estima 0.625 0.0181 0.6785 0.0243 0.682 0.0235

Table 4  Results for age detection w,q

Experiment methods NC-AD (w, q) NC-MCI (w, q) MCI-AD (w, q)
Mean Mean Mean

Without age estimation (0, 0) (0, 0) (0, 0)

Path_brainAge_estima ( −5.1, 7) ( −3.9, 0.7) (−2.2, 2.4)

Significant difference (P value) (0.0211, <0.001) (0.0797, 0.7797) (0.2645, 0.21)
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From Table  4, for NC-AD, it can be seen the average values of w was −5.1 and the 
average values of q was 7, respectively. w was always less than q. In addition, it was also 
found that w was usually less than zero, and q was normally greater than zero. There 
was a difference between healthy people’s pathological age and AD patients’ pathologi-
cal age. In other words, the pathological age could distinguish between healthy people 
and AD patients while the real age could not. In order to show the significant difference 
between the pathological age and the real age, p-values are computed. According to the 
p-values, two of the estimated pathological ages were significantly different from the real 
age (p < 0.05) significantly. The case was similar with NC-MCI and MCI-AD, and w was 
always less than q (see Fig. 2).

From Table  5, for the three classes of samples (NC-MCI-AD), it could be seen that 
the average value of w was −4, q was −0.7, and r was 2.7, and they meet the inequal-
ity constraints w < q < r. The results showed that the deviation for healthy people (NC) 
was usually lower than that for the MCI subject, and the latter is lower than that for AD 
patients. In other words, the deviation between the pathological age and the real age 
could distinguish NC, MCI and AD, while the single real age could not. Please see Fig. 3 
for more information.

Verification of effectiveness of the estimated brain pathological age

In this section, the two-class and three-class problems are carried out. They are NC-
MCI, MCI-AD, and NC-MCI-AD. As the same as Table 3, the mean and standard devia-
tion of the correlation values are shown in Tables 6 and 7 for the two-class problem and 
three-class problem.

Fig. 2  Averages values of w , q in the two-class problem. w is the deviation between the real age and the 
brain pathological age of the class 1 samples. q is the deviation between the real age and the brain patho-
logical age of the class 2 samples

Table 5  Results for age detection w,q, r

Methods NC-MCI-AD (w, q, r) mean

Without age estimation (0, 0, 0)

Path_brainAge_estima (−4, − 0.7, 2.7)

Significant difference (P value) (0.0119, 0.6188, 0.1535)
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From Table 6 above, for the cases of NC-AD, NC-MCI and MCI-AD, the Path_brain-
Age_estima showed better correlation than the case ‘without age estimation’, which 
indicate that real age alone was not sufficient, so it was necessary to estimate the brain 
age. In addition, our algorithm had better correlation value (see the boldface type) than 
the other algorithms. It showed that the pathological age from our algorithm was more 
helpful for the classification of AD. According to the case ‘without age estimation’, 
Path_brainAge_estima and BrainAge_estima showed apparent improvements, but these 
improvements were different with the two-class problems. For NC-AD, the improve-
ment was most apparent, possibly because NC is quite different from AD. According to 
the standard deviation, our algorithm was better than the BrainAge_estima, indicating 

Fig. 3  Averages of w , q and r  in the three-class problem. w is the deviation between the real age and the 
brain pathological age of the class 1 samples. q is the deviation between the real age and the brain patho-
logical age of the class 2 samples. r  is the deviation between the real age and the brain pathological age of 
the class 3 samples

Table 6  Comparison of brain age for two types of sample (correlation coefficient)

NC-AD NC-MCI MCI-AD

Mean Std Mean Std Mean Std

Without age estimation (w = 0, q = 0) 0.059 0.0363 0.071 0.0412 0.035 0.0257

BrainAge_estima 0.518 0.2354 0.3744 0.1909 0.29 0.0681

Path_brainAge_estima 0.682 0.0235 0.5028 0.0403 0.3106 0.0569

Table 7  Comparison of brain age for the three classes of sample (correlation coefficient)

NC-MCI-AD

Different methods Fitness value

Mean Std

Without age estimation (w = 0, q = 0, r = 0) 0.0449 0.0277

BrainAge_estima 0.3973 0.1822

Path_brainAge_estima 0.5975 0.0232
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that our algorithm was more stable than the traditional age estimation algorithm. For 
MCI-AD, all the correlation values are lower than 0.5, it means that the correlation is not 
strong enough. The possible first reason is that the difference between MCI and AD are 
small and they are difficult to be separated. The possible second reason is that the step 
size for the brain pathological age estimation is not small enough and the search range of 
the brain age deviationmay not be appropriate.

The case is similar to that in Table 7. From the Tables above, for the cases of NC-MCI-
AD, the BrainAge_estima had better correlation than the case ‘without age estimation’, 
indicating that real age alone was not sufficient and that it was necessary to estimate 
the brain age. In addition, our algorithm had better correlation (see the boldface type) 
than the traditional age estimation algorithm, demonstrating that the brain pathological 
age from our algorithm was more helpful to the classification of AD. According to the 
case ‘without age estimation’, BrainAge_estima and Path_brainAge_estima had apparent 
improvements. The difference between healthy people and AD patients was amplified as 
much as possible. Nevertheless, our algorithm still had the best correlation. According 

Fig. 4  Correlation of test samples based on estimated brain age by different methods. (1) two class; (2) three 
class
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to the standard deviation, our algorithm was better than BrainAge_estima, indicating 
that our algorithm was more stable than the traditional age estimation algorithm.

Figure 4 is a graphical representation of Tables 6 and 7, showing that the correlation 
value with these algorithms had a trend of gradual increase.

As the data analysis above, the brain pathological age has highest correlation values 
with the class label, thereby having best classification capability. In other words, the 
brain pathological age has highest dependency with the class label. According to the 
principle of feature optimization, a good feature subset has two characteristics: high 
classification capability and small feature size. The high dependency with the class label 
can support the high classification capability indirectly. In this section, let us study the 
dependency of the brain age with the MR features. The high dependency can support 
the high redundancy, thereby being helpful for reducing the feature size. Table 8 shows 
the dependency of the brain age with the class label and the MR features. ‘CwC’ means 
correlation of age with class label; ‘ACwF’ means average correlation of age with MR fea-
tures; ‘CwF1’ means the correlation of age with 1st feature; ‘CwF2’ means the correlation 
of age with 2nd feature. Each data is with format of mean and stand deviation of the cor-
relation value.

Seen from Table  8, the brain age is helpful for improving the dependency with the 
class label. The brain pathological age obtains highest correlation (dependency) with the 
class label. It means that the brain pathological age is most helpful for classification of 
AD. For example, for CwC of NC_MCI_AD, the correlation of the real age with the class 
label is 0.045, the correlation of the traditional brain age with the class label is 0.397, 
and the correlation of the brain pathological age with the class label is 0.598. The case is 
similar as NC_AD, NC_MCI and MCI_AD. More important, the correlation of the brain 

Table 8  Correaltion of brain age with class label and MR features

Correlation Without age estimation BrainAge_estima Path_brainAge_estima

NC_AD

 CwC 0.059, 0.0363 0.518, 0.2354 0.682, 0.0235

 ACwF 0.167, 0.0460 0.735, 0.3411 0.965, 0.0331

 CwF1 0.166, 0.0456 0.736, 0.3398 0.994, 0.0053

 CwF2 0.169, 0.0487 0.735, 0.3609 0.936, 0.0195

NC_MCI

 CwC 0.071, 0.0412 0.3744, 0.1909 0.5028, 0.0403

 ACwF 0.109, 0.0398 0.777, 0.3007 0.959, 0.0322

 CwF1 0.108, 0.0378 0.766, 0.3046 0.986, 0.0121

 CwF2 0.111, 0.0436 0.788, 0.3128 0.932, 0.0203

MCI_AD

 CwC 0.035, 0.0257 0.29, 0.0681 0.311, 0.0569

 ACwF 0.186, 0.0338 0.854, 0.1970 0.929, 0.0799

 CwF1 0.186, 0.0280 0.828, 0.2483 0.981, 0.0175

 CwF2 0.186, 0.0404 0.879, 0.1372 0.877, 0.0844

NC_MCI_AD

 CwC 0.045, 0.0277 0.397, 0.1822 0.598, 0.0232

 ACwF 0.141, 0.0284 0.691, 0.2917 0.961, 0.0342

 CwF1 0.139, 0.0213 0.615, 0.3093 0.992, 0.0048

 CwF2 0.143, 0.0352 0.766, 0.2670 0.929, 0.0166
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pathological age with the MR features (redundancy) is highest. It means the brain patho-
logical age is most helpful for feature reduction, thereby reducing the complexity of the 
classification model. For example, for ACwF of NC_MCI_AD, the correlation of the real 
age with the MR features is 0.141, the correlation of the traditional brain age with the 
MR features is 0.691, and the correlation of the brain pathological age with the MR fea-
tures is 0.961. The case is similar as NC_AD, NC_MCI and MCI_AD.

Discussion
The estimated brain age, based on MRI images using different methods, can distinguish 
the different states of AD, and it is helpful for improving classification accuracy. Some 
methods use all classes of samples for training, while others use only normal people 
(NC) for training, but all of them are based on the same idea. The idea is to estimate the 
age by minimizing the distance between the estimated age and the real age. This idea is 
not in accordance with the fact that AD process is a form of accelerated aging.

This paper solved this problem based on brain pathological age by maximizing the 
classification accuracy of AD. Firstly, the samples are divided into three sets: training set, 
validation set and test set. Secondly, age deviation is introduced. Thirdly, the depend-
ency criterion of correlation is used as fitness function. Fourthly, based on the age devia-
tion candidate and the training set, the SVR is trained; the corresponding fitness value is 
obtained based on the validation set. Fifthly, the age deviation is optimized by maximiz-
ing the fitness value and the age deviation candidate with best fitness value is the optimal 
age deviation. The real age plus the optimal age deviation is called the brain pathological 
age.

The popular regression method SVR is used as age estimation model. Several kernel 
functions and dependency criterion are compared in the case of NC_AD. Based on the 
experimental results, we can find that the age deviation of NC is lower than that of AD. 
The results demonstrate that the proposed idea works better. The results quantitatively 
prove the fact that the AD process is a form of accelerated aging. The difference between 
the age deviation of NC and AD is largest in the case of linear kernel function. The 
results mean that the linear kernel function is most helpful for maximizing the classifica-
tion accuracy of NC_AD and is used for subsequent age estimation. The possible reason 
why the linear kernel function is best is that the kernel function is most suitable for the 
data. According to correlation values of different kernel functions, the brain pathological 
age by the proposed algorithm is best. The results show that the proposed age estimation 
idea is best. Based on the SVR with linear kernel function and the dependency criterion, 
the proposed age estimation algorithm is applied for cases of NC-AD, NC-MCI, MCI-
AD, and NC-MCI-AD. According to the estimated brain age deviations, the accelerating 
aging is quantitatively calculated. The age deviation of NC is lower that of MCI, the lat-
ter is lower than that of AD. In order to show the advantage of the proposed algorithm, 
the correlation values are calculated in terms of different age types. The correlation value 
of brain age by existing age estimation method is better than that by real age; the results 
mean that the brain age estimation is very necessary. The correlation value of brain age 
by the proposed age estimation algorithm is better than that by existing age estimation 
method; the results mean that the propose age estimation algorithm is better than the 
existing brain age estimation method in terms of classification of AD. The reason is in 
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that the age deviations by the proposed brain age estimation algorithm are in accordance 
with the fact that the AD process is a form of accelerated aging.

Based on the estimated brain ages, the differences between the samples belonging to 
different classes are calculated. According to the results, the differences by the proposed 
algorithm not only vary monotonously but also can distinguish the different states of 
AD. The bar graphs also support this point. The results once again show that the brain 
pathological age can quantitatively measure the extent of the accelerated aging in the AD 
process.

The correlation of the brain pathological age and the traditional brain age with the 
class label and the MR features are studied respectively. The experimental results show 
that the brain pathological age is most helpful for classification of AD and feature 
reduction.

At present,all the existing brain age estimation methods are based on same brain age 
idea which is to minimize the error between the predicted age and the actual age,while 
is inconsistent with the process of accelerating brain age of AD. In this paper, a new 
brain age estimation idea (brain pathological age estimation) is proposed and it is quite 
different from the existing brain age idea. According to the experimental results, for 
same public feature data, the brain pathological age has higher classification accuracy 
and can be better helpful for reducing feature size than the existing brain age. The most 
advantage of the proposed algorithm is that it can improve the accuracy of classification 
and effectively reduce the feature size. The most limitation of it is that when the number 
of features is too large and the step size of search brain age deviation is very small, 
the time cost of the brain pathological age estimation will become high. The potential 
significance of the algorithm is that this paper proposed a new brain pathological age 
estimation idea rather than a concrete method, thereby obtaining a new and better 
brain age type (biomarker). Since there is a new idea, it will lead to many different 
new concrete methods by introducing different algorithms such as different regression 
models, optimization algorithms, classification criteria, and so on.

Highlights
This paper proposed a new kind of brain age-brain pathological age and realized a 
concrete method for estimating it which is helpful for diagnosis of AD. The main 
contributions of this paper can be described as follows.

(1)	 The current age estimation methods for the diagnosis of AD are based on the same 
idea. This paper proposed a new idea to replace it rather than proposed a new con-
crete method.

(2)	 This proposed idea considers the deviation directly so that it can help to distinguish 
the different states of AD, thereby estimating the extent of accelerated aging. The 
age estimation was conducted by maximizing classification accuracy rather than by 
minimizing the distance between the estimated age and the real age, thus make the 
estimation helpful for the diagnosis of AD.

(3)	 This idea uses the real age plus deviation as the training label rather than the real 
age, thereby making the training process more reasonable for the classification of 
AD.
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(4)	 Two states and three states of AD were involved at the same time for brain age esti-
mation in this paper.

(5)	 Dependency criterion of correlation was used for algorithm design and for the veri-
fication of the quality of the estimated age. The criterion is a kind of measurement 
index of classification capability. It has low computational complexity and good 
generalization capability, so that the brain pathological age can be widely applied in 
the different individuals from different areas.

(6)	 The brain pathological age is most helpful for feature reduction, thereby reducing 
the complexity of the classification model.

Conclusions
Real age has been proven to be related to the classification of AD, but it has poor 
and unsatisfactory classification capability. From brain MR images, the existing age 
estimation methods can offer an estimated brain age for classification of AD. But the 
age estimation methods are based on the same idea, which is to estimate the age by 
minimizing the distance between the estimated age and the real age. The idea is not in 
accordance with the AD process. Based on the limitations, this paper proposed a new 
brain age estimation idea-brain pathological age estimation idea. The experimental 
results showed that the estimated brain pathological age could reflect the differences 
between the real age and the brain pathological age at a significant level. The difference 
could distinguish the different states of AD and was more helpful for the classification 
of AD, reflecting the extent of accelerated aging better than the traditional brain age 
estimation idea. Besides, the brain pathological age is most helpful for feature reduction 
for subsequent classification model.
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