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Development of a prediction 
score for in‑hospital mortality 
in COVID‑19 patients with acute 
kidney injury: a machine learning 
approach
Daniela Ponce  1,4*, Luís Gustavo Modelli de Andrade  1,4, Rolando Claure‑Del Granado  2,4, 
Alejandro Ferreiro‑Fuentes3,4 & Raul Lombardi  3,4

Acute kidney injury (AKI) is frequently associated with COVID-19 and it is considered an indicator of 
disease severity. This study aimed to develop a prognostic score for predicting in-hospital mortality 
in COVID-19 patients with AKI (AKI-COV score). This was a cross-sectional multicentre prospective 
cohort study in the Latin America AKI COVID-19 Registry. A total of 870 COVID-19 patients with 
AKI defined according to the KDIGO were included between 1 May 2020 and 31 December 2020. We 
evaluated four categories of predictor variables that were available at the time of the diagnosis of AKI: 
(1) demographic data; (2) comorbidities and conditions at admission; (3) laboratory exams within 24 h; 
and (4) characteristics and causes of AKI. We used a machine learning approach to fit models in the 
training set using tenfold cross-validation and validated the accuracy using the area under the receiver 
operating characteristic curve (AUC-ROC). The coefficients of the best model (Elastic Net) were used to 
build the predictive AKI-COV score. The AKI-COV score had an AUC-ROC of 0.823 (95% CI 0.761–0.885) 
in the validation cohort. The use of the AKI-COV score may assist healthcare workers in identifying 
hospitalized COVID-19 patients with AKI that may require more intensive monitoring and can be used 
for resource allocation.

The coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), has rapidly spread globally. America has been the epicentre of the COVID-19 pandemic for the 
past few months, and Brazil has the third highest total number of COVID-19 cases worldwide and the second 
highest number of deaths. The impact of COVID-19 has been devastating on Latin America, with all regions 
and all states being affected1,2. As of 1 March 2021, there are over 20 million confirmed cases and 650,000 deaths, 
and these figures are probably underestimated3.

The estimated incidence of acute kidney injury (AKI) among patients hospitalized for COVID-19 varies 
between studies, ranging from 0.5% to as high as 60%4–6. A Brazilian study was published recently and showed 
an overall AKI incidence of 50%. Among intensive care unit (ICU) patients, AKI occurred in 77.3% and the 
mortality was 65.4%7.

Many studies have shown that COVID-19 patients who developed AKI had an increased mortality risk4–8. A 
recent study of 5,449 individuals admitted to hospitals across New York found that 35% of patients who developed 
AKI died, with an adjusted odds ratio (OR) of 9.66.

It is important to provide an accurate estimation of mortality in COVID-19 patients with AKI and to explore 
the differences in these estimations. This approach will improve treatment strategies and facilitate healthcare 
planning.
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Predictive scores have been developed to assist with risk stratification in patients with AKI or COVID-199–12. 
Additionally, the predictive models could be particularly useful in supporting the process of decision-making 
regarding which patient needs urgent assessment.

To date, there is no predictive score for assessing the risk of death in COVID-19 patients with AKI. The pre-
sent study aimed to develop and validate a prognostic model for AKI associated with COVID-19 patients using 
data from the Latin America COVID-AKI Registry13.

Patients and methods
This study is part of the Latin America COVID-AKI Registry, an observational, prospective, longitudinal, multi-
national registry that includes COVID-19 patients with AKI in Latin America13. An open invitation to participate 
was made through the webpage of the Latin American Society of Nephrology and Hypertension (SLANH), the 
Regional and National Societies of Nephrology and by personal email to members of RedIRA (an educational tool 
of SLANH). Participation in the registry was voluntary, without any incentive or economic benefit for patients 
or investigators. The Latin America AKI COVID-19 Registry has been conducted in 57 cities in 12 countries 
from Latin America (60% of the countries in Latin America).

Bioethical considerations.  The Institutional Review Board of the Clínica Los Olivos, Cochabamba, Bolivia 
(contact Dr Esdenka Vega, administracion@clinicalosolivos.com), approved the study. The informed consent 
was waived due to the observational characteristic of the study by the Review Board of the Clínica Los Olivos. The 
protocol and forms are available on the study’s website (https://​slanh.​net/​regis​tro-​latin​oamer​icano-​ira-​covid-​
19/). Confidentiality of information was appropriately protected by the de-identification of data. No personal 
data from the patients were included in the form. All methods were performed in accordance with the relevant 
guidelines and regulations of the Review Board of the Clínica Los Olivos.

Inclusion criteria were patients aged more than 18 years with SARS-CoV-2 infection confirmed by RT-PCR of 
nasopharyngeal swabs and acute kidney injury (AKI) from 1 May 2020 to 31 December 2020. Exclusion criteria 
were patients with CKD stage 5, on dialysis or with a transplant.

Data collection.  Data were obtained from the clinical record and were entered online in a SurveyMonkey® 
platform specifically designed for this purpose (https://​es.​surve​ymonk​ey.​com/r/​L6PVM​GQ).

The data collection sheet had the following variables: (1) country and city of residence, demographic data; 
(2) comorbidities and condition at admission; (3) laboratory values at admission; (4) characteristics and aetiol-
ogy of AKI; (5) ICU admission, mechanical ventilation (MV) and in-hospital complications; and (6) condition 
at discharge.

Definitions.  AKI was identified according to the KDIGO and defined by an increase in serum creatinine 
(SCr) level ≥ 0.3 mg/dl within 48 h or by 50% within 7 days. AKI was considered community-acquired (CA-AKI) 
when it was present at admission or within 48 h of hospital admission. AKI was considered hospital-acquired 
(HA-AKI) when it developed greater than 48 h into the hospital stay14.

In cases with no pre-admission Scr level, we assumed its value at admission or within the first 24 h in a patient 
without chronic kidney disease (CKD)15,16.

Condition at admission to the hospital was classified into three categories: mild, if the patient was admitted 
to a conventional ward without need for oxygen therapy; moderate, if the patient needed oxygen therapy; and 
severe, when admission to the intensive care unit (ICU) was required.

The study followed the guidelines of the transparent reporting of a multivariable prediction model for indi-
vidual prognosis or diagnosis (TRIPOD)17.

Predictor variables.  We evaluated the predictors available at the time of COVID-19 diagnosis that were 
related to four categories: (1) demographic data; (2) comorbidities and condition at admission; (3) laboratory 
examinations within 24 h; and (4) aetiology of AKI (Supplementary Material Table 1). The laboratory examina-
tions and haemodynamic parameters were collected within 24 h of admission. The comorbidities evaluated were 
diabetes, obesity, hypertension, lung disease, neoplasia, liver disease, autoimmune disease, cardiovascular dis-
ease, and smoking. We also evaluated the time from COVID-19 symptoms to hospitalization and the time from 
hospitalization to AKI. The aetiology of AKI was determined by the attending nephrologists using a diagnostic 
workup that included medical history, clinical examination, renal ultrasound, urinalysis, and blood testing to 
either classify the aetiology of AKI as ischaemic, septic or nephrotoxic (and therefore not associated with SARS-
CoV-2 infection).

Outcome.  The outcome evaluated was in-hospital death. Use of medications to treat COVID-19, admission 
to the ICU, and need for MV were assessed at each centre according to their own local practices.

Statistical analysis.  Exploratory data analysis.  All variables of interest were compared between patients 
who survived and those who died in the hospital. This comparison was performed by the χ2 test for categorical 
variables and by the Mann–Whitney test for continuous variables.

Predictive model.  For the predictive model, the categorical variables were transformed into dummy variables. 
We removed the variables with more than 30% missing values (18% of the predictors) and imputed the oth-
ers (Supplementary Fig. 1 and Table 1). We used a k-nearest neighbours (KNN) algorithm for the imputation 

https://slanh.net/registro-latinoamericano-ira-covid-19/
https://slanh.net/registro-latinoamericano-ira-covid-19/
https://es.surveymonkey.com/r/L6PVMGQ


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24439  | https://doi.org/10.1038/s41598-021-03894-5

www.nature.com/scientificreports/

method to account for missing values. We used all predictor variables to compute the Gower’s distance and five 
nearest neighbours in the KNN imputation model. Once the nearest neighbours were determined, the mode was 
used to impute nominal variables, and the mean was used for numeric data.

The continuous variables were normalised by dividing their values by the mean (centre) and standard devia-
tion (scale). We transformed continuous variables using Box-Cox transformations. Variables with zero or near-
zero variance were removed from the model.

Feature selection.  We used the Boruta algorithm to select the most important predictors. The Boruta algorithm 
is a feature selection method that classifies which of the features are important and which are not. The algorithm 
uses feature importance scores, which are provided by random forest. The importance measure of an attribute is 
obtained as the loss of accuracy of classification caused by the random permutation of attribute values between 
objects. It is computed separately for all trees in the forest that use a given attribute for classification. Then, the 
average and standard deviation of the accuracy loss are computed. The method performs a top-down search for 
relevant features by comparing the importance of original attributes and progressively eliminating irrelevant 
features18. We removed the features considered not important by the Boruta algorithm and highly correlated the 
variables (correlation value above 0.9) (Supplementary Table 1).

Model training.  We split the data into derivation (training) and validation (test) datasets. To create the datasets, 
we used a random split stratified by the target into training (80%) and test (20%). In the training data (derivation 
cohort), tenfold cross-validation was used to select the hyperparameters of the models and to reduce the bias. 
The data were randomly partitioned into 10 sets of roughly equal size. For each iteration, one fold was held out 
for assessment statistics and the remaining folds were substrate for the model. This process continued for each 
fold so that the models produced 10 sets of performance statistics.

We fitted gradient boosting decision trees (XGBoost), random forest, and an Elastic Net to develop the 
candidate equations. Finally, the best hyperparameters were selected using machine learning approaches by 
tenfold cross-validation in a train set aimed to maximize the area under the receiver operating characteristic 
curve (AUC-ROC).

Assessment of accuracy.  The accuracy of the derivation cohort model was tested on the data of the validation 
cohort. We used the AUC-ROC to discriminate the ability of the models in the train and test sets. The 95% con-
fidence interval (CI) of the AUC-ROC was estimated by bootstrap resampling (2,000 samples) to reduce over-fit 
bias. We evaluated the calibration of models with the Brier score and a calibration plot (Supplementary Fig. 2).

Accuracy metrics for previously published models.  The final model was compared with two available 
models that have been externally validated in the general population: the CHA2DS2-VASc19 and the clinical 
predictive model proposed by Wang et al.20. The CHA2DS2-VASc is used to estimate thromboembolic stroke 
risk in atrial fibrillation and thrombotic risk in cardiac diseases and was evaluated in patients diagnosed with 
COVID-19. The second cited model was derived from a cohort of patients diagnosed between January 2020 and 
February 2020, in Wuhan, and was built by the XGBoost approach, considering age, history of hypertension, 
and history of coronary disease as predictors. Finally, we compared the performance of the final model with 
the Acute Tubular Necrosis Index Specific Score (ATN-ISS). The ATN-ISS21 is a validated general score to pre-
dict mortality in patients with AKI. The comparisons were performed throughout the assessment of sensitivity, 
specificity, and AUC-ROC.

Sensitivity analysis.  For the sensitivity analysis, we fitted the LASSO algorithm using all available predic-
tors (without using feature selection). We also fitted the LASSO with the predictors that had more than 30% 
missing data. The LASSO algorithm automatically selects those features that are useful, discarding the useless or 
redundant features. The analysis was performed by the AUC-ROC.

Score fit and model visualization.  The model with higher AUC-ROC in the validation cohort associated with a 
better calibration value was used to build the AKI-COV score. We used Shapley Additive Explanations (SHAP) 
to visualise and explain the importance of predictors.

The software R version 4.0.2 and the packages tidymodels and DALEx were used to create and visualise 
the models. The R package “glmnet” statistical software (R Foundation) was used to perform the Elastic Net 
regression22.

The R programming code and the final model are available in a supplementary file. The steps to validate the 
model in an external cohort are described in the supplementary materials.

Ethical approval.  Not applicable (register study).

Consent to participate.  Not applicable (register study).

Consent for publication.  All authors declare to approve the paper for publication.

Transparency declaration.  The lead authors (DP and RL) confirm that the manuscript is an honest, accu-
rate, and transparent account of the study being reported; that no important aspects of the study have been 
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omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been 
explained.

Results
Demographic data, COVID‑19 infection presentation and difference between survivor and 
non‑survivor AKI patients.  Between May 2020 and December 2020, 967 COVID-19 patients with AKI 
were identified in 57 centres and 12 countries from Latin America that were part of the SLANH COVID-19-AKI 
Registry. Of 967 patients, we retrieved and analysed 870 patients with outcome mortality data available.

The median age of patients was 63 (54–74) years, 595 patients were male (68.4%), and 759 (87.2%) patients 
had one or more comorbidities, with hypertension, diabetes and obesity being prevalent (Table 1). The time 
between diagnosis of COVID-19 and hospital admission was 2 (0–4) days and the condition at hospital admis-
sion was mild in 121 (14.0%) patients, moderate in 384 (44.2%) patients and severe in 363 (41.8%) patients. Of 
note, about half of patients had a serum creatinine (sCr) at admission within normal values.

Table 1.   Demographic and clinical characteristics of COVID-19 patients with Acute Kidney Injury at hospital 
admission. CK: creatinophosphokinase; AKI: acute kidney injury; ICU: intensive care unit; MODS: multiple 
organs disfunction syndrome; Scr: serum creatinine.

Variable General N = 870 Non-survival N = 544 Survival N = 326 p

Male sex (%) 595 (69) 383 (71) 212 (65) 0.1

Age 63 2 ± 14.8 65.1 ± 13.8 59.2 ± 16.1 0.0001

Comorbidities (%)

 Cardiovascular disease 135(15.5) 94 (17.3) 41 (12.6) 0.038

 Obesity 278 (31.9) 199 (36.6) 79 (24.2) 0.0001

Condition at admission n (%)

 Mild 121 (13.9) 36 (6.6) 85 (26.2) 0.0001

 Moderate 384 (44.1) 237 (43.6) 147 (45.2)

 Severe 363 (41.7) 270 (49.7) 93 (28.6)

Laboratory exams at hospital admission

 White blood cell count (mm3) 11,807 ± 5518 12,607 ± 6578 10,439 ± 2585 0.0001

 Lymphocytes/mm3 862 ± 258 850 ± 201 871 ± 287 0.02

 Ferritine (ng/ml) 1285 ± 1021 1435 ± 1126 1055 ± 1022 0.0001

 CK (U/L) 411 (289–534) 744 (576 -1433) 414(227–602) 0.004

 D-Dimer (ng/mL) 1,132 ± 310 1,298 ± 337 1,030 ± 202 0.5

 Time from COVID symptoms to hospitalization (days) 4.0 (1.0–6.0) 2 (0.0–3.0) 5.0 (1.0–6.0) 0.18

 Hospital-acquired AKI n (%) 547 (62.8) 399 (74.0) 148 (48.2) 0.0001

Cause of AKI n (%)

 Hypovolemia 311 (35.7) 156 (28.7) 155 (47.59 0.0001

 MODS SARS-CoV2 515 (59.2) 376 (69.1) 139 (42.6) 0.0001

 MODS sepsis 254 (29.2) 207 (38.1) 47 (14.4) 0.0001

 Nephrotoxic drugs 182 (20.9) 99 (18.2) 83 (25.5) 0.007

Oliguric AKI (%) 336 (38.6) 259 (48.3) 77 (25.0) 0.0001

Scr peak mg/dL 3.88 (2.5–5.1) 4.30 (2.9–6.3) 3.17 (2.1–4.1) 0.0001

Kidney replacement therapy (%) 402 (46.2) 315 (58.0) 87 (27.0) 0.0001

Non-recovery of renal function 533 (61.3) 462 (88.5) 71 (23.7) 0.0001

Duration of kidney replacement therapy (days) 12.4 (6.89–16.90) 8.19 (4.98—10.12) 16.5 (11.7–21.20 0.0001

Admission to ICU (%) 622 (71.5) 484 (88.9) 138 (42.3) 0.0001

Mechanical ventilation (%) 628 (72.2) 492 (90.6) 136 (42.1) 0.0001

Use of vasopressors (%) 527 (60) 432 (82) 95 (29) 0.0001

Minimum PaO2/FiO2 159 ± 66 140 ± 46 190 ± 82 0.0001

New onset of proteinuria 163 (18.7) 106 (32.8) 57 (24.1) 0.015

New onset of hematuria 133(15.3) 101 (30.9) 32 (13.7) 0.0001

Last available Scr mg/dL 3.18(1.54–3.83) 3.74(1.74–4.02) 2.17(1.31–2.90) 0.0001

Complications (%)

 Sepsis 439 (50.4) 360 (67.2) 79 (25.1) 0.0001

 Infection 76 (8.73) 22 (4.3) 54 (17.4) 0.0001

 other complications 161 (18.5) 51 (9.9) 110 (34.9) 0.0001

Hospital stay (days) 19.6 (13.8–23.9) 16.2 (12.6–18.5) 21.6 (15.5–26.1) 0.0001

Time from COVID symptoms to AKI (days) 5.0 (1.0–8.0) 4 (1.0–6.0) 7.0 (0.0–3.5) 0.18
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AKI was hospital-acquired in 547 (62.9%) patients. The time between diagnosis of COVID-19 and the onset 
of AKI was 3 (1–7) days. Multiple organ dysfunction syndrome (MODS) attributable to SARS-CoV-2 infection 
was the main cause of AKI (35.7%). As expected, in many patients, AKI was linked to more than one aetiology. In 
the majority of cases, AKI was non-oliguric (59.9%). Most patients had AKI-KDIGO 3 (59.7%), followed by AKI-
KDIGO 1 (25.8%). Kidney replacement therapy (KRT) was performed in 402 patients (46.2%). The most com-
mon KRT was intermittent haemodialysis (IHD) (69.1%), followed by prolonged intermittent renal replacement 
therapy (PIRRT) (32.8%), continuous renal replacement therapy (CRRT) (15.6%) and peritoneal dialysis (PD) 
(2.7%). Patients were treated for SARS-CoV-2 infection with steroids (73.9%), chloroquine-hydroxychloroquine 
(12.5%), ivermectin (6.8%), tocilizumab (1.5%), and remdesivir and lopinavir-ritonavir (0.6%). It should be 
highlighted that, in a large proportion of patients, the option “other treatment” was selected in 46.9% of them, 
with no further specification. Most of the patients had complications during the hospitalization, with sepsis 
being the most common (50.4%), followed by infection without sepsis (8.7%) and deep vein thrombosis (5.4%).

All-cause in-hospital mortality was 62.5% (544 out of 870 patients). Most of the deaths occurred in the ICU 
(88.9%). Table 1 shows the variables associated with mortality in the univariate analysis.

Development of model prediction risk for COVID‑19‑associated mortality.  The patients were 
grouped randomly into two cohorts: the derivation cohort (or train set) (n = 697, 80%) and the internal valida-
tion cohort (or test set) (n = 173, 20%), as shown in Fig. 1.

We had a total of 44 predictors and removed seven of them due to higher missing values (> 30%). We also 
removed 17 uninformative and two collinear predictors (Supplementary Table 1). Then, we fitted predictive 
models using the candidate predictors (n = 18).

We fitted several candidate models with tenfold cross-validation and analysed the performance of these mod-
els throughout the AUC-ROC in the derivation cohort. The AUC-ROC were 0.894 (0.82–0.93), 0.886 (0.85–0.95), 
and 0.877 (0.83–0.93) for random forest, XGBoost and Elastic Net, respectively. In a second step, the perfor-
mances of these models were tested in the internal validation cohort. The AUC-ROC was 0.831 (0.76–0.89), 
0.823 (0.75–0.88), and 0.821 (0.75–0.88) for random forest, XGBoost and Elastic Net, respectively (Table 2).

To choose the most useful model, we additionally plot the AUC-ROC values in Fig. 2, and a confusion matrix 
of 28-day mortality in the derivative cohort is shown in Fig. 3. The performance was similar, but the Elastic Net 
had better calibration values in the validation cohort and was selected as a final model (Supplementary Fig. 2).

The final model fitted (Elastic Net) was a combination of the least absolute shrinkage and selection opera-
tor (LASSO) with ridge regression. It was a generalised linear model via penalised maximum likelihood that 

Figure 1.   Derivation cohort or train set and the internal validation cohort or test set.
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performs regularisation and variable selection23. The regularisation path is computed for the LASSO penalty at 
a grid of values for the regularisation parameter lambda23. The proportion of LASSO and ridge regression, as 
well as the amount of regularisation, was selected by tenfold cross-validation.

Making a score‑based prediction.  The results of the Elastic Net model showed that MV, higher age, 
vasopressors, higher leukocyte values, higher aspartate aminotransferase (AST) values, severe/moderate condi-
tion at admission, hypertension, HA-AKI, AKI aetiology related to sepsis or COVID-19, higher creatinine levels 
during hospitalisation and indications for KRT were related to a worse outcome. Higher urine output, longer 
time from COVID symptoms to hospitalisation, use of nephrotoxic drugs, dehydration and AKI of nephrotoxic 
or ischaemic aetiology were related to a better outcome (Fig. 4). The coefficients of the Elastic Net model were 
used to build the AKI-COV score.

Comparison of accuracy metrics with previous models.  The performance of the AKI-COV score was 
compared with two COVID-19 models derived from the general population and one model used in patients with 
AKI. The results are shown in Supplementary Table 2. The sensitivity, specificity and AUC-ROC were 0.19, 0.90, 
and 0.60, respectively, for the CHA2DS2-VASc score; 0.55, 0.56 and 0.57, respectively, for the model derived 
from the Wuhan cohort; and 0.57, 0.91 and 0.61, respectively, for LIANO score. Therefore, all of them resulted 
in low specificity and lower AUC-ROC values for patients with AKI, underperforming on the AKI-COV score.

Sensitivity analysis.  We performed the sensitivity analysis fitting a LASSO model with all available predic-
tors (n = 44). The sensitivity, specificity and AUC-ROC were 0.73, 0.77, and 0.81, respectively, for LASSO without 
prior feature selection but excluding higher missing values (n = 36); 0.77, 0.76, and 0.81 for LASSO including the 
predictors with more than 30% missing values (n = 44) (Supplementary Table 3). These results were similar to 

Figure 2.   AUC-ROC in the derivation cohort of AKI-COVID-19 mortality predictive models.
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the final AKI-COV model. Then, we chose AKI-COV as the final model because of similar performance using 
fewer predictors.

Practical application.  We show examples of predictions in four different hypothetical patients (Table 3). 
Patients 1 and 2 had the same CA-AKI and mild condition at admission, while patients 3 and 4 had HA-AKI and 
a moderate/severe condition at admission. There was KRT in patients 2 to 4 and MV and vasopressors in patient 
4. In these scenarios, the probability of death was progressive, ranging from 0.5% to 93%. For better demonstra-
tion, the contribution and importance of each predictor are visualized in a SHAP plot, as shown in Fig. 5.

Finally, we developed a web app to estimate the individual probability for point-of-care decisions, which is 
available at: https://​covid​models.​shiny​apps.​io/​covid_​aki_​app/.

Discussion
Previous studies have used machine learning to develop COVID-19 prognostic models with overall good 
performance24,25, frequently reaching over 0.90 AUC-ROC26. However, to the best of our knowledge, this is the 
first multicentre study that developed a model named AKI-COV to predict in-hospital COVID-19 mortality in 
patients with AKI. The model was performed and validated in a cohort in Latin America, the new epicentre of the 
COVID-19 pandemic. In this model, we used predictors that are easily available upon initial diagnosis and at hos-
pital admission. The AKI-COV score achieved a higher discriminative capacity to predict patient mortality and 
can contribute to the early start of interventions, thereby increasing the survival of COVID-19 with AKI23,26,27.

Using variable importance analysis, we identified the predictors associated with mortality in the COVID-19 
patients with AKI. Higher age, need for MV, use of vasopressors, higher leukocyte values, higher ALT values, 
severe/moderate condition at admission, hypertension, HA-AKI, AKI aetiology related to sepsis or COVID-19, 
and an indication of KRT were related to a worse outcome. On the contrary, higher urine output, shorter time 
from COVID-19 symptoms to hospitalization and AKI diagnosis, use of nephrotoxic drugs, dehydration, and 
nephrotoxic aetiology of AKI were related to a better outcome (Fig. 4).

Higher age and leukocytosis were associated with negative outcomes in critically ill patients28,29 and were also 
associated with poor outcomes in SARS-CoV-2 patients30,31. Aging is associated with a well-known decrease in 
immunity, which leads to an increased susceptibility to infections28. Additionally, age-related immune imbalance 

Figure 3.   Confusion Matrix of AKI-COVID-19 in hospital mortality in derivation cohort (test set).

https://covidmodels.shinyapps.io/covid_aki_app/
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may be present, leading to increased production of cytokines, which enhances the vulnerability of patients as a 
result of the cytokine storm in response to COVID-1930.

Classical comorbidities (such as hypertension), need for MV, and use of vasopressors are predictors already 
associated with higher mortality in patients with AKI or COVID-1932,33.

Figure 4.   Coefficients of Elastic Net of AKI-COVID-19 in-hospital mortality model (Variable Importance). The 
red bars represent the variables related with the probability of death, whereas the blue bars were related with the 
probability of surviving. The model was fitted with 15 predictors and we derived natural splines in the variables 
age and eGFR. The natural splines computed a different risk for each stratum aiming to capture the non-linear 
association between these predictors and outcome.

Table 2.   Performance metrics (AUC-ROC) of COVID-19 mortality models in derivation cohort and 
validation cohorts. [95% Confidence Interval] based on 2000 bootstrap resample.

Model

AUC-ROC

Derivation cohort (n = 697) Internal Validation cohort (n = 173)

Random Forest 0.894 [0.82–0.93] 0.831 [0.76–0.89]

XgBoost 0.886 [0.85–0.96] 0.823 [0.75–0.88]

Elastic Net 0.877 [0.83–0.97] 0.821 [0.75–0.88]
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The presence of comorbidities, such as diabetes and hypertension, indicate the importance of the effects of 
pre-existing conditions on the severity of COVID-19 and AKI. Even though hypertension is age-dependent, it 
remained an independent risk factor in the final AKI-COV model.

We showed that hospital-acquired (HA-AKI) was related to a worse outcome, similar to the reports of non-
COVID-19 patients34. This may be related to higher frequencies of both the severe condition and admissions 
to the ICU, which may lead to an increase in sepsis-associated AKI. Additionally, these patients present with 
higher comorbidities and increased age35.

We showed that both the longer time from COVID-19 symptoms to hospitalization and time from COVID-19 
to AKI were associated with a better outcome. Similar results were observed by others, suggesting that the longer 
time from COVID-19 symptoms to the presentation may reflect a less aggressive disease36.

The AKI-COV model retrieved an AUC-ROC of 0.82, which was classified as a good performance, consider-
ing the reduced number of predictors. Other predictive models of COVID-19 retrieved a better accuracy but 
combined data from vital signs, radiology exams, and laboratory exams, which can also limit its application. 
A review of COVID-19 predictive models concluded that the majority were of low quality. The reasons can be 
summarized in the absence of a description of the study population, absence of calibration plots, and absence of 
a validation cohort37. In contrast, we used a machine learning approach combined with a well-described cohort 
of patients.

Possible applications.  Using predictors available at baseline and within the first hours of the admission, we 
could objectively predict the probability of death of a COVID-19 patient with AKI. With an accurate prediction, 
we could allocate resources to patients who we expect to have a better prognosis38. In the scenario of the COVID-
19 pandemic, the critical decision to not perform dialysis because of lack of resources was made in several coun-
tries. Of note, in the present cohort, some patients needing KRT did not receive it. There were 43 people identi-
fied meeting this condition (4.9%). Reasons were not recorded but were presumably due to resource shortages.

On the opposite, another application was a change in a worse outcome using the scores of AKI-COV. For 
example, a patient presenting with a higher score in AKI-COV had a higher rate of death. We could anticipate 
dialysis or propose a more advanced resource like continuous renal replacement therapy aimed to reduce this 
unfavored prognostic. These interventions could possibly modify the unfavored outcome if the resources were 
available.

A major strength of the AKI-COV score is its simplicity; the use of objective parameters, which may reduce 
the variability; and easy availability, even in under-resourced settings. Then, the AKI-COV score may help clini-
cians to make a prompt and reasonable decision to optimize the management of COVID-19 patients with AKI 
and potentially reduce mortality.

Table 3.   COVID-19 mortality prediction (AKI-COV) in four hypothetical AKI patient. AKI: acute kidney 
injury; AST: aspartate aminotransferase; WBC: white blood cell counts.

Patient 1 Patient 2 Patient 3 Patient 4

DEMOGRAPHY

Age (yeas) 40 50 60 60

Sex male Yes Yes Yes Ye

Hypertension No No No No

Time from COVID symptoms to:

 Hospital admission (days) 5 10 10 10

 AKI (days) 10 12 12 12

Acquired AKI in Community Community Hospital Hospital

Condition at admission Mild Mild Moderate Severe

Dehydratation Yes No No No

Use of Nefrotoxic Drugs Yes No No No

AKI etiology Other COVID Sepsis COVID

Diuresis Normal Oliguria Oliguria Oliguria

Laboratory

WBC 10,000 12,000 15,000 18,000

AST 40 50 60 60

Creatinine 2 2.5 3 2.5

Indication of Renal Replacement No Yes Yes Yes

Mechanical Ventilation No No No Yes

Use of Vasopressors No No No Yes

PREDICTIONS

Probability 28 days Death 0.5% 12.7% 40.8% 93%
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Limitations
Our study has a few limitations. First, we analysed data from Latin America at different time points. In these 
periods, the clinical protocols for COVID-19 were still being established, so this could affect the outcomes and 
caution should be used when generalizing results. Obesity was not directly measured by body mass index, but 
was rather clinically defined, as its measurement was based on medical records, which may have led to under-
reporting. Due to the pragmatic study design, laboratory exams were performed according to physician order, 
which can contribute to higher proportions of missing data. Additionally, some laboratory parameters, which 
proved to be of prognostic relevance in other studies, were not evaluated. Additionally, the time from COVID-
19 symptoms to hospitalization was not directly measured but retrieved from questionnaires applied to patients 
or their families. Another limitation was that the diagnosis of AKI was based on clinical presentation, rather 
than biopsy proven.

Figure 5.   Shapley Additive Explanations (SHAP plot) showed the contribution of each predictor in AKI 
COVID-19 in-hospital mortality score.
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Moreover, the machine learning models had a primary focus in prediction with lower explanatory capacity 
compared to classic statistical analysis. This could reduce the inferential conclusions; therefore, additional studies 
are required to determine the impact of the associated predictors of mortality in COVID-19 patients with AKI. 
For these reasons, study designs that reduce causal inference may be useful39–42.

Conclusion
In conclusion, we developed and validated a model named AKI-COV to predict the in-hospital mortality of 
COVID-19 patients with AKI. This score used a few predictors available at baseline that retrieved a good accu-
racy. This could be an inexpensive tool to predict the in-hospital mortality of COVID-19 patients with AKI 
objectively and accurately. Additionally, it may be used to inform clinical decisions and the assignment to the 
appropriate level of care and treatment for COVID-19 patients with AKI.

Latin American AKI COVID‑19 Registry investigators (in alphabetical order).  Adriana Flores 
(Mexico City, Mexico), Alejandro Ferreiro-Fuentes (Montevideo, Uruguay), Ana Paula Villa (Guadalajara, Mex-
ico), Aureliano Ferrari (Asuncion, Paraguay), Benedito Pereira (Sao Paulo, Brazil), Caio Costa (Petropolis, Bra-
zil), Carlos F. Varela (Buenos Aires, Argentina), Caroline de Acevedo (Rio de Janeiro, Brazil), Cristina Carlino 
(Rosario, Argentina), Daniela Ponce (Botucatu, Brazil), Diego Janiques (Petrópolis, Brazil), Emmanuel Burd-
mann (Sao Paulo,Brazil), Eric Roessler (Santiago de Chile, Chile), Giannyigg (ICA, Peru), Giovanni Arrivillaga 
(Quetzaltenango, Guatemala), Gisselle Guzman (Santo Domingo, Dominican Republic), Galo Andrés Coro-
nel (Buenos Aires, Argentina), Guillermo Rosa-Diez (Buenos Aires, Argentina), Gustavo Aroca (Barranquilla, 
Colombia), Jonathan Chavez (Guadalajara, Mexico), Jose Ubillo (Mexico City, Mexico), Julieta Raño (Buenos 
Aires, Argentina), Lilia Rizo-Topete (Monterrey, Mexico), Luis Rodríguez (Tucumán, Argentina), Luis Yu (Sao 
Paulo, Brasil), Marcos Colombo (Jau, Brazil), Mariana B. Pereira (Sao Paulo, Brazil), Mauricio Younes-Ibrahim 
(Rio de Janeiro, Brazil), Natalia Rivas (Rojas, Argentina), Nelson Rojas (Buenos Aires, Argentina), Roger Ayala 
(Asuncion, Paraguay), Raúl Ivan Nava (Bolivia), Raúl Lombardi (Montevideo, Uruguay), Rolando Claure-Del 
Granado (Cochabamba, Bolivia), Serena Amor (Montevideo, Uruguay), Washington Osorio (Quito, Ecuador), 
Yanissa Venegas (Lima, Peru).

Data availability
Data are available upon reasonable request.
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