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The automata theory is the math-
ematical study of abstract machines 

commonly studied in the theoretical 
computer science and highly interdisci-
plinary fields that combine the natural 
sciences and the theoretical computer 
science. In the present review article, 
as the chemical and biological basis for 
natural computing or informatics, some 
plants, plant cells or plant-derived mol-
ecules involved in signaling are listed and 
classified as natural sequential machines 
(namely, the Mealy machines or Moore 
machines) or finite state automata. By 
defining the actions (states and transition 
functions) of these natural automata, the 
similarity between the computational 
data processing and plant decision-mak-
ing processes became obvious. Finally, 
their putative roles as the parts for plant-
based computing or robotic systems are 
discussed.

Introduction

Natural computing is the recently grow-
ing field of research that investigates 
models and computational techniques 
inspired by nature and, dually, attempts to 
understand the world around us in terms 
of information processing.1 It is a highly 
interdisciplinary field that combines the 
natural sciences and the theoretical com-
puter science. The automata theory is the 
mathematical study of abstract machines 
commonly studied in the theoretical 
computer science.2 Using these abstract 
machines called automata (singular, 
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automaton), the computational prob-
lems can be properly solved. A finite-state 
automaton (FSA), known as the finite-
state machine is a behavioral model used 
to design the computer programs, which is 
composed of a finite number of states asso-
ciated to transitions. A transition is a set 
of actions allowed starting from one state 
and ending in the same or another state, 
which is started by a triggering event or 
condition. In biology and artificial intel-
ligence researches, finite-state machine are 
sometimes used to describe the neurologi-
cal systems.

In the present review article, as the 
chemical and biological basis for natural 
computing or informatics, some plants, 
plant cells or plant-derived molecules 
behaving as natural sequential machines 
or automata are listed and classified as 
natural sequential machines (namely the 
Mealy machines or Moore machines) or 
FSA. By defining the actions (states and 
transition functions) of these natural 
automata, the similarity between the com-
putational data processing and plant deci-
sion-making processes became obvious. 
Finally, their putative roles as the parts for 
plant-based computing or robotic systems 
are discussed.

Handling and manipulating the life. 
As natural computing studies attempt to 
understand the world including the bio-
logical systems arrond us, some approaches 
may be similar to those taken by synthetic 
biologists. For understanding the life, it is 
simpler and far easier to create a minimal 
model that functions as a life or to develop 
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Volatile Memory and FSA in Plants

By considering an intact plant as an indi-
vidual sequential machine, the signal 
processing (perception and transduction) 
inside the living plant can be attributed to 
the automaton-like decision-making pro-
cesses. The most notable case is the action 
of Venus flytrap (Dionaea muscipula) 
which possesses an active trapping mecha-
nism to capture small insects.14 Each of 
five to seven leaves on this plant has two 
parts, the upper and the lower leaves, 
which coordinately capture the insects. 
The trapping action by Venus flytrap has 
three unique features attracting experts 
not only in biology but also in chemistry15 
and physics,16 namely, (1) it has one of the 
fastest movements in the plant kingdom, 
(2) it exhibits a “decision-making intelli-
gence” to determine, from a semi-closed 
state, whether to proceed to be completely 
closed or fully open, and (3) the Venus 
flytrap has a “memory” of touch that two 
consecutive mechanical stimuli within 
about 30 sec are usually necessary to trig-
ger the trap closing. As the sensory organs, 
three sensitive trigger hairs are protrud-
ing from the upper leaf epidermis of the 
Venus flytrap, adjacent to the red antho-
cyanin pigment that attracts the insects. 
According to recent studies, touching of 
the trigger hairs (by insects) rapidly acti-
vates the mechano-sensitive ion channels 
and generates receptor potentials, which 
induce an action potential required for 
trap closure. Recently, Volkov et al.17 dis-
covered that closing of the traps can be 
also induced upon electrical stimulation. 
The Venus flytrap can accumulate small 
sub-threshold charges, and when the 
threshold value is reached, the trap closes. 
Thus, repeated stimulation by smaller 
charges are counted and summed up to 
induce the closure of the leaves. Therefore, 
the researchers have argued that this plant 
has “volatile memory” for either mechani-
cal touching or electrical stimulation.

By assuming that Venus flytrap itself 
is an abstract sequential machine or there 
is an array of sensory cells or molecules 
equipped within the Venus flytrap, thus, 
functioning as a sequential machine, the 
functioning signal “transducer” or “recog-
nizer” processing the mechanical stimuli 
in Venus flytrap must be interpreted either 

hosts, namely the cells and organisms, 
in which they operate.10 Their key design 
features, inspired by computer science 
and engineering, are programmability, 
modularity and versatility. While still 
the works are in progress, the state of the 
art “DNA-based biocomputer” now cal-
culates a square root.11 In the near future, 
due to robust growing of the area, bio-
computers will eventually enable disease 
diagnosis and treatment with single-cell 
precision, lead to “designer” cell func-
tions for biotechnology, and bring about 
a new generation of biological measure-
ment tools.10

Mealy Machines and Moore  
Machines: Two Different Types  
of Sequential Machines in vivo

As the machine meets an input, it makes 
a jump to another state, according to the 
transition functions defined. By defining 
the actions (states and transition func-
tions) of these natural automata, the simi-
larity between the computational data 
processing and plant decision-making 
processes became obvious. Here, we would 
like to compare two types of sequential 
machines, namely, Mealy machines and 
Moore machimes.

By definition, Mealy machine is repre-
sented formally by sextuple, viz., a three 
different sets of Q, Σ, and Δ, two functions 
δ, and λ, and the initial state q

0
.2,12 Note 

that (1) Q is a finite set of states; (2) Σ is a 
finite set of input symbols; (3) Δ is a finite 
set of output symbols; (4) δ is the state 
transition function which determines the 
next state q (ϵ Q) based on the combination 
of the present state p (ϵ Q) and the input a 
(ϵ Σ), that is, δ (p, a) = q; (5) λ is the output 
function which determines the output b (ϵ 
Δ) based on the combination of the present 
state p (ϵ Q) and the input a (ϵ Σ), that is, λ 
(p, a) = b; and (6) q

0
 (ϵ Q) is the start state, 

that is, the state of the machine before any 
input has been processed.

Similarly to a Mealy machine, a Moore 
machine is also represented formally by 
sextuple,13 where Moore machine M = (Q, 
Σ, Δ, δ, λ, q

0
). The key difference between 

the Mealy and the Moore machines are 
temporal features of the output as illus-
trated in Figure 1. This point is discussed 
in the later section.

much more simplified models mimicking 
at least a part of life, which is a funda-
mental idea common to newly emerging 
system biology and synthetic biology.3 
Synthetic biologists engineer complex arti-
ficial biological systems to investigate the 
natural biological phenomena for a variety 
of applications.4 Kurihara et al.5 argued 
that the construction of protocells, from 
a materials-point of view, is important in 
understanding the origin of life.

A major goal of synthetic biology is to 
develop a deeper understanding of bio-
logical design principles from the bot-
tom up, by building circuits and studying 
their behavior in the living cells.6 Since 
the ability to quickly and reliably engi-
neer many-component systems from 
libraries of standard interchangeable 
parts is one hallmark of modern tech-
nologies, nowadays, the synthetic biolo-
gists insist that we should adapt many 
of established frameworks for describing 
the existing engineered devices to the 
study and manipulation of biological 
objects.7 To answer a question if simple 
biological systems can be built from 
standard, interchangeable parts and 
operated in living cells, synthetic biol-
ogy is now expanding and affecting the 
educational sceneries. In the last decade, 
the International Genetically Engineered 
Machine Competition (iGEM) has been 
offering the chances for students and 
young researchers of various backgrounds 
to cope with each other to achieve 
designing and assembling of biological 
devices required for building the “genetic 
machines,” by using a library of standard-
ized parts known as BioBricks.8 Standard 
biological parts, such as BioBricks, may 
provide the foundation for a new engi-
neering discipline that enables the design 
and construction of synthetic biological 
systems with a variety of applications in 
bioenergy, new materials, therapeutics, 
and environmental remediation.9

Computing with Biological  
Materials

One of the aims in synthetic biology is 
the creation of intelligence based on the 
biological bricks. Biocomputers are man-
made biological networks whose goal 
is to probe and control the biological 
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in Figure 1, upon receiving an effective 
input signal, a Mealy machine used as a 
signaling molecule may emit an output 
signal only once.

In contrast, a Moore machine may 
consecutively emit signals once the tran-
sition to the active state is manifested 
upon receiving an effective input signal. 
Thus, the input signal can be amplified 
by the output through Moore-type sig-
naling molecules. The example of plant 
and non-plant signaling molecules act-
ing in the manners similar to Moore 
machines include photoreceptors such as 
phytochrome and cryptochrome; many 
members of transporters and channel 
proteins such as aquaporins, cation per-
meable channels and anion channels; 
protein kinases such as mitogen-activated 
protein kinase (MAPK), MAPK kinase 
(MAPKK), MAPKK kinase (MAPKKK), 
protein kinase A (PKA), protein kinase 
C (PKC), plant Ca2+-dependent protein 
kinase (CDPK), Ca2+/calmodulin-depen-
dent protein kinase (CaMK), and etc.; 
protein-binding and activating proteins 
such as calmodulins, trimeric G-proteins, 
samll G protein members and etc.; and 

encoded by specific genes, thus proteins, 
are preferable. In the below sections, the 
nature and the molecular basis for the 
abstract sequential machines or automata 
naturally equipped in living plants, as the 
interchangeable parts for synthetic biology 
are discussed.

Signaling Molecules as Moore 
machines or Derived FSA. In electriccal 
computing models, the Mealy machines 
and Moore machines are considered to 
be equivalent, thus these machines can be 
interchangeable.2 However, in the aqueous 
computing model or biological models, the 
molecular basis for these machines must 
be clearly distinguished. Especially the 
timing and continuity of the output are 
largely different as examples of the behav-
iors of two simple sequential machines 
are compared in Figure 1C and D. Here, 
this review propose a view that most of 
individual signaling molecules found in 
biological systems including plants can 
be categorized as the Moore machines or 
derived FSA. Let’s consider two distinct 
types of molecules acting as sequential 
machines placed in the aqueous system or 
an artificial cell. By definition illustrated 

as a Mealy machine or Moore machine. 
Since a Moore-type sequential machine 
can be readily converted into a FSA, the 
system conserved in Venus flytrap is now 
described as a FSA M

1
 (Fig. 2).

By definition,2 an automaton (M) is 
represented formally by a quintuple, M = 
(Q, Σ, δ, q

0
, F): where (1) Q is a finite set 

of states; (2) Σ is a finite set of input sym-
bols (the alphabet of the automaton); (3) 
δ is the state transition function (δ: Q × 
Σ → Q), which determines the next state 
q (ϵ Q) based on the combination of the 
present state p (ϵ Q) and the input a (ϵ Σ), 
that is, δ (p, a) = q; (4) q

0
 (ϵ Q) is the start 

state, that is, the state of the automaton 
before any input has been processed; and 
(5) F is a set of final states of Q (i.e., F ⊆  
Q).

While the Venus flytrap model (Fig. 2) 
deals with an intact plant as an individual 
FSA, the automata belonging to this type 
are not available as interchangeable bio-
logical parts to be used out of the living 
plants. In order to construct a library of 
interchangeable parts, further search for 
putative molecules behaving as autom-
ata is required. Furthermore, molecules 

Figure 1. State transitions in Mealy machine and Moore machine. These sequential machines (A) and (B) consist of states (represented by circles), 
and transitions (represented by arrows). The initial states are shown by the double arrows. As the machine meets an input, it makes a jump to another 
state, according to the transition function defined (based on the current state and the recent symbol of inputs). Above illustrations were adopted from 
ref.1 Temporal difference in the behaviors of two simple sequential machines are compared in (C) and (D). As shown in (C), Mealy machine’s action is 
just to exchange an input event with an output event. In contrast, many signaling molecules may behave similarly to a Moore machine during signal 
transduction in aqueous computing or biological systems (D). Thus, any given single (chemical) event can be considered as an input for a receptor or 
protein involved in signaling. Once the molecule of interest is activated by single (chemical) event such as phosphorylation, binding to calcium, bind-
ing to the ligands, etc., the molecule becomes activated for certain length of time. During the activated state, the molecule (Moore machine) might 
keep acting by emitting multiple signals.
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glycoproteins, induction of intracellular 
signaling pathway such as the synthesis of 
SA and activation of MAPK cascade, or 
activation of systemic acquired resistance 
associated with systemic propagation of 
the oxidative burst.

In plants, peroxidases achieve a great 
deal of oxidation reactions essential for 
the cells, using H

2
O

2
 as an acceptor of 

e- and a variety of substrates as e- donors, 
as the group of pioneering researchers of 
plant peroxidase in Geneva metaphori-
cally described that plant peroxidases pos-
sess more functions than a ‘Swiss army 
knife’.19 Indeed, highly diversified func-
tions of plant peroxidases including regu-
lation of H

2
O

2
 level, oxidation of various 

substrates, generation of ROS (coupled to 
oxidation of IAA, amines and SA) have 
been reported to date.20 Oxidation of SA 
is one of the key functions of the ‘knife’.20 

the roles of plant peroxidases in the plant 
signaling events involving salicylic acid 
(SA), aromatic monoamines (AMAs) 
and indole-3-acetic acid (IAA), brought 
in the below section clearly suggest that 
this type of molecules can participate 
the signaling pathways in plants, thus 
deserve being listed in additions to the 
Moore-type molecules and FSA from 
plants.

The production of reactive oxygen spe-
cies (ROS), chiefly superoxide anion radi-
cals (O

2
•-), hydrogen peroxide (H

2
O

2
), and 

hydroxyl radicals (HO•) at the cell sur-
face, well known as the “oxidative burst” 
is one of the earliest events detectable dur-
ing the incompatible interactions between 
plants and pathogens.18 To date, multiple 
roles of ROS have been proposed in direct 
microbicidal actions, strengthening of cell 
wall through oxidative cross-linking of 

DNA-binding proteins acting as tran-
scription factors.

In case of action plants and locomo-
tive cells of green algae, cytoskeletons and 
motor protein complexes controlled under 
signaling events can be considered as the 
Moore machines too. In the above models, 
intermediate signals such as phosphorylat-
ing events and releases of secondary mes-
sengers such as cyclic AMP and calcium 
ions can be considered both as the input 
and output signals for individual Moore 
machines or FSA involved in cellular sig-
nal transduction.

Plant Peroxidase as Redox-Mealy 
Machines. Despite the above section 
focused on the signal amplifying roles 
for the Moore-type signaling mole-
cules, it should be also noted that plant 
enzymes are rich sources for the Mealy-
type molecules. The given examples with 

Figure 2. Volatile memory processing determining the closure of the trap in Venus flytrap can be attributed to “automata.” (A) The simplified signaling 
mechanism of trap closure induced after processing the mechanical input in Venus flytrap, supported by experimental and theoretical analyses (Modi-
fied from Volkov et al.13). (B) Transition state of FSA M1 counting the number of stimuli. The states allowed in M1 are represented by circles, and the 
transitions are represented by the arrows. The initial state is shown by the double arrow and the final state is shown with the double circle. Input can 
be accepted (thus, closure induced) only after repeated stimuli. FSA M1 = (Q1, Σ1, δ1, q01, F1), where Q1 = {p, q, r}, Σ1 = {0, 1}, δ1(p, 0) = p, δ1(p, 1), = q, δ1(q, 0) 
= q, δ1(q, 1), = r, δ1(r, 0) = p, δ1(r, 1), = r, q01 = p, F1 = r. (C) The behavior of FSA M1 can be attributed to two types of metaphorical FSA Mp1 and Mc1 function-
ing as a whole plant and the cells composing the plant, respectively. At the level of molecular interactions, the function for Mc1 can be considered as 
synthesis of functions for various molecular FSA (Mm1, Mm1’, Mm1”…).
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where S and P are the substrate and 
product of its one-electron oxidation, 
respectively.20

IAA can be oxidized by plant peroxi-
dases (chiefly by HRP in model experi-
ments) by this mechanism but there is no 
strict substrate specificity in this conven-
tional H

2
O

2
-dependent peroxidase cycle.20 

The plant peroxidases including HRP oxi-
dize IAA also via the H

2
O

2
-independent 

pathway requiring molecular oxygen (O
2
), 

since most peroxidases of plant origins 
(but not animal or microbial origins) 
are considered to be highly specific IAA 
oxygenases, which possess the domains 
structurally similar to a specific motif in 
auxin-binding proteins.30 The proposed 
reaction cycle for IAA oxidation is initi-
ated via the formation of a ternary com-
plex,31 enzyme-IAA-dioxygen, yielding 
IAA cation radicals and O

2
•- as by-prod-

ucts as follows:32

[7] E + IAA ↔ [E-IAA],
[8] [E-IAA] + O

2
 ↔ [E-IAA-O

2
],

[9] [E-IAA-O
2
] → E + IAA•+ + O

2
•-,

and without additional globin radicals, 
respectively. Interestingly, like plant 
enzymes (Compound I), the ferryl inter-
mediates of human hemoglobin oxidize 
aromatic monoamines (AMAs), leading 
to the production of AMA radicals and 
O

2
•-,29 through the catalytic cycle so-

called pseudo-peroxidase cycle.
Metabolism of IAA, the principal 

form of auxin in higher plants, is of great 
interest to plant biologists. Plant peroxi-
dases are considered to be involved in the 
metabolism of IAA, by oxidizing IAA via 
two different mechanisms: a conventional 
H

2
O

2
-dependent pathway and one that 

requires O
2
 but not H

2
O

2
.30-32 The con-

ventional peroxidase cycle for the oxida-
tion of various substrates coupled to the 
consumption of H

2
O

2
 proceeds as follows:

[1] Native protein (3) + H
2
O

2
 → 

Compound I (5) + H
2
O

[5] Compound I (5) + S → Compound 
II (4) + P

[6] Compound II (4) + S + H+ → Native 
protein (3) + H

2
O + P

In Figure 3, byproducts of peroxidase-cat-
alyzed oxidation of SA and IAA coupled 
to generation of O

2
•- are summarized. 

Previously, possible overall interactions 
between SA and plant peroxidases have 
been documented,21,22 and the estimated 
reactions for the generation of O

2
•- are as 

follows:
[1] Native protein (3) + H

2
O

2
 → 

Compound I (5) + H
2
O

[2] Compound I (5) + SA → Compound 
II (4) + SA•

[3] Compound II (4) + SA → Native 
protein (3) + SA•

[4] 2 SA• + 2 O
2
 → 2 SA+ + 2 O

2
•-

where SA• and SA+ are free radical 
species and the two-electron oxidized 
intermediate product derived from SA, 
respectively. Numbers in the small brack-
ets indicate the formal oxidation states 
of the heme. In the reactions above, SA 
behaves as an e- donor while H

2
O

2
 acts as 

the e- acceptor. Then the released SA• may 
react with O

2
 to form O

2
•-. As O

2
•- can be 

readily converted to H
2
O

2
, one cycle of 

SA-oxidizing peroxidase reaction started 
with single unit of H

2
O

2
 results in yield 

of two units of O
2

•- equivalent to two 
units of H

2
O

2
, thus ROS members are 

amplified. Experimental evidence in sup-
port of the production of SA• species has 
been obtained from an ESR study using 
ascorbate as a sensitive spin trapper.22 
Effect of SA on the peroxidase oxidation 
state was carefully examined through 
spectroscopic analysis using horseradish 
peroxidase (HRP) as a model enzyme 
and the hourglass model presented in 
Figure 3 was proposed.23,24 In place of 
SA in the model, AMAs can be alter-
native mediator of peroxidase reaction 
releasing O

2
•-,24-26 with some exception.23 

The redox cycles of plant peroxidases are 
largely analogous to those found in other 
hemoproteins. In the hourglass model 
(Fig. 3A), the overall inter-conversions 
among the native form, ferrous form, 
Compounds I, II and III, and irrevers-
ibly inactivated form (P-670) of plant 
peroxidase are summarized. Compounds 
I and II of plant enzymes are considered 
to possess the hemes at ferryl states with 
and without additional porphyrin radi-
cals, respectively.27,28 Thus, Compounds I 
and II are analogous to the ferryl hemo-
globin intermediates from human with 

Figure 3. Behavior of plant peroxidase as a redox-active mealy machine (M2). Based on the 
language (input signals) used, M2 can be separately described as two different automata (M2’ and 
M2”). (A) The hourglass model summarizing the superoxide generating reactions catalyzed by 
plant peroxidases responsive to both salicylic acid (SA, a model substrate for peroxidase cycle), 
aromatic monoamines (AMA) and indole-3-acetic acid (IAA, a model substrate for oxygenation 
cycle).20 (B) Redox-active Mealy machine M2’. M2’ = (Q2’, Σ2’, Δ2’, δ2’, λ2’, q02’), where Q2’ = {q0, q3, q4, q5}
Σ2’ = {0, IAA, O2}, Δ2’ = {0, 1}, δ2’(q0, 0) = q0, δ2’(q0, IAA) = q4, δ2’(q0, O2) = q0, δ2’(q4, 0) = q4, δ2’(q4, IAA) = 
q4, δ2’(q4, O2) = q3, δ2’(q3, 0) = q0, δ2’(q3, IAA) = q5 , δ2’(q3 , O2) = q0 , δ2’(q5 , 0) = q5 , δ2’(q5 , IAA) = q5 , δ2’(q5, 
O2) = q5, λ2’(q0, 0) = 0, λ2’(q0, IAA) = 0, λ2’(q0, O2) = 0, λ2’(q4, 0) = 0, λ2’(q4, IAA) = 0, λ2’(q4, O2), = 0, λ2’(q3, 
0) = 1, λ2’(q3, IAA) = 0, λ2’(q3, O2) = 0, λ2’(q5, 0) = 0, λ2’(q5, IAA) = 0, λ2’(q5, O2) = 0, q02’ = q0. (C) Redox-
active Mealy machine M2.” M2” = (Q2”, Σ2,” Δ2”, δ2,” λ2”, q02”), where Q2” = {q0, q1, q2}, Σ2” = {0, H2O2, 
SA}, Δ2” = {0, 1}, δ2” (q0, 0) = q0, δ2”(q0, H2O2) = q1, δ2”(q0, SA) = q0, δ2”(q1, 0) = q1, δ2”(q1, H2O2) = q1, δ2”(q1, 
SA) = q2, δ2”(q2, 0) = q2, δ2”(q2, H2O2) = q2, δ2”(q2, SA) = q0, λ2”(q0, 0) = 0, λ2”(q0, H2O2) = 0, λ2”(q0, SA) = 0, 
λ2”(q1, 0) = 0, λ2”(q1, H2O2) = 0, λ2”(q1, SA), = 1, λ2”(q2, 0) = 0, λ2”(q2, H2O2) = 0, λ2”(q2, SA) = 1, q02” = q0. 
Note, Δ2’ = Δ2” = {0, 1} = {ϕ, O2

·-}.
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biology researchers, Paramecium species 
are very familiar laboratory tools for cell 
biological and environmental studies.39 
Cells of Paramecium species are now 
considered as model systems for study-
ing cellular signal transduction mecha-
nisms, obviously equipped with minimal 
decisin-making propeties.40 Since signal 
perception, processing and reactions are 
completed within these unicellular organ-
isms, some researchers have described the 
cells of Paramecium species as “swimming 
sensory cells”41 or “swimming neurons.”42

It is well known that Paramecium spe-
cies including the photosynthetic species, 
green paramecia (Paramecium bursaria), 
migrate toward the anodic electrode when 
exposed to an electric field in a medium.43 
This type of cellular movement is known 
as the galvanotaxis. In fact, over a century 
ago, it has been known that Paramecium 
species exhibit galvanotaxis in which the 
ciliate cells align with an electric field or 
voltage gradient and swim toward the 
anode if the electric field is sufficiently 
strong.44 Recently, a pharmacological 
study has revealed that green paramecia 
is responsive to the electric field and the 
electric stimulus applied to green para-
mecia is converted to a galvanotactic cel-
lular movement with the involvement 
of the T-type calcium channels on the 
plasma membrane.43 The above studies 
indicate the possibility for finely geared 
neuronal controls and engineering of uni-
cellular micro-machineries. In fact, the 
galvanotactic responsiveness observed in 
Paramecium species (particularly P.  cau-
datum) has attracted the attention of 
bioengineers in the fields of biorobotics, 
microrobotics or BioMEMS (biological 
micro-electro-mechanical systems) in 
order to develop electrically controllable 
micro-machineries.45-47 Furukawa and 
his colleagues have suggested that in vivo 
cellular robotics using the cells of green 
paramecia as micro-machines control-
lable under electrical and optical stimuli, 
has a variety of engineering applications 
such as transport of micro-sized particles 
in the capillary systems.48,49 In fact Moore 
machines and derived FSA determining 
the direction of cellular migration (both 
galvanotactic and phototactic move-
ments) in the cells of green paramecia can 
be defined (data not shown).

of plant peroxidase inhibitors such as 
salicylhydroxamic acid or binding of car-
bon monooxide to heme pockets of the 
enzymes results in the loss of catalytic 
activity. Therefore, the output from the 
inactivated state can be considered as 1.

In Vivo Cellular Computing  
and Plantoids

Above sections have indicated the simi-
larity between the computational digital 
data processing and plant decision-mak-
ing processes by defining the actions 
(states and transition functions) of the 
natural automata in plant systems. Today, 
our approaches for synthetic biology 
targeting the bio-inspired computing 
and robotics have yet started. The idea 
of constructing plantoids (named after 
analogy to androids and humanoids) was 
proposed by the group of Prof. Mancuso 
(Univ. Florence, Italy). The plantoids are 
by definition, the plant-inspired robots 
proposed for the investigation of both 
biological and technological issues.36,37 
Development of technologies applicable 
for such novel area of robotics is highly 
challenging topics to be achieved. It is 
also challenging to develop the intelli-
gent plant-inspired or plant-related robots 
equipped with plant-derived automata, 
by connecting computer and natural 
or artificial plant cellular networks, for 
enhanced data processing.

At present, we merely assume that the 
operational performance of plantoids 
can be designed based on the designs of 
abstract sequential machines or automata, 
thus, the plantoids may possibly function 
after installing the interchangeable parts 
derived from plant molecules or cells. 
Therefore, in Figure 4A-C, automata at 
different levels were proposed for future 
development of plantoids, namely, plan-
toid automata, cellular automata and 
molecular automata.

Possible natural automata for robotic 
application found in other biological 
systems. In the present article, we have 
focused on the finding and defining the 
natural automata acting in living plants. 
Our ongoing study also suggests that nat-
ural automata such as Moore-type autom-
ata or FSA can be found and defined in 
living cells of protozoa. To many of cell 

where E and IAA•+ stands for enzyme 
and IAA cation radicals, respectively. 
Thus, plant peroxidases are capable of 
catalyzing the IAA-dependent generation 
of O

2
•- in the absence of H

2
O

2
. However, 

the nature of the enzyme during forma-
tion of enzyme-substrate complexes such 
as [E-IAA] and [E-IAA-O

2
] has not been 

identified.20,32 Furthermore, this model 
does not explain an additional action of 
IAA as a suicide substrate against plant 
peroxidases by which the enzymes are 
irreversibly inactivated.33 Previously, it 
has been suggested that the oxidation 
statuses of HRP intermediates34 and soy-
bean peroxidase intermediates35 formed 
in the presence of IAA, namely, [E-IAA] 
and [E-IAA-O

2
], may be ferrous enzyme 

and the O
2
-bound form of the enzyme 

(Compound III) in the oxygenase cycle of 
peroxidases, respectively. Therefore, IAA 
can be used as a tester substrate for show-
ing the presence of oxygenase cycle-depen-
dent O

2
•--generating pathway (Fig. 3A).

Interestingly, the transitions among 
different oxidation states in plant peroxi-
dases can be interpreted as the actions of 
Mealy machines. The models involving 
IAA (Fig. 3B) and SA (Fig. 3C) were 
shown as different redox Mealy machines. 
Not like the Moore machines, the mem-
bers of the Mealy machines require highly 
repeated inputs for performing the sub-
stantially available levels of outputs by 
consecutively repeating the input-output 
cycles. Actually that is the case for plant 
peroxidases catalyzing a number of cycles 
of O

2
•--generating reactions to achieve the 

signaling upon repeated consumption of 
substrates such as SA and IAA.

Dark Logic Models Using  
Inhibitors Converts  

the Biological Mealy Machines 
into Moore Machine

Discussion in the above section sug-
gested that many of plant enzymes such 
as peroxidases can be considered as natu-
ral Mealy machines. However, the use of 
speficic inhibitors targetting the enzymes 
may behave as the inputs for the Moore 
machines when dark logic was employed. 
For an instance, by considering the pres-
ence of active enzyme as 0 and loss of 
activity as 1 (thus, dark logic), addition 
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Perspectives: Deterministic finite 
automata (DFA) and nondeterministic 
finite automata (NFA). Lastly, the authors 
wish to discuss the difference between the 
deterministic finite automata (DFA) and 
nondeterministic finite automata (NFA) 
to be applied in designing the plantoids or 
study in the in vivo cellular robotics.

Many of readers with biological back-
grounds may wonder if the biological 
systems function as machines for infor-
matics. Can every events and outcomes 
observed in the biological systems be 
considered clearly as the series of digi-
talized information expressed with 1 or 
0, as discussed in the above sections? In 
fact, the answer is yes with some cautions. 
It is apparently obvious that the applica-
tions of automata in the biological topics 
require special cautions in order to repro-
duce the real biological phenomena. In 
nature, especially in biology, accuracy of 
the automata may largely vary from cell 
to cell, from molecule to molecule; thus, 
an experimentally forced input “1” to 
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be resulted in the corresponding outputs 
with statistically determined range of 
variance. This is largely due to the fact 
that there are both diversity and redun-
dancy in the sets of sensory or signaling 
molecules and/or cells differed in thresh-
olds to the signal intensities or quanti-
ties. One of the likely answers to describe 
and/or design the plant-derived autom-
ata is the modification of the automata 
models from DFA to NFA, although this 
idea is yet to be tested through future 
researches. Figure 4 (D  and E) com-
pares the DFA to NFA with equivalent 
processing capability. The latter model 
(Fig. 4E) allows two different responses 
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of lowered stringency could be achieved 
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resultant performance of the automata 
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Figure 4. Proposed models for plantoids, cells, and molecules functioning as automata. (A) A 
model of plantoid produced by Prof. S. Mancuso (Univ. Florence). (B) Image of an electro-physi-
ologically monitored cell (Prof. F. Bouteau, Univ. Paris-Diderot). (C) An artificial enzyme behaving 
as a plant peroxidase mimic.38 (D) State transitions in deterministic finite automata (DFA) M3. M3 = 
(Q3, Σ3, δ3, q03, F3), where Q3 = {q0, q1, q2, q3}, Σ3 = {0, 1}, δ3(q0, 0) = q0, δ3(q0, 1) = q1, δ3(q1, 0) = q0, δ3(q1, 1) 
= q2, δ3(q2, 0) = q3, δ3(q2, 1) = q2, δ3(q3, 0) = q3, δ3(q3, 1) = q1, q03 = q0, F3 = {q2, q3}. (E) State transitions in 
nondeterministic finite automata (NFA) M3

’. M3’ = (Q3’, Σ3’, δ3’, q03’, F3’), where Q3’ = {r0, r1, r2}, Σ3’ = {0, 
1}, δ3’(r0, 0) = {r0}, δ3’(r0, 1) = {r0, r1}, δ3’(r1, 0) = ϕ, δ3’(r1, 1) = r2, δ3’(r2, 0) = r2, δ3’(q2, 1) = ϕ, q03’ = r0, F3’ = r2.
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