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Genome-wide binding assays can determine where individual transcription factors bind in the genome. However, these
factors rarely bind chromatin alone, but instead frequently bind to cis-regulatory elements (CREs) together with other
factors thus forming protein complexes. Currently there are no integrative analytical approaches that can predict which
complexes are formed on chromatin. Here, we describe a computational methodology to systematically capture protein
complexes and infer their impact on gene expression. We applied our method to three human cell types, identified
thousands of CREs, inferred known and undescribed complexes recruited to these CREs, and determined the role of the
complexes as activators or repressors. Importantly, we found that the predicted complexes have a higher number of
physical interactions between their members than expected by chance. Our work provides a mechanism for developing
hypotheses about gene regulation via binding partners, and deciphering the interplay between combinatorial binding and
gene expression.

[Supplemental material is available for this article.]

Chromatin immunoprecipitation followed by sequencing (ChIP-

seq) ( Johnson et al. 2007) is being routinely used to identify the

genomic binding locations of individual transcription factors (TF)

in a given cell population. However, accumulating evidence sug-

gests that these TFs rarely bind chromatin alone (Gerstein et al.

2012); instead they bind together with other factors as protein

complexes (Moorman et al. 2006; Ram et al. 2011) (e.g., Polycomb

Repressive Complex 2 [PRC2], MYC/MAX TF network, AP1 com-

plex, and more). The number and composition of protein com-

plexes that assemble on chromatin is largely unknown. How many

binding sites on the genome are occupied by protein complexes,

how these sites are distributed relative to genomic features (e.g.,

promoters, intergenic regions), and how chromatin-bound TF

complexes are involved in regulation of cell-type–specific gene

expression are still unknown for most human cell types. Even the

role that known chromatin-bound complexes may play in regu-

lation gene expression (Goke et al. 2011; Ram et al. 2011; Yu et al.

2011; Lee et al. 2012) is also often not well defined.

In the present study, we describe a computational methodology

based on nonnegative matrix factorization (NMF) and regression

analysis that systematically captures potential protein complexes,

identifies where they bind in the genome, and infers their impact on

gene expression. We have applied this method to a large collection of

TF binding data across three different human cell types from the

Encyclopedia of DNA elements (ENCODE) Project (The ENCODE

Project Consortium 2011): embryonic stem cells (H1 ESC),

B-lymphoblastoid cells (GM12878), and erythrocytic leukemia cells

(K562). We also included histone modifications (HMs) in our anal-

yses in order to consider protein complexes binding and its effect

on transcription in the broader context of the chromatin landscape.

NMF has been used in several biological applications (Brunet

et al. 2004; Kim and Park 2007; Xu et al. 2009; Pu et al. 2011) be-

cause its nonnegativity constraint (see Methods) provides an in-

tuitive and biologically interpretable decomposition of a multi-

variate data set and a natural way to cluster biological data (Brunet

et al. 2004). This is unlike principal components analysis, where

eigenvectors with negative sign loadings can be hard to interpret in

the context of positively valued variables such as ChIP-seq read

counts. Unlike other clustering methods (e.g., hierarchical clus-

tering, k-means clustering), NMF enables soft clustering, which

allows for a TF to belong to multiple complexes and a genomic

region to be a binding site for multiple TFs. This type of clustering

is important in the context of transcriptional regulation.

Several studies have performed integrative analysis of multi-

ple ChIP-seq data sets in different organisms (Ouyang et al. 2009;

Rye et al. 2011; Herrmann et al. 2012; Shen et al. 2012). However,

only a few of these studies have explored how combinatorial

binding leads to the assembly of protein complexes on chromatin,

and they have either been limited only to a handful of TFs (Yu et al.

2011) or have focused uniquely on chromatin regulators (Ram

et al. 2011). Importantly, our work differs from recent studies that

have used large collections of ChIP-seq data sets to segment the

genome (Ernst et al. 2011; Ernst and Kellis 2012; Hoffman et al.

2012) into regulatory regions like promoters, enhancers, and in-

sulators (Barski et al. 2007; Cuddapah et al. 2009; Moqtaderi et al.

2010; Rada-Iglesias et al. 2011), in that we aim to discover what

factors bind the regulatory regions as protein complexes. Other

studies have also shown that TF binding (Ouyang et al. 2009;

Cheng and Gerstein 2011; Cheng et al. 2012), HMs (Karlic et al.

2010; Cheng et al. 2012; Wang et al. 2012a), and recently even

DNase I hypersensitive sites (Natarajan et al. 2012) can explain

a fraction of gene expression variation, but none of them have

directly modeled the impact of complexes on gene expression.

Thus, currently there are no broadly used integrative analytical

approaches that can systematically infer the impact of protein

complexes on gene expression.
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In this paper, we describe a computational approach that

uses multiple ENCODE ChIP-seq data sets to recapitulate known

chromatin-bound complexes and to predict novel ones. Our

method allows exploring and deciphering the interplay between

combinatorial TF binding and gene expression, and serves as

a valuable resource for understanding the collective function and

role of regulatory elements and the complexes that bind them. The

proposed computational approach can also generate hypotheses

involving chromatin organization and gene regulation via co-

regulators and binding partners.

Results

Detecting cis-regulatory elements and protein complexes,
and modeling their effect on gene expression

The primary goal of this study is to systematically predict potential

chromatin-bound protein complexes and infer their impact on

gene expression using NMF and regression analysis. We applied the

methodology described here to ChIP-seq data sets for the Tier 1

human cell types in the ENCODE project (i.e., H1 ESC, GM12878,

K562). In total for the three cell types 64 TFs and 11 HMs were

included in this study (Supplemental Table 1).

We first detected peaks (Giannopoulou and Elemento 2011)

for every available ChIP-seq experiment in each cell type (Sup-

plemental Fig. 1). Then we merged peaks from all experiments into

cis-regulatory elements (CREs): regions with enrichment in at least

one data set (Fig. 1A).

For each CRE, we quantified the normalized ChIP-seq reads

density in every experiment in order to build a read count matrix

(RC matrix), whose rows correspond to CREs and columns to ChIP-

seq experiments (Fig. 1B) (see Methods). NMF analysis was then

performed on the RC matrix to group the CREs into clusters. Each

NMF cluster represents a positive linear combination of the origi-

nal normalized read count variables associated with each ChIP-seq

experiment. Consequently, every cluster reveals a binding pattern

that represents a set of TFs simultaneously found by ChIP-seq at

the same CRE and associated HMs. Thus, NMF clusters provide

evidence for the existence of potential complexes with one or more

TFs/HMs. In brief, we computationally infer chromatin-bound

protein complexes from the clusters uncovered by NMF.

In the next step of the workflow, the CREs that occur within

a 50-kb window around a RefSeq transcription start site (TSS) were

identified and integrated the complex scores, estimated by NMF,

with the proximity of the CREs to a TSS, to measure the influence

of a complex on a gene (Fig. 1C; Tabach et al. 2007; Cheng et al.

2012). These influence scores were then used as explanatory vari-

ables to assess the contribution of a complex to gene expression

(Fig. 1D) (see Methods).

A critical parameter in this workflow is the factorization rank

for NMF, which defines the number of clusters used to approxi-

mate the original matrix, and therefore the number of predicted

complexes. In order to decide whether a given rank decomposes

the original matrix into meaningful clusters we used several

quality criteria that have been previously proposed for this type of

approach (Brunet et al. 2004) (see Methods). In particular, we used

different rank values, ranging from 2 to 20, estimated for each rank

several quantitative measures, such as the cophenetic correlation

and dispersion coefficients, and identified local maxima in these

coefficients at high-rank factorization, in order to find complexes

with high granularity (Supplemental Fig. 1). Additionally we used

the consensus matrices visualization to help us find the ranks at

which the NMF run shows robust clustering results (see Methods

and Supplemental Figs. 2–4). We then performed NMF at these

ranks (see Methods for the parameters and criteria used) to uncover

the corresponding protein complexes. Finally, for each complex

we extracted its most contributing CREs. The term complex-specific

CREs mentioned in the following sections indicates these CREs,

which contribute most in each of the discovered complexes.

Nonnegative matrix factorization identifies known protein
complexes and predicts potential novel ones

After peak detection and merging of the overlapping peaks into

CREs, we identified ;100,000 CREs per cell type. These CREs were

distributed in promoter, distal, intergenic, intronic, exonic, and

downstream regions of genes, as shown in Figure 2A, and covered

7%–8% of the human genome (Supplemental Table 2). Addition-

ally, we found that overall genes whose promoters were occupied

by any of these CREs showed significantly higher expression than

genes not occupied by them, across all cell types (Fig. 2B); this

shows the functional significance of the identified CREs. Using

pairwise Jaccard similarity coefficient (see Methods) between CREs

of the three cell types, we also observed that the three cell types

showed only ;25% overlap between their CREs (Fig. 2C), which

supports a cell-type–specific character of the detected elements.

Importantly, almost half of these CREs were bound by more than

one TF, suggesting that the CREs are possibly regions where mul-

tiple TFs assemble as protein complexes (Supplemental Fig. 5).

Since we envision that TFs may either bind to chromatin alone in

specific contexts (our analysis allows a TF to participate in multiple

contexts) or with other co-factors not assayed by ChIP-seq, we did

not filter out in CREs bound by only one TF in the present analysis.

However, in the Supplemental Material we also show the com-

plexes identified after filtering out the single TF-bound CREs and

keeping only the CREs bound by at least two TFs (Supplemental

Figs. 6, 7).

Local maxima in the cophenetic correlation and dispersion

coefficients pointed to the existence of 17, 20, and 17 NMF clusters

for H1 ESC, GM12878, and K562, respectively (Supplemental Figs.

1–4). Heatmaps showing the NMF clusters identified in each cell

type are shown in Figure 3A. In each heatmap, rows correspond to

TFs and HMs and columns to clusters. The rows of the heatmaps

are ordered, and groups of TFs and HMs are color-coded in five

groups, indicating common TFs in all three cell types (light red),

common between H1 ESC and GM12878 only (light blue), com-

mon between GM12878 and K562 only (light yellow), common

between H1 ESC and K562 only (light purple), and common HMs

in all three cell types (light gray). TFs and HMs that are not high-

lighted depict data sets available only for the corresponding cell

type (at the time of submission). The strength of each TF and HM

in each cluster is shown using a color scale with dark red repre-

senting the strongest enrichment. Factorization at lower rank

levels is presented in the Supplemental Material.

A number of observations suggest that our method accurately

recovers groups of functionally related chromatin-binding factors

and that these factors are indeed involved in physical interactions

compatible with protein complexes. In what follows, we use the

notation H/G/K followed by a number to refer to the correspond-

ing cluster in H1 ESC, GM12878, and K562 cell lines, respectively

(Fig. 3A).

First, preliminary examination of the predicted protein

complexes showed that complexes known to bind to and function

at enhancers, such as the ‘‘enhanceosome’’ complex (Kim et al.
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2008; Yu et al. 2011), or contain enhancer-related factors (e.g.,

EP300, SPI1) were frequently found in distal and intergenic regions

rather than in promoters (H-11, G-4, G-11) (orange and light blue

bars in Fig. 3B). The opposite was observed for complexes related to

transcription initiation (e.g., complexes with TAF1) or promoter

marks (e.g., H3K4me2, H3K4me3, H3K27me3, H3K79me2; H-4,

H-7, H-9, K-2, K16) (dark blue bars in Fig. 3B).

Second, we found that many of the members of the predicted

complexes are involved in physical interactions as documented in

the GeneMANIA (Warde-Farley et al. 2010) database (see Methods).

In particular, using randomizations that involved generating

random groups of TFs of the same size as the predicted ones by

randomly combining genes from the pool of the 64 TFs studied in

this work, we found that our predicted protein complexes are en-

Figure 1. Modeling gene expression from combinatorial binding. (A) Peaks from multiple experiments (TFs, HMs) are merged into nonoverlapping
CREs, within the same cell type. (B) For each CRE, the normalized reads intensity in each experiment is estimated. The RC matrix is then produced,
representing the CREs in rows, and the reads’ intensity profiles of different experiments in columns. NMF analysis is applied to the RC matrix, to group the
M experiments of TFs and HMs into k complexes. NMF decomposes the RC matrix into the basis matrix and the mixture coefficient matrix. The basis matrix
contains the coefficient of each CRE in a complex (also called complex score), while each complex represents a positive linear combination of the original
read count variables for each experiment (coefficients matrix). (C ) The CREs that occur within a fixed-range window around a TSS are estimated. Then, the
complex scores and the proximity of the CREs to the TSS of a gene are integrated into a Binding Influence Score (BIS) between a protein complex and a gene.
d0 is a constant used to specify the shape of the exponential function (see Methods). (D) The BIS values are used as predictors to assess the contribution of
protein complexes to gene expression in regression models.
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gaged more frequently in physical interactions than expected by

chance (P < 0.01 in H1 ESC, P < 0.02 in GM12878, P < 0.03 in K562)

(Table 1; Supplemental Table 3).

Third, several of the complexes identified in this study have

been characterized before, partially or entirely. For example, our

method predicted an EP300–TCF12 complex in two cell types

(H-15, G-4); these two factors are known to physically interact (Ta-

ble 1; Supplemental Table 3) and represent the previously described

HEB/EP300 complex (TCF12 is also known as HEB) that has been

reported in neuronal and T cells (D’Apuzzo et al. 2001; Zhang et al.

2004). We used regulatory motif analysis to search for overrep-

resented DNA motifs within the complex-specific CREs, in order

to identify sequence-specific TFs likely to target the complexes to

the chromatin (Fig. 3C; Supplemental Fig. 8). Motif analysis iden-

tified the TCF12 motif as overrepresented in the CREs of H-15,

which indicates that TCF12 binds to DNA and recruits co-activa-

tors such as EP300 (O’Neil and Look 2007). Predicted complex

H-14, which consists of ATF3–JUND–FOSL1 factors, is also well

supported by the literature: JUND and FOSL1 are subunits of the

well-characterized AP-1 complex, while ATF3 is known to interact

with JUND (Table 1; Supplemental Table 3; Pearson et al. 2003). De

novo motif analysis identified the consensus motif for AP-1 as

enriched within the corresponding CREs, and not for CREB that is

the canonical motif for the TF family that ATF3 belongs to, sug-

gesting that AP-1 members bind to DNA and recruit ATF3 (Fig. 3C).

Other complexes identified using our approach are also known

but include novel predicted subunits. For example, complex H-11

in Figure 3 contains the pluripotency factors NANOG–POU5F1–

EP300, which are members of the ‘‘enhanceosome,’’ an EP300

histone acetyltranferase-recruiting complex (Kim et al. 2008; Yu

et al. 2011). The corresponding CREs mostly occupied intergenic

regions (;60%), while only the SOX2–POU5F1 motif was identi-

fied as overrepresented (Fig. 3C). BCL11A, a zinc-finger protein

that functions as a myeloid and B-cell proto-oncogene (Nakamura

Figure 2. Analysis of the CREs of three human cell types. (A) Genomic distribution of CREs and categorization in promoters (62 kb around TSS),
downstream extremities (62 kb around TES), exons, introns, distal (>2 kb and <50 kb), and intergenic regions (>50 kb). CREs span multiple genomic
regions in a fashion that agrees with the fraction of the human genome (hg19) in the above categories. (B) Boxplots showing that genes with CREs in their
promoters (62 kb around TSS) have significantly higher expression than genes not occupied by them, across all cell types. The y-axis shows absolute
transcript expression levels measured by FPKM (fragments per kilobase of exon per million fragments mapped). P-values were calculated by Wilcoxon rank
sum test. Three asterisks (***) indicate P-value < 2.2 3 10�16. (C ) The Jaccard similarity coefficients are shown, indicating how similar the CREs are
across the three cell types. The larger the coefficient, the more similar two peak sets are in terms of overlapping regions. Low coefficients of similarity are
observed between the three cell types, supporting a cell-type–specific character of the detected CREs.
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et al. 2000), and was recently found to be co-associated with

NANOG in human stem cells (The ENCODE Project Consortium

2012), was also found in this complex.

The binding cluster of RBBP5–KDM5B–PHF8–HEY1–TAF1 was

predicted in K-14, and was characterized by preferential binding in

promoters (;90%) (Fig. 3B). Interestingly, we were able to capture

this binding combination that has also been reported in a recent

study (together with the factors CHD1–SAP30–HDAC1 that are also

found in K-14 with coefficients <0.3), where chromatin regulators

were detected using a ChIP-based meso-scale assay (Ram et al.

2011). Our analysis also predicted HEY1

and TAF1 as additional members of the

complex and potential binding partners

of RBBP5, KDM5B, PHF8, CHD1, SAP30,

and HDAC1. Complex K-3 in Figure 3 is

another complex that contained EZH2, a

PRC2 complex component, and HDAC1,

a gene that PRC2 is known to interact

with for transcriptional silencing (van der

Vlag and Otte 1999). Complex K-3 was

also associated with H3K27me3, which is

catalyzed by EZH2. The majority of the

K-3 complex-specific CREs occupied inter-

genic regions (;76%), while only a small

percentage occurred in promoters (2.8%).

This could be explained by the presence

of EP300 that is known to bind to en-

hancer elements (Visel et al. 2009). Other

factors in the predicted complex include

BCL3, CHD1, SAP30, SP1, SP2, TAF7, and

ZBTB33; several known physical interac-

tions occur among them such as BCL3–

EP300, BCL3–HDAC1, EP300–SP1, CHD1–

HDAC1, SAP30–HDAC1, SP1–HDAC,

TAF7–SP1 (Table 1; Supplemental Table 3).

We hypothesize that these factors may

indicate co-regulators that interact with

PRC2 via its subunits.

Importantly, our approach also made a number of novel

predictions. One of these new complexes is ATF3–USF1 and was

predicted in all cell types (H-6, G-13, K-5), with ;27%–29% of its

binding occurring in intergenic regions and only 2%–5% in pro-

moters. The consensus sequence for an E-box element was found

enriched in the complexes in both cell types (59-CANNTG-39),

which is justified by the presence of USF1, a helix–loop–helix

family member that can activate transcription through binding to

E-box motifs (Fig. 3C; Rada-Iglesias et al. 2008). Since only USF1

motif was found enriched in the CREs of these potential com-

Figure 4. Measuring the predictive accuracy of the regression models. The coefficient of determination (R2) and the Spearman’s rank correlation
coefficient are shown for linear and nonlinear regression models, with and without shuffling the RC matrix. NMF and regression analysis based on the
shuffled RC matrix results in lower values for the predictive accuracy of the models. This suggests that the NMF-based discovery of protein complexes,
which is based on the collective binding of multiple TFs on CREs, can explain gene expression variation better than models that use random TF binding
data. One hundred runs of shuffling–NMF–regression were performed, and the average R2 and correlation coefficient are plotted.

Table 1. Physical interactions between the TFs of each complex

The table shows physical interactions between the factors in each complex, from the GeneMANIA
archive (http://genemania.org/data/). For each complex the number of TFs involved in physical in-
teractions and the number of all TFs whose corresponding complex coefficient is >0 are shown. The
number of possible pairwise interactions between the TFs in each complex is also reported. P-values are
calculated after estimating the number of interactions that occur overall in 10,000 sets of complexes with
random sets of genes (of the same size with the corresponding complex). Genes are selected from the pool
of the 64 TFs studied in this work (Supplemental Table 1). Additional information for the physical in-
teractions is provided in Supplemental Table 3.
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plexes, we hypothesize that USF1 binds to DNA and recruits ATF3.

A parallel study (Wang et al. 2012b) very recently also discovered

that ATF3 tethers USF1, which binds to DNA. Similarly, in the

corresponding CREs of the PBX3–SP1 complex (G-9) the DNA

motif of NFYA factor was enriched, which is known to interact

with SP1 (Roder et al. 1999). Although NFYA ChIP-seq data were

not included in the NMF analysis, the discovery of the NFYA motif

suggests that SP1 binds through or with NFYA to the DNA and

consequently recruits PBX3. Finally, even though REST did not

co-localize with other factors in H1 ESC and GM12878, the

CTCF–REST complex was found in K562 (K-13). The motif for

REST, and not CTCF, was enriched in the corresponding CREs,

suggesting that REST might bind to the DNA in that cell line and

recruit CTCF.

Other predicted protein complexes include: GABPA–SIN3A–

KDM5B (H-2), SP1–SP2 (H-5), ELF1–EGR1–USF1 (G-2), PBX3–

BCL3 (G-5), ETS1–ZBB7A (K-1), GABPA–SP2 (K-16), as well as

BATF–IRF4 (G-10). The latter complex is indeed supported by a

known physical interaction between BATF and IRF4 (Table 1;

Supplemental Table 3; Ravasi et al. 2010). Most importantly, the

predicted complexes captured by our method provide testable

protein interaction hypotheses that could be further evaluated

using techniques such as co-immunoprecipitation (Co-IP).

Finally, since a subset of TFs was present in all cell types (the

13 TFs shown at the top of the heatmaps in Fig. 3A), we sought to

examine which complexes that include these TFs were common

and which were different between the three cell types. As already

mentioned, ATF3–USF1 was discovered in all three cell types (H-6,

G-13, K-5), and ATF3–CTCF only in H1 ESC and GM12878 (H-3,

G-1). REST did not co-localize with other factors in two cell types,

but was clustered together with CTCF in K562 (K-13). SIX5 was

clustered on its own in H1 ESC (H-17), but had different partners

in GM12878 (G-8) and K562 (K-3, K-15). A similar pattern was

observed for the factors YY1, TAF1, and SRF that did not co-localize

with any other of the 13 common TFs in H1 ESC (H-10, H-4, and

H-12, respectively), but had different partners in the other two cell

types (G-3, K-15 for TAF1; G-3, G-13, and K-14 for YY1; G-2, G-6,

K-3, K-12, and K-15 for SRF).

Protein complexes acting as activators or repressors

We next sought to predict the effect of these complexes on gene

expression, and determine their role as activators or repressors. We

thus used regression analysis in order to model and describe the

mRNA expression levels of the genes in a given cell type as a func-

tion of the protein complexes binding near the genes (Fig. 1C,D). We

developed two regression models, a linear model using ordinary

least squares linear regression, as well as a nonlinear one, using the

random forests (Breiman 2001) algorithm (see Methods).

The performance of both regression models was evaluated

by the coefficient of determination (R2) and by fourfold cross-

validation (Fig. 4). We observed that nonlinear regression out-

performed linear regression in estimating the extent to which

protein complexes predict gene expression (Fig. 4). This suggests

that nonlinear regression offers a more biologically realistic model,

where the contribution of complexes to gene expression does not

simply add up but is probably affected by other factors too, in-

cluding synergy between complexes. We also found that both re-

gression models agree on most of the complexes that have the

highest contribution to gene expression (H-1, H-4, H-8, H-9, G-1,

G-12, G-17, K-2, K-3, K-7, K-9, K-11, K-14) (Supplemental Fig. 9;

Supplemental Table 4) (see Methods).

Importantly, we have estimated the predictive accuracy of the

regression models with complexes based on randomized ChIP-seq

binding data (Supplemental Fig. 10) (see Methods), and found that

our method for discovering protein complexes with NMF, based

on the collective binding of multiple TFs on CREs, can explain

gene expression variation better than models that use random TF

binding data (Fig. 4).

In the linear prediction model the coefficients of the com-

plexes can be either positive or negative, which allows inferring

the directionality of the effect of a complex on gene expression.

Thus, if the coefficient for a complex is positive, the model pre-

dicts that the combinatorial binding of its partners is a positive

regulator and has a positive effect on transcription, while a nega-

tive coefficient implies that the protein complex serves as a nega-

tive regulator and has repressive effect on transcription (see

Methods). The linear regression coefficients for all predicted

complexes are shown in Figure 3D.

The results from linear regression were consistent with pre-

vious studies that suggest certain complexes as repressors or acti-

vators of gene expression. For example, the complex where the

transcriptional repressor REST was present (K-13) was predicted to

repress gene expression. Complex K-3, which contains members of

the PRC2 complex and HDACs, was also predicted to repress gene

activity, and this prediction is supported by the known role of

PRC2 in transcriptional silencing (van der Vlag and Otte 1999).

Complex H-14, with the AP-1 subunits ( JUND, FOSL) and ATF3,

was predicted as an activator, which is supported by the known

role of AP-1 complex in transcriptional activation. In general,

complexes with repressive histone marks were predicted to act as

repressors, such as the ones with H3K27me3 (H-9, G-1, G-17, K-3),

while complexes with active histone marks (e.g., H3K4me3,

H3K79me2, H3K9ac) were predicted to have a positive effect on

gene expression (H-7, H-8, G-12, G-20, K-11).

Importantly, our approach made a number of new predictions

regarding the regulatory role of the discovered complexes. For

example SP1–SP2 (H-5), ATF3–USF1 (H-6), ELF1–EGR1–USF1 (G-2),

PBX3–SP1 (G-9), RBBP5–KDM5B–PHF8–HEY1–TAF1 (K-14), and

GABPA–SP2 (K-16) were predicted to act as activators, while BATF–

IRF4 (G-10) complex was predicted to have a repressive effect.

Altogether, these results show that we can not only success-

fully discover sets of potentially interacting binding co-factors, but

also determine their regulatory role in a certain cell type.

Discussion
There is limited knowledge on which TFs bind together to the same

regulatory elements and form protein complexes, as well as what

effect these complexes have on gene expression regulation. De-

spite the huge ongoing experimental endeavor to determine the

binding locations of several TFs, there are currently no integrative

analytical approaches that can predict which complexes these

factors form, and more importantly whether they affect gene ex-

pression as activators or repressors. Several protein complexes are

already known and well studied, such as the AP-1 complex and

PRC2. However, the systematic prediction of protein complexes

from experimental TF binding data is a computational challenge

that has not been addressed so far.

Here, we predicted the formation of potential protein com-

plexes from the combinatorial binding of a number of TFs in three

human cell types. We presented a computational approach that

systematically integrates multiple ChIP-seq experiments, discovers

protein complexes, and predicts their regulatory role. We first
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showed that hundreds of thousands of regulatory elements in a cell

type are binding sites for protein complexes, and then explored the

complexes discovered with NMF. Using motif analysis we gener-

ated hypotheses about which factors within these predicted com-

plexes bind directly to the DNA and potentially recruit the rest of

their co-factors. Importantly, we showed that members of the

predicted complexes participate in more physical interactions

than expected by chance. With regression modeling we predicted

the effect of complexes to gene expression and determined their

role as activators or repressors. We showed that the model based on

the collective binding of multiple TFs on CREs can explain gene

expression variation better than models that use random TF binding

data. Interestingly, we found that random forest outperforms lin-

ear regression, possibly suggesting that nonlinear models are bi-

ologically realistic models, where the contribution of complexes to

gene expression is affected by other factors too, such as competi-

tive binding and synergy between complexes.

Although many members of the protein complexes we pre-

dict were found to be physically interacting, it is important to

mention that this may not always be the case. Co-localization of

proteins to the same CREs does not necessarily imply their physical

interaction, but could also occur if distinct TFs bind to the same

CRE in different cells within the same cell population, which

cannot be captured by ChIP-seq. Thus, since the kinetics of bind-

ing is unknown, some TFs could either bind individually or to-

gether in some cells. Further experiments are necessary to validate

protein–protein interactions within the predicted complexes, such

as Co-IP, ChIP-reChIP, and knockdown of one member in a com-

plex and measure of binding of other proteins in the complex.

Even though our analysis predicted certain complexes, we

cannot rule out the possibility that other TFs/HMs, not tested in

our study, could slightly alter the predicted protein complexes

landscape in a cell type and break down large complexes in smaller

ones. Importantly, the model parameters used in our analysis may

not be optimal for predicting the transcriptional activity of complexes

that mostly bind distal regulatory regions, such as the POU5F1–SOX2–

NANOG complex. However, increasing the influence of distal CREs

onto promoters can be achieved by increasing the value of the d0

parameter in our model (Supplemental Figs. 12, 13). Finally, we

believe that the presented method can be further improved in

order to account for competitive binding and the influence of 3D

chromosomal structure (Miele and Dekker 2009; Rickman et al.

2012).

Overall, our results provide a reference for users to develop

hypotheses involving gene regulation via binding partners, while

the application of our method to other data sets can eventually

lead to the systematic characterization of potential chromatin-

bound protein complexes.

Methods

ChIP-seq and gene expression analysis
For each of the Tier 1 ENCODE ChIP-seq data sets shown in Sup-
plemental Table 1 (downloaded from the ENCODE portal, http://
genome.ucsc.edu/ENCODE/downloads.html, and used in accor-
dance with the ENCODE Data Release Policy) we analyzed the
aligned read files (bam format) using the ChIPseeqer software
(Giannopoulou and Elemento 2011). Multiple replicates of each
experiment were combined, and aligned reads were filtered to
remove multi-mapping reads. Peak detection was performed using
the same parameters for all data sets (i.e., P-value threshold for
peaks = 10�5, minimum distance between peaks = 100 bp), except

for broad domain modifications (e.g., H3K36me3, H4K20me1)
where one parameter was adjusted (minimum distance between
peaks = 1000 bp) in order to capture wide peaks, not as sharp as TF
peaks (Giannopoulou and Elemento 2011). The peak detection
parameters were chosen to ensure the quality of the detected
peaks, estimated by a false discovery rate (FDR) <0.005. An em-
pirical approach was followed to estimate the FDR, which involves
randomly splitting the ChIP-seq data into two sets. One set is used
as the ChIP-seq data and the other as the pseudo-control data; and
peak detection is performed. The FDR is defined as the ratio of the
number of peaks detected in this pseudo-control analysis using the
split data set, to the number of peaks detected in the real ChIP-seq
experiment.

For the motifs analyses we used FIRE (Elemento et al. 2007),
which is included in ChIPseeqer (Giannopoulou and Elemento
2011). The estimation of multi-binding CREs and the overlap of
CREs across all cell types were based on the CompareIntervals tool of
ChIPseeqer. The ChIPseeqerReadCountMatrix tool was used to per-
form RPKM-style read count normalization, so that multiple ex-
periments with different numbers of reads can be comparable, and
to quantify the normalized reads for the CREs. The read count matrix
(RC) was created from this analysis (Fig. 1B), representing for every
CRE (N rows) the reads density profiles of different experiments
(M columns).

The estimation of the Jaccard index was based on the corre-
sponding tool of ChIPseeqer (ChIPseeqerComputeJaccardIndex). The
Jaccard index is defined as the number of regions that overlap
between two peak sets, divided by the union of the two sets (i.e.,
peaks of set1 and peaks of set2 and overlapping peaks between set1

and set2). The larger the coefficient, the more similar two peak sets
are in terms of overlapping regions. ChIPseeqer software is freely
available (http://physiology.med.cornell.edu/faculty/elemento/lab/
chipseq.shtml).

The gene expression data sets used, which are available in
the GEO repository (GSM758566, GSM758559, GSM765405),
were aligned to the human genome (GRCh37/hg19) using TopHat
(http://tophat.cbcb.umd.edu/), assembled into transcripts and
quantified using Cufflinks (http://cufflinks.cbcb.umd.edu/).

Nonnegative matrix factorization

NMF is a matrix factorization technique that can be applied to
multidimensional data in order to reduce their dimensionality,
discover patterns, and aid in their interpretation (Brunet et al.
2004). The objective of NMF is to explain the observed data using
a limited number of components, which when combined together
approximate the original data as accurately as possible. NMF de-
composes the original RC matrix (N 3 M) into a basis matrix (N 3 k)
and a mixture coefficient matrix (k 3 M) (Fig. 1B). The basis matrix
has size N 3 k (each of the k columns defines a predicted complex)
and contains the coefficient of each CRE in each complex (Fig. 1B;
Brunet et al. 2004). The coefficient matrix has size k 3 M and each
of the M columns represents the complex binding pattern of the
corresponding experiment (Fig. 1B; Brunet et al. 2004). The co-
efficients in the basis matrix are protein complex scores that
characterize each CRE; thus, a CRE can be described by a set of
complex scores (Fig. 1B). We use these scores to model the regu-
latory effect of a complex on each gene (Fig. 1C) and predict its
expression (see next section). Importantly, the stochastic nature of
the seeding method used to compute the starting point of the
chosen algorithm requires multiple NMF runs to achieve stability.
The NMF R package we used (see below) gives the possibility to
perform multiple runs with random initializations for the basis and
coefficient matrices, and keep the factorization that achieves the
lowest approximation error across the multiple runs (Gaujoux and
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Seoighe 2010) (function nmf, option nrun). In this work we show the
results of the best fit after performing 100 runs for each data set.

The selection of rank k is of great importance when applying
NMF. In order to decide whether a given rank k decomposes the
original matrix into meaningful clusters, several quality criteria
have been suggested (Brunet et al. 2004). The dispersion and the
cophenetic correlation coefficients measure quantitatively the
stability of clustering associated with each k, based on the con-
sensus matrix, which is defined as the average connectivity matrix
over many factorization runs (Supplemental Fig. 1; Brunet et al.
2004). Other measures describe the explained variance of the NMF
model as well as the sparseness of both the basis and mixture co-
efficient matrices, which quantifies how much energy of a vector is
packed into only a few components (Supplemental Fig. 1; Pascual-
Montano et al. 2006). In fact, one of the most useful properties of
NMF is that it usually produces a sparse representation of the data.
Such a representation encodes much of the data using few ‘‘active’’
components, which facilitates the interpretation of the factorization.

Moreover, in NMF the consensus matrix is the average con-
nectivity matrix over many clustering runs, where each connec-
tivity matrix has entry 1 if two samples belong to the same cluster,
or 0 if the two samples belong to different clusters (Brunet et al.
2004). For a robust clustering we expect that the connectivity
matrices will not vary among runs, and that the entries of the
consensus matrix will be close to 1 or 0.

In Supplemental Figure 2 we show the consensus matrices
averaging 100 connectivity matrices computed at k = 2,3,4,5,6,7
and k = 14,15,16,17,18,19 for the H1 Esc data set along with the
cophenetic coefficient and dispersion qualitative measures, in or-
der to justify our choices for the k = 6 ‘‘low-rank’’ and k = 17 ‘‘high-
rank’’ NMF discussed in the manuscript and shown in Figure 3 and
Supplemental Figure 15. In general, clear block patterns along the
diagonal of the consensus matrices indicate robustness of clustering
in the corresponding ranks, and as we see robustness varies with
different values of k. For example, NMF runs with k = 2,5,6,7 in-
dicate more robust clustering than with k = 3,4 (Supplemental Fig.
2), which is also evident from the qualitative measure plots: There
is a decline in the cophenetic correlation measure with k = 3 and k = 4
compared with the other rank values. Although cophenetic cor-
relation increases at k = 5 and remains at higher levels at k = 6,7,
there are clearer blocks shaped in the consensus matrices of k = 6,7
than of k = 5. Finally, we selected k = 6 for the ‘‘low-rank’’ NMF
because additionally at this rank we observed a higher value for the
dispersion measure. Along the same lines, we selected the value of k
for the ‘‘high-rank’’ NMF. Although we observed that at higher ranks
the blocks on the diagonal are not as clear as in the lower ranks, at k =

17 we saw clearer block diagonal patterns which is also confirmed by
the peak that is shaped at the same rank in the correlation cophe-
netic plot. We chose k = 17 over k = 19 since the cophenetic co-
efficient is higher in rank 17, and there are marginal differences
between ranks 17 and 19 in the dispersion plot (Supplemental Fig. 2).

Similarly, in Supplemental Figure 3 we show the consensus
matrices averaging 100 connectivity matrices computed at k =

2,3,4,5,6,7 and k = 15,16,17,18,19,20 for the GM12878 data
set along with the cophenetic coefficient and dispersion qualita-
tive measures, in order to justify our choices for the k = 4 ‘‘low-
rank’’ and k = 20 ‘‘high-rank’’ NMF discussed in the manuscript and
shown in Figure 3 and Supplemental Figure 15. Again, we took into
consideration both the cophenetic correlation and the dispersion
measures as well as the consensus matrix visualization to select the
values of k. Thus, for the ‘‘low-rank’’ NMF k = 4 was chosen since (a)
k = 2 is too low revealing only two large groups of potential co-
factors, (b) the matrices deteriorate with less and less clear blocks
shaped on the diagonal as k increases, and (c) at k = 4 higher
cophenetic correlation and dispersion measures are achieved

compared with k = 5, which also produces a relatively clear con-
sensus matrix. For the ‘‘high-rank’’ NMF, k = 20 was chosen since
there is a peak in the cophenetic plot, while the corresponding
consensus matrix shows a clearer patterns of blocks on the di-
agonal (Supplemental Fig. 3).

In Supplemental Figure 4 we show the consensus matrices
averaging 100 connectivity matrices computed at k = 2,3,4,5,6,7
and k = 15,16,17,18,19,20 for the K562 data set along with the
cophenetic coefficient and dispersion qualitative measures, in or-
der to justify our choices for the k = 4 ‘‘low-rank’’ and k = 17 ‘‘high-
rank’’ NMF discussed in the manuscript and shown in Figure 3 and
Supplemental Figure 15. We followed the same tactic of combining
both quantitative measures and the consensus matrix visualiza-
tion to select the values of k. Thus, for the ‘‘low-rank’’ NMF k = 4
was chosen since (a) k = 2 is too low revealing only two large groups
of potential co-factors, (b) the matrices deteriorate with less and less
clear blocks shaped on the diagonal as k increases, and (c) at k = 4
higher cophenetic correlation and dispersion measures are achieved
compared with k = 6, which also produces a relatively clear con-
sensus matrix. For the ‘‘high-rank’’ NMF, k = 17 was chosen since
there is a peak in the cophenetic plot, and confirmed by a con-
sensus matrix with much clearer blocks on the diagonal (Supple-
mental Fig. 4).

NMF was performed in R (package NMF 0.5.02). We took ad-
vantage of the four different built-in algorithms of the corre-
sponding version (i.e., brunet, lee, nsNMF, offset) (Gaujoux and
Seoighe 2010) and applied NMF for multiple values of k, ranging
from 2 to 20, with each of the four algorithms for every rank. In the
end, we selected the algorithm that achieved the highest R2 in
regression analysis (Supplemental Fig. 11). To estimate the quality
measures for rank k and to extract the complex-specific CREs, that
is CREs that contribute most in each complex (Kim and Park 2007),
we used the functions nmfEstimateRank and extractFeatures from
the NMF package, respectively.

Linear and nonlinear regression models

To model the effect of each protein complex on a gene we used the
method described in a similar study (Ouyang et al. 2009) (imple-
mented in the CalcExtendedPeakScoresExp tool of ChIPseeqer). In
particular, we first determined all CREs that are within 50 kb of
each RefSeq TSS. Each CRE was characterized by protein complex
scores (basis coefficients of NMF), which quantify the presence of
each complex in a CRE. Each of the CREs got a weight that de-
creases exponentially with their genomic distance to the TSS
(Fig. 1C). The weighted complex scores for each TSS were then
summed up to define a Binding Influence Score (BIS) between
a complex and a gene. Formally, the interaction between gene j and
protein complex i is modeled as BISi;j ¼ +khke�dk=d0 , where hk is the
complex score of CRE k, dk is the distance between the TSS and the
CRE. d0 is a constant used in the ratio dk /d0 to specify the shape of
the exponential function (Ouyang et al. 2009); the larger d0, the
more distal complexes will influence the promoter and eventually
the BIS score. In this study, we set d0 to 5 kb, because using this
value the corresponding regression models, used to integrate our
binding data with gene expression, had the highest R2 (see next
paragraphs). This parameter choice leads to a rapidly decreasing
exponential function (Supplemental Fig. 12), which strongly pe-
nalizes distal regulatory elements, such as the ‘‘enhanceosome’’
complex (complex H-11 in Fig. 3A). To examine the effect of this
parameter on the POU5F1–SOX2–NANOG complex, we changed
d0 to higher values (i.e., 100 kb and 500 kb), in order to give higher
BIS scores to complexes that bind to CREs far away from the TSS
and repeated the regression analysis for the data shown in Figure
3A (H1 ESC data set, NMF run at k = 17). The new estimated re-
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gression coefficients for the POU5F1–SOX2–NANOG complex are
now positive and statistically significant in both d0 = 100 kb and
d0 = 500 kb (P < 0.003 and P < 2 3 10�16, respectively) (Supple-
mental Fig. 13). Thus, when allowing distal CREs to more strongly
influence promoters, our analysis correctly predicts the positive
transcriptional regulatory activity of POU5F1–SOX2–NANOG on
its target genes.

The BIS values were then used as explanatory variables (pre-
dictors) to assess the contribution of a detected protein complex to
gene expression (response). Linear regression was performed in R
(function lm) using the model mRNAj = b0 + +m

i biBISij + ej, where
mRNAj is the absolute mRNA expression value of gene j, and BISij

is the score of gene j in complex i. The b̂i coefficients were esti-
mated using ordinary least square fitting and their statistical sig-
nificance was determined using the t-test. A significant and pos-
itive b̂i coefficient indicates that the corresponding protein
complex positively contributes to mRNA expression values,
while a negative coefficient indicates negative (i.e., repressive)
contribution.

Random forests regression (Breiman 2001) was also perfor-
med in R (package randomForest 4.6-4), a nonlinear regression
technique that is based on an ensemble of trees, and the method of
bootstrap aggregation (Breiman 2001). The performance of both
models was evaluated by R2, which measures the quality of the
overall fit of the model and indicates the proportion of the
gene expression variation explained by the model, as well as by
fourfold cross-validation, measuring goodness of fit, and pre-
diction accuracy using Spearman correlation between actual
and predicted gene expression values. The importance of the
variables in random forests (function importance) is measured
by the increased mean square error (Supplemental Fig. 9) that
represents the deterioration of the predictive accuracy of the
model when each component-predictor is replaced by random
noise, as well as by the residual sum of squares that shows the
decrease in node impurities from permutation of each predictor
(Supplemental Fig. 15). The frequency of the variables used is
another measure of importance (function varUsed ) and shows
how many times each predictor is used in the forest (Supple-
mental Fig. 15).

GeneMANIA physical interactions

We used the physical interaction networks available in the Gene-
MANIA (Warde-Farley et al. 2010) database (http://genemania.org/
data/current/networks/Homo_sapiens.tgz) to find pairs of TFs
within the predicted complexes that are known to physically in-
teract. We only used the interaction data from physical interactions
(e.g., iRefIndex, BioGRID) and not from co-expression, co-localiza-
tion, or protein domain networks. Although redundant interactions
may be included in the data set by sources with overlapping inter-
action data (e.g., BioGRID, IREF_GRID, IREF_OPHID, IREF_BIND),
we count an interaction between a pair of proteins only once, even
though it may be supported by multiple sources. Thus, the P-values
shown in Table 1, Supplemental Table 3, and Supplemental Table 5
are not affected by the number of sources supporting a protein–
protein interaction, but are calculated after estimating the number
of physical interactions that occur overall in 10,000 sets of com-
plexes with random sets of genes (of the same size with the corre-
sponding complex). Columns 4 and 5 (GeneMANIA scores, Source of
interaction) in Supplemental Tables 3 and 5 are only provided to
further explain and support the interacting pair of proteins.

The validation of the complexes through known protein–
protein interactions demands choosing a coefficients threshold in
NMF that defines which TFs participate in a complex. If this cutoff
is high (e.g., 0.7), only a few TFs are considered members of a complex

(i.e., only the bright red colored TFs in each complex in Fig. 3A), while
at lower cutoff (e.g., 0.1) more TFs are added in each complex. We
chose this threshold to be 0.3 because the TFs with complex co-
efficients >0.3 represent on average the top 5% of the NMF coefficients
matrices of Figure 3. Additionally, at higher cutoffs we get on average
two to three TFs in each complex, thus overlooking larger complexes.

Finally, we repeated the protein–protein interactions analysis
with the TF complex members shaped when coefficient >0.1 and
found less significant protein–protein interactions within the
complex members shaped at cutoff 0.1 than at 0.3.

Shuffling of the RC matrix

The ChIP-seq read densities were randomly shuffled within each
CRE: The read density of a ChIP-seq experiment was randomly
assigned to another experiment (Supplemental Fig. 10). NMF was
subsequently performed on the shuffled RC matrix, and regression
analysis followed using the BIS values of the new NMF-discovered
complexes as explanatory variables, in order to assess the accuracy
of both predictive regression models. The process of shuffling–NMF–
regression was repeated 100 times, and the average R2 and correlation
coefficients are shown in Figure 4. We observe that the predictive
accuracy of the models is better without shuffling, suggesting that our
method of inferring protein complexes with NMF based on the col-
lective binding of multiple TFs on CREs can explain gene expression
variation better than models that use random TF binding data.
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