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Community Detection in Signed 
Networks: the Role of Negative 
ties in Different Scales
Pouya Esmailian1 & Mahdi Jalili2

Extracting community structure of complex network systems has many applications from 
engineering to biology and social sciences. There exist many algorithms to discover community 
structure of networks. However, it has been significantly under-explored for networks with positive 
and negative links as compared to unsigned ones. Trying to fill this gap, we measured the quality 
of partitions by introducing a Map Equation for signed networks. It is based on the assumption 
that negative relations weaken positive flow from a node towards a community, and thus, external 
(internal) negative ties increase the probability of staying inside (escaping from) a community. 
We further extended the Constant Potts Model, providing a map spectrum for signed networks. 
Accordingly, a partition is selected through balancing between abridgment and expatiation of 
a signed network. Most importantly, multi-scale spectrum of signed networks revealed how 
informative are negative ties in different scales, and quantified the topological placement of negative 
ties between dense positive ones. Moreover, an inconsistency was found in the signed Modularity: 
as the number of negative ties increases, the density of positive ties is neglected more. These results 
shed lights on the community structure of signed networks.

During the last decade, there has been an ever-growing interest in community structure of real-world 
networks1,2. A community structure is observed on a network when relations are sparse, and there exists 
a mechanism driving density heterogeneity3,4. Indeed, grouping a network into modules of relatively 
high density provides novel insights into characteristics of a network5–9. However, the mainstream of 
this trend is mostly involved with only positive relations, where the links are absorptive, and thus “more 
links” means “more closeness”. In parallel with this trend, there has been some attempts towards com-
munity detection in networks with both positive and negative relations1,10,11. As a result, the objective is 
to partition a network into modules of relatively high density with as few internal negative ties as pos-
sible. Hence, this is different from those that are not bound to the density constraint, e.g., Correlation 
Clustering12.

A community is a group of tightly knitted nodes that are weakly connected to the rest of the net-
work. This is not a definition per se, nonetheless it is the one upon which literature is mostly agreed, and 
can be further refined into specific definitions13. For signed graphs, the extension is straightforward by 
adding “as few internal negative ties as possible” criterion. Despite a vast literature on community detec-
tion, there has been few attempts towards signed networks1. Nonetheless, as the main step, Traag and 
Bruggeman generalized the modularity-alike objectives to signed graphs, as they have straightforward 
and intuitive signed counterparts14. However, the generalized form introduces a set of crucial parame-
ters that cannot be trivially set. For the case of modularity, the objective function proposed by Gómez 
et al.15 is as:
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where G+ (G−) is the positive (negative) subgraph of G, C is the partition, and 0 ≤  α ≤  1 is the relative 
importance of positive subgraph compared to the negative one, which has been set to /+E EG G

15. This 
objective function rewards (punishes) more positive (negative) density inside modules. In this work, we 
developed specialized algorithms for discovering community structure in signed networks. We first 
reformulated the Map Equation to measure the quality of partitions, known as Minimum Description 
Length (MDL). Next, we extended Constant Pots Model (CPM) to collect a spectrum of partitions from 
highly simplified to detailed ones, by sliding its parameter λ from zero to one (Fig. 1a,b). Based on these 
extensions, the community detection is carried out by minimizing MDL on λ-spectrum (Fig.  1c). 
Moreover, by comparing MDL and the ratio of internal negative (positive) links, the role and topological 
placement of negative ties can be quantified (Fig.  1d). As the experiments will show, the proposed 
method is highly reliable on both signed and unsigned networks, overcoming the resolution-limit and 
inconsistency of Modularity on signed networks. To evaluate the method, we proposed a novel bench-
mark in which negative ties can be informatively introduced. As a motivation, evaluating the effective-
ness of signed detectors is possible only if the negative ties are informative and, to the best of our 
knowledge, this issue has not been addressed in previous works.

Results
Notation. Throughout the paper, the expressions “link,” “edge,” “tie,” and “relation” are used inter-
changeably, unless we explicitly make a note. A graph G is determined by the triple (V, E, W) where V 
is the set of nodes, E is the set of edges defined by pair (vi, vj) of nodes ((vi, vj) =  (vj, vi) for undirected 
graphs), and W assigns a weight to each edge. The induced graph of node set a is defined by (V′ , E′ , 
W′ ) where i) V′  =  a, ii) (vi, vj) ∈  E′ , if vi, vj ∈  a and (vi, vj) ∈  E, and iii) W′ (vi, vj) =  W(vi, vj). A partition C 
assigns each node to a module (i.e., ci is the module of node i). Other basic notations are listed in Table 1.

Figure 1. The proposed method. A spectrum of partitions C(λ ) and C+(λ ) is created by applying the 
extended CPM on a signed graph (a), and its positive subgraph (b). The best community is the one with 
the lowest MDL (c). Also, by comparing C(λ ) and C+(λ ) partitions based on MDL and the ratio of internal 
negative (positive) links, useful insights about the role and topological placement of negative ties are 
obtained (d).

Symbol Meaning

Ea Number of directed links of induced graph a

Na Number of nodes in a

ωa Sum of directed weights of induced graph a

ci Module of node i

ωab Sum of weights from a to b

ωa: Sum of weights from a

ωi, in Sum of weights from node i to ci

ωi, out Sum of weights from node i to all c ≠ ci

ω .. Sum of absolute weights

ω..
+ Sum of positive weights

ω..
− Absolute sum of negative weights

aab = sign(ωab)

pab ω ω/+ +
ab a:

δ(a, b) =1 if a =  b; =0 otherwise

Table 1.  Basic notations. a and b could be any set of nodes, but i is reserved for a single node. Notations 
defined for ω could be inherited by others.
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Tools to explore the community structure of signed networks. In this work, we reformulated 
the well-known Map Equation L(G, C) for signed networks, which is the minimum expected code length 
that is required to address each step of a random-walker (also known as Minimum Description Length). 
The idea is that negative ties should be used in line with the “random walkers are more likely to be 
trapped inside a community” intuition. Therefore, a negative tie from node i of module ci towards c′  
should decrease the probability of going from ci to c′ , and conversely, a negative tie towards the inside 
of ci should increase the probability of escaping from ci. Accordingly, Map Equation was reformulated to 
account for the negative ties (see Methods). By increasing the amount of external (internal) negative ties, 
it is expected that the value of MDL decreases (increases). Also, we extended the Constant Potts Model 
(CPM) to signed networks. CPM explicitly states that the absence of internal positive ties should be 
punished using a constant parameter λ. In particular, by sliding λ from 0 to 1 (or further), the minimi-
zation of CPM results in the extraction of smaller and denser modules16. Utilizing these well-established 
foundations, our method provided a map spectrum for signed networks, which not only revealed the 
best partition of a network but also provided useful information about negative ties on different scales 
of a network.

Proposed benchmarks for signed networks. In this manuscript, we extended the LFR 
(Lancichinetti-Fortunato-Radicchi17) benchmark to signed graphs. As the main characteristic, our exten-
sions (the same as original LFR) provide scale-free distributions for positive (negative) degrees and com-
munity sizes. These benchmarks are denoted as signed and coupled LFR. The signed LFR simply replaces 
internal (or external) positive ties with negative ones. This extension was used to evaluate the effect of 
external (internal) negative ties on the extended Map Equation. However, in order to evaluate the power 
of signed detectors, a network must have two features: (1) a valid ground-truth for comparison, and (2) 
informative negative ties, which ignoring them leads to incorrect partitioning. These features do not 
simultaneously hold for the signed LFR, and thus, the coupled LFR was proposed. To show the failure 
of the signed LFR, the evaluation was started with uninformative negative ties, which can be ignored. 
Gradually, by placing positive ties between the communities, it was expected that at some point the neg-
ative ties become decisive, which means the unsigned detectors unlike signed ones must fail to detect the 
correct partition. However, before the total collapse of the ground-truth, this did not happen, signifying 
that the signed LFR has either uninformative negative ties or invalid ground-truth (Fig. 2a). Accordingly, 
the coupled LFR was introduced. Without going into details, it is composed of two identical LFR graphs, 
and the merging process occurs only between twin (duplicate) communities (Fig. 2b). As the schematic 
representation shows, the coupled LFR provides an interval (phase 3) with both informative negative 
ties and known ground-truth, suitable for evaluating the efficiency of signed detectors. The procedure of 
creating the benchmarks is as follows:

Signed LFR. LFR benchmark was extended by introducing external or internal negative ties regarding 
each node. For the case of external ones, there is an additional parameter μ−out, where μ μ μ= ++ −

out out out, 
that forces each node to have μ/,

− −
a ai out i out. For example, in a graph with μout =  0.6 and μ = .− 0 25out , 

regarding each node i, approximately 40% of links are positive and inside module ci, 25% are negative 
and outside ci, and 35% are positive and outside ci. For the case of internal negatives, using parameter 
μ = /−

,
−a ain i in i:

, the procedure is the same as the external ones.

Figure 2. Characteristics of the proposed benchmarks. Csingle (Ccouple) partition places each community 
of ground-truth (and its duplicate) in one module. (a) in signed LFR, for any arbitrary amount of external 
negative ties, by increasing positive ties between communities, the ground-truth is detectable by unsigned 
methods, as well as signed ones, until it fades out. (b) in coupled LFR, the duplicate (twin) communities are 
first intertwined with positive ties (phase 1 and 2) and then get separated by negative ties (phase 2 and 3). 
This leads to (A) a constantly known ground-truth (green double-line) which switches from Csingle to Ccouple 
and again back to Csingle, and (B) informative negative ties in phase 3 where unsigned methods wrongly 
prefer Ccouple to Csingle. The transition points are illustrated using MDL measure (lower value corresponds to 
better partition).
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Coupled LFR. This benchmark was built using two identical unsigned LFR graphs that were inter-
twined using parameters μc and μ−c , where 0 ≤  μc <  1 and μ μ μ= ++ −

c c c . Thus, there are two layers of 
graphs where each node or community has a duplicate (or twin) in the other one. Keeping the layers 
unchanged, the benchmark forces node i to have μ μ/( − ),a [ 1 ]i in c c  new links towards twin community 
c’i (similar for μ−c ). That is, by increasing μc, twin communities become intertwined, and conversely, by 
increasing μ−c  they become separated. However, the nominal μc may not be satisfied for some nodes, and 
thus, the empirical average was reported in the plots. It is worth mentioning that the “twin” notion is not 
a model of real-world networks, but an easy way of controlling the network structure to produce inform-
ative ties (Fig. 2b). In other words, by introducing the coupled LFR, we tried to ensure the effectiveness 
when negative ties are playing a decisive role in partitioning the network as well as to include some basic 
characteristics of real-world networks such as scale-free community sizes and node degrees.

Comparison of partitions. The distance between two partitions C and C′  was measured using 
Normalized Variation of Information (NVI). NVI is zero if the partitions are identical, and one if they 
are statistically independent, meaning no information is gained about C by knowing C′  and vice versa; 
see the formulation in Methods.

The notations used for denoting general types of partitions are as follows:

	 •	Ctruth: ground-truth partition of a graph for [un]signed LFR.
	 •	CAllin1: all-in-one partition, which places all the nodes in one module.
	 •	Csingle: places each community of coupled LFR in one module.
	 •	Ccouple: places each community and its twin in one module.

Evaluation of SiMap. In order to investigate the effect of negative ties, SiMap was examined on 
signed LFR. In Fig. 3a,b, the internal structure of the communities was kept constant during the increase 
of mixing μout, and similarly, the external links were kept constant during the increase of internal ties 
(μin) in Fig. 3c. As shown in Fig. 3a, for a network of two communities, when the mixing of only positive 
ties was increased, the value of MDL (solid curve) increased accordingly, which corresponds to the 
decrease of quality of communities. Next, we stopped adding positive ties at μ+out and started adding 
negative ones afterwards, where μ μ μ= +− +

out out out. The external negative ties are expected to cancel out 
the positive ones, and thus the quality of communities increases again (equally MDL decreases) almost 
to that of μout =  0. This expectation was validated using different starting points (dashed curves in 
Fig.  3a). On the other hand, for a network of more than two communities, randomly-added external 
negative ties may not cancel the positive ties from each node towards every community. In other words, 
even if μ μ≥− +

out out, a node may have more positive ties toward a module than negative ones. Hence, as 
depicted in Fig. 3b, MDL dropped towards the level of μout =  0 with a slower slope and never reached 
that level. This is consistent with our formulation, stating that the external negative ties would cancel all 
the positive ones, if their weight towards every community is, at least, as much as positive ones, other-
wise, MDL should be higher than that of μout =  0. For the case of internal negative ties, a similar exper-
iment was carried out. As shown in Fig. 3c, internal negative ties canceled the effect of positive ones, and 
consequently weakened the quality of communities almost to the situation where there had been no ties 
inside the communities (μin =  0).

In general, SiMap not only punishes the presence of internal negative ties, but also rewards the exter-
nal negative ones. Note that the rewarding is module-wise, which means the mesoscopic topology of the 

Figure 3. SiMap on signed LFR. (a) Network of two communities of size 500. We added the external 
positive ties until μ+out, and the negative ties afterwards. Networks with μ μ=+ −

out out had almost the same 
quality as the case with μ = 0out . (b) Network of many communities with NG =  1000; although μ μ≥− +

out out, 
the external negative ties may not cancel the positive flow from each node towards every community; 
therefore, dashed MDL curves dropped slowly, and never reached the level of μ = 0out . (c) Network of many 
communities with NG =  1000; the internal negative ties canceled positive ones almost at the same level as 
μ = 0in . Each value was averaged over 25 graph realizations.
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network determines the amount of the reward; e.g., if two modules have no positive ties in between, the 
inter-negative ones add no information, and therefore have no effect on MDL.

Map spectrum of CPM(λ). In this experiment, the SiMap of signed CPM(λ) was plotted to illustrate 
its well-behaved curve with respect to the distance function NVI(CCPM, Ctruth). For comparison, the sta-
tistics of InfoMap (which ignores negative ties) and Modularity were also plotted. As depicted in Fig. 4a, 
although NVI is aware of the ground-truth partition, MDL curve behaved similarly to NVI, which first 
smoothly decreased, and then slowly increased. Additionally, the minimum of MDL(λ) coincided with 
the true community structure of the graph. Furthermore, InfoMap reached the same minimum level 
of MDL, meaning that the negative ties were not informative in this network. On the other hand, at 
μout =  0.8, MDL(λ) constantly increased from λ =  0 to 1 (Fig. 4c). This indicates that the single-module is 
preferred to dividing the network into sub-modules, since it has no significant agglomeration of density 
at this mixing rate16.

Performance of CPMap on Signed LFR. In this experiment, we compared InfoMap (which ignores 
the negative ties), CPMap, and Modularity on signed LFR for μ =− 0out  (unsigned), μ = .− 0 2out  and 
μ = .− 0 4out . In all cases, CPMap performed better than the signed Modularity. As demonstrated in 
Fig. 5a,b, on unsigned LFR, CPMap performed nearly as well as InfoMap in optimizing equation (15). 
This suggests that CPM provides a reach set of partitions. For μout ≥  0.75, CPMap opted for the 
single-module partition CAllin1, which had a lower MDL than both Ctruth and the output of InfoMap. 
Nevertheless, according to Fig. 5a,d, there still remains a room for future improvements upon CPM to 
optimize SiMap. In Fig.  5c,d, by adding μ = .− 0 2out  negative ties to each node, even InfoMap was still 
capable of detecting Ctruth before μ . 0 75out . After this threshold, all detectors failed to detect Ctruth, 
since the community structure was not valid anymore due to severe rewirings16,18. In Fig. 5e,f, by adding 
more negative ties (μ = .− 0 4out ), although CPMap reached a better MDL than all other partitions, the 
situation remained almost the same, that is signed LFR either has non-informative negative ties or invalid 
Ctruth.

As a summary, although this benchmark may be first to come to mind, we showed it is not capable 
of appropriately challenging the signed detectors. The non-informativeness comes from the fact that 
flipping the external positive links to negative makes the community structure more clear, and thus 
InfoMap performs on signed LFR as accurate as the unsigned one. For this reason, the coupled LFR 
was introduced that gives us more leverage on the informativeness of negative ties while keeping the 
community structure valid.

Figure 4. MDL spectrum of CPM(λ) on LFR (NG = 5000). (a,b) MDL and NVI for μ = .0 6out ; although 
μ μ>, ,i out i in for every node, the community structure is still clear and detectable24. (c,d) MDL and NVI for 
μ = .0 8out , where the network has no significant community structure, and thus single-module has lower 
MDL than the case when the network is divided into sub-modules.
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Performance of CPMap on Coupled LFR. In this experiment, using coupled LFR, we investigated 
the ability of CPMap on utilizing the negative ties’ information. To this end, μout = 0.3 was used for each 
layer to have connected yet well-separated communities, and only the connectivity of twin communities 
was manipulated. First, in Fig.  6a,b, two identical layers of graphs were gradually coupled only with 
negative ties (μ μ= −

c c ). As expected, the output of CPMap and InfoMap constantly resembled Csingle, 
since the negative ties added no competing information to the community structure of positive subgraph. 
However, the output of Modularity, surprisingly, changed with the increase of negative ties. In particular, 
by increasing μc, previously detected modules were expanded to form larger ones. In other words, the 
number of negative ties indirectly weakened the sensitivity of Modularity to the density of positive ties, 
leading to larger and sparser modules.

Second, in Fig. 6c–f, the amount of positive ties μ+c  between twin communities was increased until 
the quality of Ccouple surpassed that of Csingle. At this point, Ccouple was preferred by the detectors instead 
of Csingle. Knowing that CPMap and Modularity are partitioning the networks based on a criteria other 
than SiMap, this somehow validated the alignment of SiMap with the true quality of partitions. In the 
next phase, the negative ties μ−c  were added between twin communities to break them apart. As a result, 
the negative ties gradually became informative, since by ignoring them, InfoMap kept partitioning the 
graph exactly the same as Ccouple. When Csingle surpassed Ccouple, CPMap started to switch from Ccouple to 
Csingle accordingly. However, this switching occurred much later for the signed Modularity, meaning that 

Figure 5. Evaluation of methods on signed LFR (μout is plotted in percentage). (a,b) NVI and MDL of 
the algorithms for unsigned LFR, (c,d) NVI and MDL for μ = .− 0 2out , and (e,f) for μ = .− 0 4out . In all cases, 
CPMap and InfoMap had close performance and both outperformed Modularity. Before μout  0.75, all 
detectors similarly performed on signed LFR as compared to the unsigned one. Roughly for μ > .0 75out , the 
community structure faded out and all detectors suddenly failed. Therefore, the signed LFR has either non-
informative negative ties or invalid Ctruth. Each value was averaged over 25 graph realizations with 
NG =  5000.
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it is less sensitive to the informative negative ties. Also, it never opted for Csingle due to an inherent incon-
sistency. Nevertheless, there is still a room for improvement upon signed CPM for optimizing SiMap, 
which is evident from 0.3 <  μc <  0.45 in Fig.  6c,d and 0.45 <  μc <  0.55 in Fig.  6e,f, where MDLsingle is 
better than MDLCPM.

Online Social Media Networks. Using the proposed tools, we investigated the mesoscopic struc-
ture of three well-known real signed networks: Slashdot, Epinions, and WikiElections. To this end, we 
optimized equation (17) for the whole spectrum of λ =  [0, 1], and further analyzed the corresponding 
partitions at each scale (only the informative intervals are plotted). In particular, the main information 
comes from comparing the spectrum of signed CPM to that of CPM+ , which is only applied on the 
positive subgraph, to find the role of negative ties in different scales of the network. Also, this spectrum 
of partitions were compared with the output of InfoMap and signed Modularity.

As depicted in Figs 7, 8 and 9, MDL curve was V-shaped for all three networks with a minimum at 
λmin, which signifies that i) the networks have community structure, and ii) the best map of each network 
is made up of modules with density ≃ λmin or higher that are mutually connected with the same density 
or lower. In particular, WikiElections had considerably denser modules than both Slashdot and Epinions, 
which is consistent with its relatively higher density of positive ties (see Table  2). Also, regarding the 

Figure 6. Evaluation of methods on coupled LFR (μc is plotted in percentage). (a,b) Only negative ties 
were added between two layers. Csingle constantly had the lowest MDL and was detected by InfoMap and 
CPMap. However, the Modularity failed to detect Csingle by merging its communities. (c,d) Positive ties were 
added between twin communities until μ = .0 25c , and negative ties were added afterwards. CPMap 
constantly preferred the structure with the lowest MDL that is, in order, Csingle, Ccouple, and again Csingle. 
However, InfoMap wrongly preferred Ccouple after μ . 0 1c , signifying the usefulness of negative ties. (e,f) The 
experiment was repeated using more intertwined layers at μ = .0 3c . For all cases, Modularity reacted slowly 
to informative ties, and eventually failed to detect Csingle. Each value was averaged over 25 graph realizations 
with Neach layer =  5000.
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internal negative (positive) ties, they continuously declined and were placed between the modules, as 
the interpretation of λ suggests.

Slashdot. According to Fig. 7, in all scales, the MDL curve of CPM+  was better than that of CPM. 
Also, MDL of InfoMap was better than MDL(λmin) of CPM. Although the optimized value of equation 
(17) was slightly better for CPM than CPM+ , which implies the constructive role of the negative ties in 
the optimization process, better MDL of both CPM+  and InfoMap signified that negative ties were not 
informative to achieve a higher quality mesoscopic structure as compared to the coupled LFR. Also, in 

Figure 7. Mesoscopic spectrum of Slashdot dataset. MDL, Hλ(G, C), and the ratio of internal negative 
(positive) ties are plotted for the output of CPM(λ), CPM+ (λ), InfoMap, and signed Modularity. λmin 
marks the best scale for CPM at which it has the lowest MDL. CPM+  is the application of CPM on positive 
subgraph. If the output of CPM has lower (better) H than that of CPM+ , the value of inset will be 1, and 0 
otherwise.

Figure 8. Mesoscopic spectrum of Epinions dataset. Designations are as Fig. 7.
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terms of the internal negative ties, CPM+  placed them between modules after λ ≃  0.015 without using 
their information, implying that almost all (95%) of negative ties were naturally placed between modules 
of density ≃ 0.015 or higher that were mutually connected with the same density or lower. These findings 
are consistent with previous ones both on microscopic19 and mesoscopic levels20. However, using the 
proposed tools, one captures a more quantitative picture of negative ties for the entire spectrum of the 
mesoscopic structure.

Epinions. According to Fig. 8, similar to Slashdot, CPM+  and InfoMap reached a better MDL than 
CPM, meaning that one could not find a better partition by taking negative ties into account. However, 
CPM+  could not exclude 95% of negative ties until λ ≃  0.085. Therefore, the negative ties are placed 
between the modules of higher density with stronger interconnections compared to Slashdot. This means 
that the “negative ties lie between dense positive modules” pattern is apparent, yet, less salient than 
Slashdot.

WikiElections. According to Fig. 9, unlike Slashdot and Epinions, CPM had considerably better MDL 
than both CPM+  and InfoMap at the best scale λmin =  0.0029 and beyond until λ ≃  0.1. This suggests that 
the information of negative ties is useful for WikiElections, and only vanishes when one zooms into the 
network to find the modules of density ≃  0.1 or higher. Accordingly, negative ties lose their informative-
ness for λ ≥  0.1. However, this threshold is well before the trivial case λ ≃  1, where the objective is merely 
to find positive cliques. Additionally, CPM+  could not place 95% of negative ties between the modules 
until λ ≃  0.25, meaning that the position of negative ties between dense positive ones is considerably 
less notable than Slashdot and Epinions. It is worth mentioning that Leskovec et al. also observed this 
different pattern of relations from local perspective, which have resulted in a weak cross-generalization 
of link prediction models, and also less accurate models for WikiElections21.

Indeed, these observations can be explained using the intuitive information trade-off of negative ties 
between local level (for sign prediction) and mesoscopic level (for community detection). That is to say, 
the more principled the negative ties between dense positive regions, the more accurate a link type can 

Figure 9. Mesoscopic spectrum of WikiElections dataset. Designations are as Fig. 7.

NG EG/2 /−E EG G /+E NG G
2

Slashdot 75012 486537 0.2171 1.35E-04

Epinions 103157 668740 0.127 1.10E-04

WikiElections 6521 98907 0.2072 3.70E-02

Table 2.  Basic statistics of datasets after preprocessing. EG/2 is the number of edges, /−E EG G is the ratio of 
negative edges, and /+E NG G

2 is the density of positive subgraph.
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be predicted given the information of its neighbors, and conversely, the less information they have for 
the task of community detection20.

More on Signed Modularity. Based on the results from coupled LFR, by increasing the negative ties, 
Modularity loses its sensitivity to the density of positive ties. Moreover, our experiments showed that 
even if two layers of coupled LFR are connected by only negative ties, again, the increase of negative ties 
leads to placing each layer in one module (Fig. 10b). Note that the coupled LFR is used to resemble two 
positive regions of a network (with heterogeneous densities internally) that are connected by negative 
ties. As an attempt to explain this observation, we considered a coupled LFR with fixed parameter μout, 
which controls the mixing of each layer, and tunable parameter μc, which adds [only] negative ties 
between two layers. Setting μ μ μ= ( − )/( − )q 1 1c out c , the amount of negative ties relative to positive 
ones is

= , ( )− +E qE 2G G

and the sum of positive/negative ties from each module is
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where κ μ= ( − )1 out
2 is a constant value. According to the interpretation provided in Methods, the 

functionality of /+ +E Ec G
2 , similar to Nc

2, is to control the density of modules. Therefore, by increasing q, 
this sparsity-punishment term is attenuated, and consequently, modules try to gather more links ignoring 
the loss of density. That is to say, the density of each module gradually becomes less important, and 
conversely, the number of internal links becomes more important, which leads to larger and sparser 
modules consistent with our experiments (Fig. 11). In the same way, equalizing the importance of posi-
tive and negative ties (α =  0.5) leads to an even worse situation as:

( ) ∑, =




−
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2 5single

G c
c
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implying that, for any q >  0, the objective is to have higher (lower) number of positive (negative) ties 
regardless of the density. This was revealed by our experiments which showed that each layer was placed 
into one module by a slight increase in μc (Fig. 11). In fact, we argue that the reason for this failure is 
due to the implicit scale of Modularity that is similar for both positive and negative subgraphs. Setting 
λ− =  λ in equation (16), this becomes more clear as follows:
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Figure 10. Schematic representation of inconsistency of Modularity on coupled LFR. By adding negative 
ties between twin communities, eventually, Modularity placed each layer of Csingle into one module (b).
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which basically leads the signed CPM to the same drawback as Modularity.
It can be concluded that when the number of negative ties increases, the sensitivity of Modularity to 

the density of positive ties deceases as the objective merely becomes grouping higher number of positive 
ties while excluding the negative ones, which is similar to Correlation Clustering. This inconsistency is 
resolved for CPM by setting λ− =  0 (see Methods).

Discussion
In this work, we resolved the problem of community detection in networks with positive and nega-
tive edges. The proposed algorithm showed an excellent performance on novel synthetic benchmarks. 
Moreover, it provided a mesoscopic spectrum of signed networks, giving novel insights into the infor-
mativeness of negative ties as well as their topological placement between dense positive regions. Hence, 
one can attain a profound understanding about the structural relevance of positive and negative relations, 
and utilize that to justify the absorptive-repulsive behavior of the entities according to the context.

The proposed algorithm, CPMap, showed a reasonable performance close to InfoMap on unsigned 
networks and non-informative signed networks, outperforming signed Modularity. Also, when the neg-
ative ties were informative, CPMap performed excellent, extending the capabilities of InfoMap to signed 
networks. On the contrary, signed Modularity showed considerably weaker sensitivity to the presence of 
informative negative ties, as well as, growing inconsistency when the relative number of negative ties was 
increased. This inconsistency was further justified by the physical interpretation of the scale parameter 
λ, shedding new light on the general form of signed objectives.

Regarding the mesoscopic spectrum of real-world networks, we observed that negative ties in Slashdot 
and Epinions did not contribute to a better quality map than positive subgraph. However, they were 
informative for extracting the best map of WikiElections, where both CPM+  and InfoMap reached a 
similar MDL, yet, considerably worse than signed CPM. This usefulness lasted until we zoomed into the 
network to find the modules of density ≃ 0.1 or higher. Moreover, the placement of negative ties between 
dense positive modules was more prominent in Slashdot and Epinions than WikiElections. However, 
this obscure pattern in WikiElections led to the extraction of more information from negative ties for 
community detection, consistent with the lower information extracted for the task of sign prediction21. 
Considering the nontrivial position of negative ties, if one wishes to detect modules of maximum den-
sity, i.e., positive cliques, negative ties obviously play no role in the detection task, and they are always 
placed between the modules. However, for Slashdot/Epinions/WikiElections, the majority of the negative 
ties were between modules of density ≃ 0.015/0.085/0.25 or higher that were interconnected with the 
same density or lower, well before this trivial case. Therefore, we showed that it is expected to observe 
the “negative ties lie between dense positive ties” pattern in a nontrivial setting for real-world networks.

Methods
Tools to explore the community structure of signed networks. We first introduce two objective 
functions used to determine the quality of communities: Map Equation22 and Constant Potts Model23, 
which been previously used for unsigned graphs. We reformulated the Map Equation to signed networks 
(SiMap) by reweighting the walking patterns based on the mesoscopic information of negative ties. Also, 
we extended CPM to signed graphs, which remains unchanged when the same weight is used for both 
negative and positive terms. For the final algorithm, the only parameter of signed CPM, λ, is determined 
using SiMap.

Figure 11. Size of the largest module of Modularity on coupled LFR (μc is plotted in percentage). For 
α = /+E EG G, by increasing the number of negative ties between two identical LFR graphs (which have a 
clear community structure at μ = .0 3out ), modules were expanded until each layer of 5000 nodes was 
enclosed in one module. This happened after μ . 0 4c  corresponding to − +

E EG G
1
2

. For α =  0.5, complete 
expansion occurred right after a slight deviation from μc =  0. The graphs were averaged over 25 realizations 
with Neach layer =  5000.
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Map Equation. Given a graph G and a partition C, Map Equation L(G, C) is the minimum expected 
code length that is required to address each step of a random-walker. Suppose a random-walker is going 
from node n to n′, this step is addressed as follows:

 1. If the walker stays inside module c, a code is produced for n′.
 2.  If the walker goes from module c to c′ , an exit-code for c, a code for c′ , and finally a code for n′ are 

produced sequentially.

Accordingly, there are two levels of coding. In the first level a code is assigned to each module, and in 
the second level each module receives a private coding for members and the action of exiting the module. 
Finally, using Shannon entropy, the theoretical minimum code length is achieved when the codes are 
assigned to entities based on their frequency of use. Consequently, the calculation of Map Equation is 
narrowed down to the relative frequency of visiting nodes and entering-exiting modules. Recent studies 
have shown that L is a very powerful criterion for detection of community structures, both experimen-
tally24–26 and theoretically27.

Constant Potts Model (CPM). To overcome the well-known resolution limit of modularity-alike 
objectives, Traag et al.23 suggested an objective function known as Constant Potts Model (CPM) as:

( )∑ ω λ δ( , ) = − − ( , ),
( ),

H G C c c
7i j

ij i j

where λ is a constant value. This equation can be rewritten in modular terms as:

∑ ω λ( , ) = − ( − ).
( )

H G C N
8c

c c
2

Theoretically, CPM has a clear interpretation based on λ23; H rewards module c with density ω

N
c

c
2
 larger 

than λ and punishes c otherwise. H prefers modules r and s being separated if they have inter-density 
ω ω+

N N2
rs sr

r s
 smaller than λ and merges them otherwise. We used this interpretation to extend CPM to signed 

graphs and to analyze real-world networks. Although CPM has a simple formulation, it shows an out-
standing performance on the state-of-the-art benchmarks if a proper λ is known a priori23. However, the 
burden of community detection is on parameter λ. One can get a wide range of partitions from all-in-one 
to each-in-one by sliding λ from 0 to 1 (and even further for weighted graphs). In other words, by 
increasing λ, we zoom into the network to see smaller, denser groups that are interconnected more 
densely. Consequently, the optimal value of λ is a fundamental key to the success of the method.

Map Equation for signed networks (SiMap). According to the proposed idea, the information of 
negative ties should affect the flowing pattern of a random-walker. As a result, given a graph G and a 
partition C, the weight (selection probability) of positive ties from node i of module ci towards module 
c′  is first decreased proportional to the negative ties from i towards c′ , and then the remaining probability 
(pi, back) is channeled back to the internal links. Hence, if a random-walker arrives at node i, it is less likely 
to select the links toward module c′  and more likely to step back inside ci. After this, the weight of inter-
nal positive ties is decreased proportional to the internal negative ties, and finally, the remaining proba-
bility (negative teleport pi

tele), which has been subtracted from the internal positive ties, is uniformly split 
upon all the nodes in the network. As a summary, in the presence of external negative ties, a walker is 
less likely to leave ci, and conversely, due to internal negative ties, it is more likely to escape from ci by 
choosing a random node outside ci.

Generally, the reweighting process is a heuristic choice. Nonetheless, one can simply make the follow-
ing assumptions: i) if the weight of negative ties toward c′  is at least the same as positive ties, the walker 
should not go to c′ , and ii) if the same situation holds for the links toward the inside of ci, the walker 
should not directly step back inside ci. Based on these, we propose the following reweighting formulation:

= ′ + ,
( )

p p
p

N 9ij
new

ij
i
tele

G

where reweighted (teleport-free) probabilities are
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To be cleared, two examples of the procedure, which is applied on a sample node, are provided in 
Fig. 12. As a special case, if there is no negative tie, all transition probabilities remain unchanged.

Now, the probabilities of visiting nodes and entering (or exiting) modules need to be calculated. Note 
that a graph must be ergodic in order to have a stationary visiting distribution. The ergodicity is guar-
anteed by the use of teleportation that is being at node i, a random-walker either teleports to node j with 
probability τ νj where ν∑ = 1j j , or selects link from node i to j with probability τ( − )p1 ij

new28. Moreover, 
in an ergodic graph the probability of entering or exiting a module is the same. The probability of visiting 
node i in the reweighted graph G′  can be recursively calculated as:

Figure 12. Application of the reweighting procedure on node 1. (a) Neighborhood of node 1 in a signed 
network. (b) The flow pattern of positive subgraph from node 1, which is used in the unsigned Map 
Equation. (c) Node 1 has the same amount of negative and positive ties towards c2, thus, all the flow is 
channeled back into c1. (d) All the flow towards c2 is channeled back into c1, the flow towards c3 remains 
unchanged, and 3/8 of flow is uniformly spread over the network due to internal negative tie 1 → 3, which 
increases both the disorderedness of flow and the probability of escaping from c1.
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Since the graph is ergodic, starting with an arbitrary distribution, e.g., = /p N1i G
0 , equation (13) 

converges to the true visiting probabilities [Empirically, distance −+P Pt t1
2 drops to 10−15 after around 

100 iterations on a graph with 106 links.]. Having pi calculated for each node i, the exiting (or entering) 
probability of a module c is:
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As a special case, if there is no negative tie and the teleportation is uniform ν = /N1i G, equation (14) 
is the same as the one derived in28.

Having equations (13 and 14) as the main ingredients, the extended Map Equation (SiMap) is cal-
culated as:

∑ ∑ ∑( , ) = − + − ,
( )

L G C Q Q Q Q P P p plog 2 log log log
15c

c c
c

c c
i

i i

where = ∑Q Qc c is the probability of using a first-level code, and = + ∑ ∈P Q pc c i c i is the probability 
of using the second-level code of module c. Knowing that we encapsulated the information of negative 
ties in pi and Qc, equation (15) is the same as that of unsigned graphs28.

Smart teleportation. Lambiotte and Rosvall29 showed that although teleportation probability τ rec-
tifies the instability of the visiting distribution, it may considerably bias the results. As a solution, they 
effectively resolved this biased behavior of Map Equation by: 1) setting ν ω ω= /i i G: , 2) setting τ =  0 in 
equation (14), and 3) iterating equation (13) one extra step using τ =  0. In this work, after the reweight-
ing procedure, we did the same for calculation of equations (13 and 14).

CPM for signed graphs. According to the extension of modularity-alike functions to signed graphs14, 
CPM can be extended as:

∑ ∑α ω λ α ω λ( , ) = − ( − ) + ( − ) ( − ),
( )

+ − −H G C N N1
16c

c c
c

c c
2 2

which introduces a new parameter λ−. In the same work, Traag and Bruggeman manually set non-zero 
values for parameters λ and λ− to highlight their importance. Nevertheless, we argue that λ− must be set 
to 0 for the case of CPM. The reason lies in the qualitative objective that is to detect “dense positive” and 
“negative-free” modules. In particular, “negative-free” condition can be restated as: any density of internal 
negative ties must be punished. However, according to the interpretation of λ, if density of the negative 
ties inside a module c is at most λ−, c receives an extra reward from equation (16). This implies that the 
internal negative ties wrongly increase the quality of c compared to the case when they are completely 
ignored. Therefore, by setting λ− = 0, any amount of internal negative ties is punished. Also, if α is set to 
0.5 (equal contribution for positive and negative terms), both signed and unsigned CPM objectives will 
be the same, which only differ in multiplicative constant 0.5:

∑ ∑

∑

∑

ω λ ω
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Intuitively, α is set to 0.5 to have a certain amount of positive ties being canceled out by the same amount 
of negative ones. Nonetheless, depending on the application, if intrinsic value of positive ties differ from 
negative ones, their weights must be set accordingly prior to applying the algorithm.
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To optimize CPM, we use an improved version of Louvain method devised by Rosvall and Bergstrom, 
which is also the one utilized in InfoMap30. Louvian method first assigns a unique label to each node, 
then expands each label to those neighbors that maximally improve the objective value, and finally 
folds each module into a node and repeats the procedure until no further improvement is made31. The 
improved procedure first runs the Louvain algorithm, and then recursively refines both the nodes and 
modules to enhance the objective value further30. In our experiments, after 3 to 4 refinements the objec-
tive value was not considerably improved. Furthermore, the same procedure is used for the Modularity 
so as to eliminate the potentially biased comparisons due to different optimization procedures.

The main ingredient of Louvain method is the local-update formula31. Considering the unsigned 
CPM, when a set of nodes κ is moved from module c to c′ , the local update becomes as23:

ω ω ω ω λ∆ = + − − + ( − ), ( )κ κ κ κ κ′ ′ ′H N N N2 18c c c c c c

where κ is considered in both c and c′  for calculating Nc and Nc′. For the case of signed CPM, the 
extension is straightforward as:

α α∆ ( , ) = ∆ ( , ) − ( − )∆ ( , ), ( )+ −H G C H G C H G C1 19

reminding that λ is set to zero for the negative subgraph. Regarding equation (19), the positive and 
negative subgraphs are treated separately during the optimization process.

Constant Potts Map (CPMap). SiMap cannot be optimized via local methods of Louvain type, since 
a local change in a partition costs in the order of total links rather than local links. Indeed, the selection 
probability of positive ties must be updated according to the new position of negative ties, and thus 
the stationary distribution needs to be recalculated using equation (13). Nevertheless, SiMap still can 
be used to select among a set of candidate partitions. In particular, SiMap is used to find the best map 
of a network among the partitions provided by signed CPM. As Traag et al. showed, CPM provides a 
spectrum of maps that goes from highly simplified to highly detailed by sliding λ from 0 to 116. Hence, 
as the main goal of Map Equation suggests22, one can use SiMap to select a map that balances between 
abridgment and expatiation, while constrained to the “negative free” condition.

Consequently, the proposed algorithm (CPMap) first feeds a set of λs to equation (17), then mini-
mizes the equation to get the corresponding partitions, and finally outputs the one with the lowest SiMap. 
Candidate λs indeed can be chosen in a number of heuristic ways. However, in the experiments, we had 
the following observations: i) for a network with clear community structure, going from λ =  0 to λ ≈  0.1, 
the MDL curve smoothly dropped, and it slowly rose by further increasing λ, and ii) for a network with 
no community structure, the MDL curve rose at the beginning of sliding λ away from 0, which means 
grouping the network as a whole was preferred to dividing it. Based on these observations, the following 
λ-selection is proposed:

 1. Set = =x x 0best  and = .len 0 1.
 2. If <len L, output the partition of λ = xbest.
 3.   Consider N +  1 equally spaced λs in , +x x len[ ]. For newly added ones, optimize equation (17) and 

calculate MDL of corresponding partitions,
    (a). If MDL(x) is the minimum, output the partition of λ =  x.
    (b). Else if ( + )MDL x len  is the minimum, set = = +x x x lenbest , then go to (2).
    (c). Else if MDL(x′ ) is the minimum, set xbest = x′ , = ′ −x x len

N
 and =len len

N
2 , then go to (2).

In the experiments, we set N =  4 and L =  0.005; since the MDL curve had smooth changes, either 
increasing N or decreasing L did not considerably improve the results.

Normalized Variation of Information (NVI). This metric32 measures the distance between two par-
titions, which is defined as:
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where κci  denotes the module of node i in partition κ. In particular, given one partition, NVI measures 
the remaining uncertainty about the other one. For example, if C1 =  C2, given one partition, there is no 
uncertainty about the other one, and thus NVI(C1, C2) =  0. NVI is also closely related to Normalized 
Mutual Information (NMI)33; however, NVI is a metric32 and has a clear interpretation34.

Common parameters of benchmarks. The parameters for artificial benchmarks were set as: γ =  1, 
β =  2, =mean a 20i i

, =max a 50i i
, =min c 20c , and =max c 100c . Moreover, regarding the other 

frequently used settings24, the conclusion drawn from each experiment remains the same.

Online Social Networks and Data preprocessing. We analyze three widely studied online signed 
social networks: Slashdot, Epinions, and WikiElections21. These datasets have been frequently used as 
benchmarks for studying signed social relations [All datasets are publicly available at http://snap.stanford.
edu. For more detailed statistics refer to http://konect.uni-koblenz.de/]. They have special characteristics 
that make them suitable for the analysis of social relations. For example, all of the links either positive 
(for friendship or trust) or negative (for enmity or distrust) have been explicitly established by users, 
which means none of them has been inferred indirectly or asked from a person.

We performed some preprocessings on these datasets making them suitable for our purpose:

 1.   In order to get an undirected network, reciprocal links with inconsistent signs were omitted, and the 
remaining links were considered as undirected (inconsistent relations were 0.4%, 0.7%, and 1.6% of 
relations in Slashdot, Epinions, and WikiElections, respectively).

 2.   Only the largest connected component of each network was considered (99%, 90%, and 85% of 
nodes in Slashdot, Epinions, and WikiElections, respectively).

 3. Nodes incident to zero positive edges were removed as they, trivially, belong to an isolated cluster.

Table 2 summarizes the properties of these networks after the above operations.
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