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Abstract

Neural circuits are wired by chemotactic migration of growth cones guided by extracellular

guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of

the neural circuit is a fundamental question in neuroscience. I addressed this issue in the

case of the ordered axonal projections called topographic maps in the retinotectal system.

In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and

their ligands, the ephrins, are expressed in gradients. According to Sperry’s chemoaffinity

theory, gradients in both the source and target areas enable projecting axons to recognize

their proper terminals, but how axons chemotactically decode their destinations is largely

unknown. To identify the chemotactic mechanism of topographic mapping, I developed a

mathematical model of intracellular signaling in the growth cone that focuses on the growth

cone’s unique chemotactic property of being attracted or repelled by the same guidance

cues in different biological situations. The model presented mechanism by which the retinal

growth cone reaches the correct terminal zone in the tectum through alternating chemotactic

response between attraction and repulsion around a preferred concentration. The model

also provided a unified understanding of the contrasting relationships between receptor

expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-

encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in che-

motactic terms.

Author summary

This study revisited the chemoaffinity theory for topographic mapping in terms of chemo-

taxis. According to this theory, the axonal growth cone projects to specific targets based

on positional information encoded by chemical gradients in both source and target areas.

However, the mechanism by which the chemotactic growth cone recognizes its proper ter-

minal site remains elusive. To unravel this mystery, I mathematically modeled a growth

cone exhibiting concentration-dependent attraction and repulsion to chemotactic cues.

The model identified a novel growth cone guidance mechanism in topographic mapping,

highlighting the importance of the growth cone’s unique ability to alternate between
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attraction and repulsion. Furthermore, an extension of the model provided possible

molecular mechanisms for contrasting two types of topographic mappings observed in

the retinotectal system.

Introduction

During development, neurons extend axon and dendrites [1–3] and axonal growth cones che-

motactically migrate in response to extracellular guidance cue gradients and connect to their

target sites. Because this axon guidance is a fundamental process in wiring neural circuits,

many guidance cues and receptors have been identified and their functional roles (e.g., attrac-

tion or repulsion) have been extensively investigated [4–6]. The growth cone’s chemotactic

properties are thus being unveiled at the molecular level, but the chemotactic mechanisms of

neural circuit construction remain mysterious at the macroscopic level. I addressed this issue

by investigating topographic maps, the ordered axonal projections ubiquitous in the sensory

nervous system. The best-studied example is in visual system, where retinal ganglion cells

(RGCs) project their axons to the optic tectum and/or superior colliculus (SC) while keeping

an initial positional relation [7].

The most important concept of topographic map formation is the “chemoaffinity theory”

proposed by Roger Sperry in 1940s [8]. Sperry proposed that chemical labels form gradients in

source and target areas, allowing a projecting axon to recognize its target site. The theory’s

molecular basis was identified with the discovery of gradients of erythropoietin-producing

hepatocellular (Eph) receptors and their ligands, ephrins, in the retina (source area) and tec-

tum (target area) [9,10]. Ephs and ephrins are classified into two families, A and B, that encode

orthogonal topographic maps in the retina and tectum (Fig 1).

The EphA receptor gradient along the retina’s nasal-temporal axis topographically corre-

sponds to the ephrinA gradient along the tectum’s rostral-caudal axis (Fig 1A). On the orthog-

onal coordinates, the EphB receptor gradient along the retina’s dorsal-ventral axis corresponds

to the ephrinB gradient along the tectum’s medial-lateral axis (Fig 1C). These facts suggest that

RGC growth cones chemotactically migrate to their terminal zones guided by ligand concen-

trations reflective of receptor expression levels. Because ephrinA and ephrinB act as both

attractants and repellents in a concentration-dependent manner [11–13], it is possible that

growth cones switch between attraction and repulsion around the terminal zone, but the che-

motactic mechanism for decoding destination from dual gradients (i.e., receptor and ligand) is

unknown.

The EphA/ephrinA- and EphB/ephrinB-encoded topographic maps differ in that the RGCs

with higher EphA receptor expression prefer lower tectal ephrinA concentrations (Fig 1B),

whereas the RGCs with higher EphB receptor expression prefer higher tectal ephrinB concen-

trations (Fig 1D). In other words, the retinotectal system’s two kinds of topographic mapping

have opposite receptor expression-dependent ligand concentration preferences. How the

growth cone’s chemotactic system implements these opposite preferences is also unknown.

Topographic mapping has been extensively investigated with computational models for

four decades [14], but all previous models featured growth cones reaching their terminal zones

by heuristically-designed chemoaffinity [15–25]. While these models provided insights into

the outcomes of surgical experiments in the retinotectal system [15–17] and the abnormal

maps resulting from misexpression of Ephs or ephrins [15,18–25], none addressed how the

intracellular mechanism of growth cone chemotaxis achieves chemoaffinity.

Chemotactic implementation of topographic mapping
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I sought to determine the underlying mechanism of topographic mapping implemented

by growth cone chemotaxis. To this end, I focused on the growth cone’s unique chemotactic

property of being attracted and repelled by the same guidance cues in different biological en-

vironments [26,27]. By mathematically modeling growth cone migration regulated by intracel-

lular signaling, I attempted to demonstrate how the growth cone reaches its terminal zone in

the tectum by switching attraction and repulsion around a preferred ligand concentration.

Through this model, I redefined Sperry’s chemoaffinity theory in terms of chemotaxis.

Results

I first studied the projecting growth cone’s preference for a specific ligand concentration asso-

ciated with the correct terminal zone in the target area. The basic idea is that a growth cone

switches between attraction and repulsion around a specific preferred concentration; if the

growth cone exhibits attraction and repulsion to lower and higher concentrations, respectively,

then it ultimately reaches a location with the preferred concentration. To examine this idea, I

mathematically modeled intracellular signaling in chemotactic growth cones.

Model of bidirectional chemotactic response

The model growth cone was equipped with an intracellular activator (A) and inhibitor (I) of

their effector (E), where A and I were upregulated by guidance cues and E regulates the growth

cone motility (Fig 2A and 2B). This activator-inhibitor framework has been commonly

Fig 1. Two types of topographic maps in the retinotectal system. (A, B) Topographic mapping from the retina to the tectum is encoded

by orthogonal gradients of EphA and EphB receptors in the retina and of their ligands, ephrinA and ephrinB, in the tectum or SC. (C, D) The

EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings exhibit opposite receptor expression level-dependent ligand concentration

preferences. These were categorized as types 1 and 2 in this study.

https://doi.org/10.1371/journal.pcbi.1005702.g001
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observed in both neural and non-neural chemotactic cells [28–31]. For simplicity, a one-

dimensional coordinate (x) across the growth cone was modeled as {x| − L/2� x� L/2},

where L indicates its length. The reaction-diffusion dynamics of A and I were described by

@A
@t
¼ DA

@2A
@x2
� kAAþ cA þ aAGðxÞ

@I
@t
¼ DI

@2I
@x2
� kII þ cI þ aIGðxÞ

ð1Þ

Fig 2. The model of the intracellular growth cone chemotactic process. (A) A schematic of the one-dimensional

model growth cone encountering an extracellular gradient of guidance cues. (B) The model growth cone’s components: a

guidance cue (G) regulates an activator (A) and an inhibitor (I) of the effector (E). (C, D) Following exposure to a linear

extracellular gradient of G (G(x) = G* + gx), gradients of A and I are formed across the growth cone, thereby forming a

gradient of E. If the gradient of E orients to the extracellular gradient (ΔE > 0), then the growth cone shows attraction (C),

but otherwise (ΔE < 0), it shows repulsion (D). The model parameters are listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1005702.g002
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with reflecting boundaries at both ends (x = ±L/2), where A and I represent the activities of A

and I, respectively, DZ, kZ, cZ, and αZ (Z 2 {A,I}) denote the diffusion constant, decay rate, con-

stant input, and efficacy, respectively, of the guidance cue’s signal transmission, and G(x) rep-

resents the guidance cue concentration at x. The activity of E was determined by the ratio of

A’s activity to I’s, i.e., E(x) = A(x)/I(x), which is reasonable if E is regulated by a push-pull enzy-

matic reaction between A and I [32,33]. The growth cone’s migration was driven by the rela-

tive spatial polarity of E as ΔE/E�, where ΔE and E
�

indicate the spatial difference of E across

the growth cone (i.e., E(L/2) − E(−L/2)) and the baseline activity of E (i.e., E(0)), respectively.

This property was stated as the Weber-Fechner law, in which the detectable spatial polarity of

E varies because of the scale of the concentration of E [34]. Indeed, the Weber-Fechner law has

been found in several types of chemotactic cells [35–40]. By analytically solving the model (see

Methods), I demonstrated that it produced opposite polarities for ΔE depending on the param-

eters (Fig 2C and 2D and Table 1); when ΔE> 0, the growth cone was attracted and migrated

along the gradient, but when ΔE< 0, the growth cone was repelled and turned against the

gradient.

Establishment of preferred concentration by switching attraction and

repulsion

I examined how chemotactic responses vary with absolute concentrations in the gradient. My

previous study [27] showed that the steady-state response of ΔE/E� was presented by

DE
E�
¼

DA
A�
�

DI
I�
; ð2Þ

where A
�

and I
�

denote the baseline activities of A and I, respectively (i.e., A� = A(0) and I� = I
(0)), and ΔA and ΔI denote the spatial differences of A and I, respectively, across the growth

cone (i.e., ΔA = A(L/2) − A(−L/2) and ΔI = I(L/2) − I(−L/2)) (see Fig 2D). Z
�

and ΔZ (Z 2 {A,

I}) were analytically derived (see Methods). By substituting these into Eq (2), I found that four

chemotactic response patterns were generated depending on parameters (Fig 3A and

Table 1): unidirectional repulsion, unidirectional attraction, bidirectional repulsion-to-attrac-

tion, and bidirectional attraction-to-repulsion (BAR). In the former two patterns, the growth

cone always exhibited attraction or repulsion, meaning that it preferred higher or lower con-

centrations, respectively (Fig 3C and 3D). In bidirectional repulsion-to-attraction, the growth

cone preferred either higher or lower concentrations depending on the initial concentration

(Fig 3B). Finally, in BAR, the growth cone avoided both higher and lower concentrations but

Table 1. Parameters. Parameter values used in Figs 2 and 3 were listed.

Parameter Unit Fig 2C Fig 2D Fig 3B Fig 3C Fig 3D Fig 3E

L μm 10 10 − − − −
G* μM 10 10 − − − −
g μM/μm 0.75 0.75 − − − −
DA μm2/s 1 100 1 20 1 20

kA s−1 5 2 20 1 20 1

cA μM/s 0 0 150 0.05 150 0.05

αA s−1 0.5 0.35 10 2.5 5 5

DI μm2/s 100 1 20 1 20 1

kI s−1 2 5 1 20 1 20

cI μM/s 0 0 0.05 150 0.05 150

αI s−1 0.35 0.5 5 10 5 10

https://doi.org/10.1371/journal.pcbi.1005702.t001
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preferred a specific concentration by switching attraction and repulsion at that concentration

(Fig 3E). I hypothesized that this BAR pattern could play a fundamental role in topographic

map formation.

Model of topographic mapping

Assuming that the growth cone exhibited the BAR pattern, I studied how receptor expression

levels affected the preferred concentration. To this end, the receptor was incorporated into the

model as follow:

@A
@t
¼ DA

@2A
@x2
� kAAþ cA þ aA f ðR;GðxÞÞ

@I
@t
¼ DI

@2I
@x2
� kII þ cI þ aI f ðR;GðxÞÞ

; ð3Þ

where R represents the expressed receptor’s density, and f(R,G) represents the density of the

receptor’s active form depending on the guidance cue concentration. By analyzing this model

based on Eq (2) (see Methods), I found that whether the preferred concentration, Gpref,

decreases or increases with R was determined by the sign of derivatives of f(R,G) with respect

to R and G:

dGpref

dR
¼ �

@f =@R
@f =@G

: ð4Þ

Therefore, f(R,G), which represents how the guidance cue signal is transmitted to A and I

through the receptor, is a crucial factor in the receptor expression level-dependent preferred

ligand concentration. I next studied specific examples of f(R,G).

Type 1 mapping encoded by EphA/ephrinA

I considered a scenario in which the receptors were activated by guidance cue binding (Fig

4A), which is described by f(R,G) = RG/(K + G), where K is the dissociation constant of bind-

ing reaction between the receptor and guidance cue (i.e., a ratio of unbinding rate to binding

rate). I then calculated the preferred concentration based on Eq (2) and found that it decreased

with the receptor expression level (Fig 4B) as

Gpref /
1

R � g
; ð5Þ

where γ is a positive constant determined by the model parameters. This is consistent with

type 1 topographic mapping in which higher EphA levels result in the growth cone preferring

smaller ephrinA concentrations (Fig 1A and 1B). If the receptor expression level is greater

than γ, this relationship produces a linearly ordered topographic map with exponential distri-

butions of retinal EphA and tectal ephrinA (Fig 4C).

Fig 3. Mechanism of ligand concentration preferences by switching attraction and repulsion. (A) Phase

diagram depicting parameter regions of the four chemotactic response patterns. The dashed lines indicate

critical lines corresponding to a ratio of h(DA/kA) to h(DI/kI). Because h(D/k) is a monotonically decreasing

function of D/k (inset), the critical lines move with changes in DA/kA and DI/kI. (B-E) Various chemotactic

responses (i.e., ΔE/E*) to guidance cue concentrations were derived: (B) bidirectional repulsion-to-attraction,

(C) unidirectional repulsion, (D) unidirectional attraction and (E) bidirectional attraction-to-repulsion (BAR).

Dashed arrows indicate the direction of concentration changes resulting from attractive or repulsive migration.

In the BAR response, the x-intercept indicated by the black arrow corresponds to the preferred guidance cue

concentration. The model parameters are listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1005702.g003
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Type 2 mapping encoded by EphB/ephrinB

For the mechanism of type 2 EphB/ephrinB-encoded topographic mapping, I tested two bio-

logically plausible hypothetical f(R,G) expressions. First, guidance cue-unbound receptors

might trigger intracellular signaling, which can be expressed by f(G) = RK/(K + G) (Fig 4D(i))

Fig 4. Topographic mapping implemented by growth cone chemotaxis. (A) The receptors were activated by guidance cue binding. Dose-response of

receptor activation was plotted in right panel. (B) The chemotactic growth cone in (A) prefers a specific ligand concentration that is inversely proportional to the

receptor expression level. (C) Linear topographic mapping was produced by an EphA gradient along the retinal nasal-temporal (NT) axis and an ephrinA

gradient along the tectal rostral-caudal (RC) axis. Dashed arrows indicate corresponding receptor expression levels and preferred ligand concentrations. The

applied gradients were RNTðxNTÞ ¼ RNT0
expðqAðxNT=sNTÞÞ andGRCðxRCÞ ¼ GRC0

expð� qAð1 � xRC=sRCÞÞ. (D) Two possible molecular mechanisms by which the

guidance cue is transduced to an intracellular signal through the receptor. (D(i)) Guidance cue-unbound receptors were active. (D(ii)) Two kinds of receptors

competitively bind the guidance cue so that these receptors effectively suppress each other. (E) The chemotactic growth cone in (D) prefers a specific ligand

concentration that linearly increases with the receptor expression level. (F) Linear topographic mapping was produced by an EphB gradient along the retinal

dorsal-ventral (DV) axis and an ephrinB gradient along the tectal medial-lateral (ML) axis. The applied gradients were RDV ðxDV Þ ¼ RDV0
expðqBðxDV=sDV ÞÞ and

GMLðxMLÞ ¼ GML0
expðqBðxML=sMLÞÞ.

https://doi.org/10.1371/journal.pcbi.1005702.g004
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(see Discussion for its biological relevance). For this hypothesis, I found that the preferred con-

centration increases with the receptor expression level (Fig 4E) as

Gpref / R � g: ð6Þ

This is consistent with the fact that higher EphB levels result in the growth cone preferring

higher ephrinB concentrations (Fig 1C and 1D) (see Methods). This linear relationship (Eq

(6)) produced a linearly ordered topographic map with exponential distributions of retinal

EphB and tectal ephrinB (Fig 4F).

In the second hypothesis, I assumed that two kinds of receptor competitively bind the lim-

ited ligands (Fig 4D(ii)) (see Discussion for its biological relevance). One kind is uniformly

expressed across the retina and the guidance cue-bound form triggers intracellular signaling.

The other is expressed in gradients across the retina and indirectly inhibits the uniformly

expressed receptor by competitively binding the ligand. This case is described by f(R,G) = RcG/

(K + Rc + R) (Methods), where R and Rc indicate densities of the receptors expressed in gradi-

ents and uniformly, respectively, and K indicates the dissociation constant of the receptor and

ligand. For this hypothesis, I also found that the preferred concentration increases with the

receptor expression level as

Gpref / Rþ r; ð7Þ

where ρ is a positive constant determined by the model parameters. Thus, this hypothesis also

explained the type 2 EphB level-dependent preferred ephrinB concentration.

Discussion

I presented a mathematical model of chemotactic response of the growth cone to reveal how

topographic map is formed by the growth cone chemotaxis. In my model, for the sake of sim-

plicity, I assumed that the migration direction of the growing axon was determined by polarity

of the growth cone signaling. The real mechanism must be more complicated than what

assumed in my model. However, the minimalist model I developed was very informative and

provided a novel chemotaxis-based logic of chemoaffinity theory for topographic mapping. I

demonstrated that the model could generate both attractive and repulsive responses depending

on absolute concentrations along the gradient. Such bidirectionality endows the growth cone

with the preference for a specific guidance cue concentration by switching between attraction

and repulsion around that concentration. I also determined the conditions of EphA/ephrinA-

and EphB/ephrinB-encoded topographic mapping, in which the preferred concentration

decreases and increases, respectively, with the receptor expression level. This study therefore

redefined Sperry’s chemoaffinity theory in terms of chemotaxis.

Ephrins as attractants and repellents

If ephrinA is a repellent, as classically thought [41], then all RGC growth cones must project to

the tectum’s rostral end, which has the lowest ephrinA concentration. However, this is not the

case; even without tectal space competition between projecting axons, the RGC axons project

to the correct terminal zone in the tectum [42]. This contradiction can be resolved simply by

regarding ephrinA as both an attractant and a repellent. In fact, ephrinA has been reported to

be an attractant or a repellent in a concentration-dependent manner [11]. EphrinB has been

regarded as both an attractant and a repellent [12,13]. However, their underlying mechanism

was largely unknown. In this study, I demonstrated how ephrinA and ephrinB could indeed

work as both attractants and repellents for the chemotactic growth cone.

Chemotactic implementation of topographic mapping
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Signal transmission through EphA and EphB

I demonstrated that whether the preferred ligand concentration decreases or increases with

the receptor expression level is determined by whether the guidance cue and the receptor posi-

tively or negatively affect intracellular signaling (Eq (4)). As the mechanism of EphA/ephrinA-

encoded type 1 topographic mapping, I reasonably assumed that ephrinA-bound EphAs trig-

ger intracellular signaling (Fig 4A), but for type 2 topographic mapping, I tested two hypothet-

ical EphB/ephrinB regulation schemes. The first hypothesis was that ephrinB-unbound EphBs,

rather than bound ones, trigger intracellular signaling (Fig 4D(i)). This seems inconsistent

with a property of tyrosine kinase-type receptors, which are activated by ligand binding

through phosphorylation [43,44], but it has recently been reported that Ephs can be ligand-

independently activated by hemophilic Eph-Eph interactions [45], suggesting that ephrinB-

bound and -unbound EphBs could generate different signals. The first hypothesis was thus

biologically feasible, but further experimental investigation is needed. The second hypothesis

was that two kinds of receptor, which are expressed uniformly or in gradients across the retina,

competitively bind the ligand (Fig 4D(ii)). This fits the expression profiles of EphB subtypes in

the chicken retina well; EphB2 and EphB3 are expressed in gradients across the retina, whereas

EphB1 is uniformed expressed [7]. My hypothesis thus offers experimentally testable predic-

tions concerning EphB/ephrinB regulation.

Functional difference between two types of topographic mappings

It is worth mentioning functional difference between type 1 and type 2 of topographic map-

pings. I deduced that local accuracy of axonal projection is determined by multiplication of

three factors: 1. spatial derivatives of receptor expression profile in retina (upper panels in Fig

4C and 4F), 2. steepness of mapping function from receptor expression to preferred ligand

concentration (Fig 4B and 4E) and 3. spatial derivatives of ligand in tectum (right panels in

Fig 4C and 4F). In type 1 topographic mapping, while multiplication of the first and third fac-

tors, i.e., (dRNT/dxNT)(dGRC/dxRC), is constant (Fig 4C), the second factor, i.e., the steepness of

mapping function, increases as EphA expression decreases (Fig 4B). On the other hand, in

type 2 topographic mapping, while the second factor, i.e., the steepness of mapping function, is

constant (Fig 4E), multiplication of the first and third factors, i.e., (dRDV/dxDV)(dGML/dxML),

increases with EphB expression. Thus, it can be predicted that axonal projection from nasal

ventral retinal region associated with lower EphA and higher EphB expression could be more

precise than that other retinal region.

Species-dependent pattern of axonal projections

RGCs’ axonal projection patterns in the optic tectum or SC are species-dependent. In higher

vertebrates (i.e., mammals and birds), the axons overshoot their terminal zones and subse-

quently form branches [7], while in lower vertebrates (i.e., fish and amphibians), the growth

cones directly reach and stop in their terminal zones [7] despite being initially misrouted

[46]. The latter case suggests that the chemotactic system implements chemoaffinity, which

I investigated as the mechanism of topographic mapping. The growth cone’s chemotaxis

might therefore play a fundamental role in topographic mapping, while axonal overshoot

and branching might facilitate exploration of the terminal zone. My model could under-

stand the axonal overshoot by incorporating transient dynamics of activator and inhibitor,

instead of steady state assumption. On the other hand, how the axon generates branches is

out of scope of my model.

Chemotactic implementation of topographic mapping
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Comparison with previous chemotaxis models

Chemotactic gradient sensing has been computationally studied mainly for non-neural che-

motactic cells [40,47–51] like Dictyostelium discoideum and immune cells, though attraction

to guidance cues has been only paid attention. On the other hand, there are a couple of com-

putational models for the growth cone chemotaxis alternating attraction and repulsion [27,

52]. These models, whether applied to neural or non-neural cells, primarily addressed in-

tracellular signaling consisting of activators and inhibitors. In the non-neural cells, the ac-

tivator and inhibitor were thought to be PI3K and PTEN [28], respectively, or RasGEF and

RasGAP [29], respectively. In the growth cone, CaMKII and PP1 were thought to work as the

activator and inhibitor, respectively [27,30,31,52], which regulate cellular motility via Rho

GTPases [53]. In short, chemotactic responses could be understood from the activator-inhibi-

tor framework [54], so I hypothesized that RGC chemotaxis is also regulated by an activator-

inhibitor system, although the intracellular signaling pathway of Eph/ephrin has not been fully

identified.

Comparison with previous models of topographic mapping

There have been many computational studies on topographic mapping [14]. These studies did

not focus on the intracellular mechanism of growth cone chemotaxis, but instead developed

models with heuristically designed chemoaffinity (e.g., optimization of energy function) by

which the growth cone reaches its correct terminal zone. Given such chemoaffinity, these

models potentially gave insights into more system-level phenomena, such as abnormal maps

resulting from surgical experiments in the retinotectal system [15–17] and from the misexpres-

sion of Eph or ephrin [15,18–25]. These models included several factors not included in my

model, such as axon competition for tectal space [55] and counter-gradients of Ephs and

ephrins in the retina and tectum [56]. Several models have also addressed a question of how

synaptic connection is refined by activity-dependent synaptic plasticity mechanism after activ-

ity-independent axon guidance [20,57–59]. Therefore, I must stress that my model does not

compete with previous models, but rather can explain the underlying mechanism by which

growth cones can chemotactically implement the previous models’ heuristically designed

chemoaffinity.

Methods

Theory for chemotactic response

Suppose a shallow extracellular gradient because growth cones are known to detect few percent

difference of concentrations across the growth cone [60–64]. I then assumed that the intracel-

lular gradients of A and I, A(x) and I(x), were shallow and slightly perturbed from their activi-

ties at x = 0. The activity of E at x could be linearized as

EðxÞ ’ E� þ
1

I�
½AðxÞ � A�� �

A�

I�2
½IðxÞ � I��; ð8Þ

where A� = A(0), I� = I(0), and E� = E(0) = A�/I�. The relative spatial difference of E across the

growth cone was calculated by

DE
E�
�

EðL=2Þ � Eð� L=2Þ

Eð0Þ
¼

DA
A�
�

DI
I�
; ð9Þ

where ΔA and ΔI indicate the spatial differences of A and I, respectively, across the growth

cone.
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Distribution of A and I

For both A and I, I calculated the intracellular distribution exposure to an extracellular gradi-

ent, G(x). Green’s function of @Z/@t = Dz(@
2Z/@x2) − kzZ was analytically derived using the

method of separation of variables:

Hðx; x; tÞ ¼
1

L
expð� kZtÞ

þ
2

L

X1

n¼1

cos
np

L
xþ

L
2

� �� �

cos
np

L
x þ

L
2

� �� �

exp � kZ þ
np

L

� �2

DZ

� �

t
� �

:ð10Þ

A steady-state solution of Eq (3) was thus obtained by

Z1ðxÞ ¼
Z 1

0

dt

Z þL=2

� L=2

dxHðx; x; tÞfcZ þ aZf ðR;GðxÞÞg; ð11Þ

where Z represents either A or I. Note that f(R,G(x)) = G(x) in Eq (1). Because the growth cone

is so small that G(x) could be modelled as a shallow linear gradient, f(R,G(x)) can be linearized

by f(R,G�) + gx, where G� = G(0) and g = (@f/@G|G = G�)(dG/dx|x = 0). This led to

Z1ðxÞ ¼ Z� þ
2g
L

X1

n¼1

ðL=npÞ
2
½ð� 1Þ

n
� 1�

kZ þ ðnp=LÞ2DZ

cos
np

L
x þ

L
2

� �� �

; ð12Þ

where Z
�

indicates baseline activity, i.e., Z� = Z1(0):

Z� ¼
aZf ðR;G�Þ þ cZ

kZ
: ð13Þ

By numerical simulation of the reaction-diffusion dynamics, I confirmed that Eq (12) was

exact. The spatial difference of Z then becomes

DZ ¼ Z1ðL=2Þ � Z1ð� L=2Þ ¼
8gL3

p4

hðDZ=kZÞ

kZ
; ð14Þ

where

hðsÞ ¼
X1

n¼1

1=ð2nþ 1Þ
2

ð2nþ 1Þ
2sþ ðL=pÞ

2
; ð15Þ

which is a monotonically decreasing function converging to 0 (inset of Fig 3A).

Conditions for four chemotactic response patterns

I calculated the growth cone’s concentration-dependent chemotactic responses. By substitut-

ing Z� as described by Eq (13) for A� and I� in Eq (2) and substituting ΔZ as described by Eq

(14) for ΔA and ΔI in Eq (2), I obtained

DE
E�
¼

8gL3

p4

hðDA=kAÞ

aA f ðR;G�Þ þ cA
�

hðDI=kIÞ

aI f ðR;G�Þ þ cI

� �

: ð16Þ

Eq (16) exhibits four response patterns to G
�

: all positive, all negative, negative-to-positive,

and positive-to-negative, which correspond to unidirectional attraction, unidirectional repul-

sion, bidirectional repulsion-to-attraction, and BAR, respectively (Fig 3B–3E). The response

patterns’ parameter regions were derived under the condition of @f/@G> 0 (Fig 3A). For

example, the BAR response pattern is characterized by attraction at lower concentrations (i.e.,
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ΔE/E�|G� = 0 > 0) and repulsion at G� =1 (i.e., ΔE/E�|G� = 0 < 0), which leads to

cA
cI
< Z <

aA

aI
; ð17Þ

where η = h(DA/kA)/h(DI/kI).

Preferred concentration in the BAR response pattern

Growth cones with the BAR response pattern prefer a specific concentration of G
�

at which

ΔE/E� = 0. In the Eq (3) model, setting ΔE/E� = 0 in Eq (16) leads to

f ðR;Gpref Þ ¼ g; ð18Þ

where γ = (ηcI − cA)/(αA − ηαI). The preferred concentration with a specific f(R,G) can be cal-

culated with Eq (18). In the Eq (1) model, f(R,G) = G, thus Gpref = γ. If f(R,G) = RG/(K + G),

Gpref = γK/(R − γ) (Eq (5); Fig 4A). If f(R,G) = RK/(K + G), Gpref = (K/γ)(R − γ) (Eq (6); Fig 4D

(i)). If f(R,G) = RcG/(K + Rc + R), Gpref = (γ/Rc)/(R + K + Rc) (Eq (7); Fig 4D(ii)). Total differen-

tiation of Eq (18) leads to (@f/@R)dR + (@f/@Gpref)dGpref = 0, which in turn leads to

dGpref

dR
¼ �

@f =@R
@f =@G

: ð19Þ

Competitive binding of limited ligands by two receptors

I assumed a scenario in which two kinds of RGC-expressed receptors competitively bind lim-

ited ligands with identical kinetics. Note that the two assumed kinds are expressed either uni-

formly or in gradients across the retina. Such dynamics are described by

dR�c
dt
¼ kf ðRc � R�c ÞGf � kbR

�

c

dR�g
dt
¼ kf ðRg � R�gÞGf � kbR

�

g

; ð20Þ

where Rj, R�j , and Gf (j 2 {c,g}) indicate densities of the total receptors, guidance cue-bound re-

ceptors, and free guidance cues, respectively, and kf and kb indicate forward and backward re-

action rates, respectively. The total guidance cue concentration is conserved as G ¼ Gf þ R�c þ R�g .
At steady state, R�j ¼ RjGf=ðK þ Gf Þ, where K = kb/kf. If K� Gf, R�j can be approximated as

(Rj/K)Gf, and the steady state of R�c depending on G is then described by

R�c ¼
RcG

K þ Rc þ Rg
: ð21Þ
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