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The current life-threatening and tenacious pandemic eruption of coronavirus disease in 2019 (COVID-19)
has posed a significant global hazard concerning high mortality rate, economic meltdown, and everyday
life distress. The rapid spread of COVID-19 demands countermeasures to combat this deadly virus.
Currently, there are no drugs approved by the FDA to treat COVID-19. Therefore, discovering small mole-
cule therapeutics for treating COVID-19 infection is essential. So far, only a few small molecule inhibitors
are reported for coronaviruses. There is a need to expand the small chemical space of coronaviruses inhi-
bitors by adding potent and selective scaffolds with anti-COVID activity. In this context, the huge antiviral
chemical space already available can be analysed using cheminformatic and machine learning to unearth
new scaffolds. We created three specific datasets called ‘‘antiviral dataset” (N = 38,428) ‘‘drug-like antivi-
ral dataset” (N = 20,963) and ‘‘anticorona dataset” (N = 433) for this purpose. We analyzed the 433 mole-
cules of ‘‘anticorona dataset” for their scaffold diversity, physicochemical distributions, principal
component analysis, activity cliffs, R-group decomposition, and scaffold mapping. The scaffold diversity
of the ‘‘anticorona dataset” in terms of Murcko scaffold analysis demonstrates a thorough representation
of diverse chemical scaffolds. However, physicochemical descriptor analysis and principal component
analysis demonstrated negligible drug-like features for the ‘‘anticorona dataset” molecules. The ‘‘antiviral
dataset” and ‘‘drug-like antiviral dataset” showed low scaffold diversity as measured by the Gini coeffi-
cient. The hierarchical clustering of the ‘‘antiviral dataset” against the ‘‘anticorona dataset” demonstrated
little molecular similarity. We generated a library of frequent fragments and polypharmacological ligands
targeting various essential viral proteins such as main protease, helicase, papain-like protease, and repli-
case polyprotein 1ab. Further structural and chemical features of the ‘‘anticorona dataset” were com-
pared with SARS-CoV-2 repurposed drugs, FDA-approved drugs, natural products, and drugs currently
in clinical trials. Using machine learning tool DCA (DMax Chemistry Assistant), we converted the ‘‘anti-
corona dataset” into an elegant hypothesis with significant functional biological relevance. Machine
learning analysis uncovered that FDA approved drugs, Tizanidine HCl, Cefazolin, Raltegravir, Azilsartan,
Acalabrutinib, Luliconazole, Sitagliptin, Meloxicam (Mobic), Succinyl sulfathiazole, Fluconazole, and
Pranlukast could be repurposed as effective drugs for COVID-19. Fragment-based scaffold analysis and
R-group decomposition uncovered pyrrolidine and the indole molecular scaffolds as the potent fragments
for designing and synthesizing the novel drug-like molecules for targeting SARS-CoV-2. This comprehen-
sive and systematic assessment of small-molecule viral therapeutics’ entire chemical space realised crit-
ical insights to potentially privileged scaffolds that could aid in enrichment and rapid discovery of
efficacious antiviral drugs for COVID-19.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human Coronaviruses (HCoVs), including Severe Acute Respira-
tory Syndrome Coronavirus (SARS-CoV), Middle-East Respiratory
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Syndrome Coronavirus (MERS-CoV), and now Severe Acute Respi-
ratory Syndrome Coronavirus 2 (SARS-CoV-2), all originated from
animal sources have led to a worldwide outbreak of viral infection
with high mortality rate and morbidity. The current pandemic
caused by SARS-CoV-2 has been defying human health [1,2]. Cur-
rently, COVID-19 has infected more than thirty million people
globally and resulted in around one-million deaths. The high fatal-
ity rate with rapid community spread establishes COVID-19 as a
major global threat that humankind is facing in the 21st century.
Therefore, considering the severity of the disease as well as the
pandemic nature, WHO declared SARS-CoV-2 as a Very High Prior-
ity Pathogen [3,4]. SARS-CoV-2 was first reported from Wuhan city
of China in December 2019 from pneumonia patients [5]. TheWHO
has estimated that SARS-CoV-2 is ten times more infectious than
the typical flu caused by H1N1 [6]. COVID-19 represents an
unprecedented ‘‘unmet medical need” and hence repositioning of
current FDA-approved drugs for COVID-19is very appropriate to
achieve timely cure.

Currently, there are no drugs approved by the FDA to treat
COVID-19. The FDA’s emergency approval to drug Remdesivir has
been revoked [7,8] due to toxicity and efficacy issues. COVID-19
disease affects the respiratory system, gastrointestinal system,
central nervous system, liver, heart, and kidney and causes multi-
ple organ failure. It has become apparent that due to the complex-
ity of COVID-19 infection, it is crucial to unearth therapeutics that
are safe as well as potent. To aid the delivery of potential small-
molecule therapeutics for SARS-CoV-2, it is critical to scrutinize
and exploit the chemical space of the ligands and repurposed drugs
reported for SARS-CoV, MERS-CoV, and other viruses. The exten-
sive cheminformatic understanding of the chemical space of
ligands and drugs reported for various coronaviruses and other
viral pathogens can create the well-judged design of small-
molecule therapeutics and the identification of chemical modula-
tors of SARS-CoV-2. For example, similar ligands are known to
exhibit similar affinity for the analogous binding sites. Vital infor-
mation derived from cheminformatic analysis about the various
chemical scaffolds, fragments, and polypharmacological ligands
can offer critical insight into the potential extrapolation of bioac-
tivity and structural data for the design of useful molecules.

The present study provides a computational chemistry perspec-
tive on effective chemical space development of small molecule
inhibitors that target various coronaviruses with significant
emphasis on SARS-CoV-2. The data covers all currently known
coronavirus related experimental information such as the binding
affinity of their protein inhibitors and the various protein targets
associated. To assist rational and viable antiviral drug develop-
ment, effective curation, standardization, simulation, mining, and
transformation is applied to known data on coronavirus pharma-
cology [9] using three distinct datasets called ‘‘antiviral dataset”,
‘‘drug-like antiviral dataset” and ‘‘anticorona dataset”. We also
report the clustering of ‘‘anticorona dataset” with ‘‘antiviral
dataset”, based on ECFP6 (extended connectivity fingerprints). This
study leads to the identification of the most frequent core frag-
ments and potential polypharmacological ligands for targeting
multiple coronavirus family proteins. The ECFP6 belongs to the
novel class of topological fingerprints that can be used to extract
the structure–activity relationship [10]. The analysis identified
antiviral compounds that show high similarity to highly active
COVID-19 inhibitors.

In addition to chemical space analysis based on physical prop-
erties such as chemical descriptors, we applied the machine learn-
ing tool DCA to determine the chemical patterns based on the
inductive learning algorithm. We identified chemical patterns that
might play an important role in conferring high inhibitory activity
against the SARS-CoV-2 main protease. This unique data generated
can be highly advantageous towards the design and development
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of highly potent anti-COVID molecules in a short time. Overall,
the study aims to introduce a cheminformatic analysis of coron-
avirus ligands and their importance in understanding the chemical
space occupied by the ligands. The structure–function relationship
generated is expected to supply cues to discovering new small-
molecule therapeutics, which are expected to have a high impact
on antiviral drug development.
2. Materials and methods

2.1. Database generation

We have collated all the molecular data (N = 52,356) that have
reported antiviral activity from Chemical Abstract Services and
Elsevier’s Reaxys Medicinal Chemistry databases. Significant cura-
tion, standardization, and transformation are applied to this data
set to create three distinct datasets, named as ‘‘antiviral dataset”,
‘‘drug-like antiviral dataset” and ‘‘anticorona dataset”. The data-
base compounds (N = 52,356) were curated by removing dupli-
cates and complex molecules, resulting in the ‘‘antiviral dataset”
of 38,428 unique molecules. The ‘‘antiviral dataset” was subjected
to an oral-bioavailability filter using Lipinski rules, resulting in the
elimination of 14,819 molecules. The remaining 23,609 molecules
were passed through the ‘‘PAINS” filter, which resulted in 20,963
molecules devoid of ‘‘PAINS” moiety. We called this dataset as
‘‘drug-like antiviral dataset”. We then carefully separated mole-
cules with experimentally reported pIC50 values that show inhibi-
tion against various coronaviruses such as SARS-CoV, MERS-CoV,
HCoV 229E, Coronaviridae, and Coronavirinae. We have obtained
433 molecules in this category, and we called this dataset as ‘‘an-
ticorona dataset”. We created these three distinct datasets, espe-
cially to unearth potential chemical entities with the desired
drug-like and antiviral properties against Covid-19 to expand the
current anticorona data set. The antiviral data set has scaffolds of
the highest probability of being exploited as a potential resource
with viral inhibitory activities. We used ‘‘antiviral dataset,”
‘‘drug-like antiviral dataset” and ‘‘anticorona dataset” for QSAR
modelling and machine learning to identify potential molecular
scaffolds. The ‘‘anticorona dataset” was used for scaffold analysis,
activity cliff analysis, fragment analysis, SAR analysis, physico-
chemical analysis etc. We also collated additional datasets includ-
ing ‘‘repurposed drugs-COVID-19 pipeline (N = 42)” [11] ‘‘natural
products and drugs (N = 83)” [12], ‘‘repurposed drugs-Covid-19-
clinical trials (N = 19)” [13], and ‘‘FDA-approved drugs
(N = 2692)” [14] for principal component analysis, as reported in
Section 3.3

Various resources were used to collect, analyze, and interpret
the cheminformatic analysis data in this study. The resources
include Instant JChem [15], CDK [16], RDKiT [17], alvadesc [18],
Data Warrior [19], Scaffold hunter [20], MACCS [21], ECFP6 [22]
and cheminformatics tools integrated with the KNIME analytical
platform [23]. Instant JChem was used for structure database man-
agement, search, and prediction, Instant JChem 19.21.5, 2020, Che-
mAxon. Mona [24] was used for curation and compound library
preparation.
2.2. Scaffold analysis

We generated the scaffolds from ‘‘anticorona dataset” (N = 433)
using the various filters such as atom count, fingerprint, molecular
weight, and pIC50 to explore fragments, molecular scaffolds, virtual
scaffold and their relationship using Scaffold Hunter [20]. Scaffold
Hunter first reads the scaffold data from an SQL database and auto-
matically constructs and displays the scaffolds as a tree using var-
ious properties like atom count, fingerprints, etc. The scaffold tree
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shows the relationship between the parent and child molecular
scaffolds. The chemical scaffolds - both parent and child and other
intermediate virtual scaffolds derived from the parent scaffolds are
stored in the database. They can be retrieved as scalable vector
graphics (SVG) images for further analysis. The fragment scaffold
and the virtual scaffolds derived from the fragments were manu-
ally retrieved from the scaffold tree analysis.

We generated Murcko scaffolds by excluding the exocyclic dou-
ble bonds and the a attached atoms [25] of both the ‘‘drug-like
antiviral dataset” and ‘‘anticorona dataset”. The Murcko scaffold
was further used to create the skeleton scaffold. The skeleton anal-
ysis includes only the ring and replaced the heteroatoms by a car-
bon atom. We also analyzed structures in ‘‘drug-like antiviral
dataset” and ‘‘anticorona dataset” using the scaffold representation
proposed by Bemis and Murcko [26]. In this method, the molecule
is dissected into ring systems, linkers, side-chain atoms, and the
framework.

2.3. Activity cliff analysis

The structure–activity landscape index (SALI) calculated by the
activity cliff analysis supplies a measure between activity (pIC50)
and chemical diversity (1–similarity) for each compound [27].
The analysis was carried out using the Skeleton Sphere descriptor,
as given by Eq. (1).

SALI ¼ AA €� � Aj

�� ��

1� sim A €�; j
� � ð1Þ

In this equation, AA% and Aj represent the biological activity
measure of the individual A%th and the jth molecule, and sim
(A%,j) is the similitude among the molecule A% and j.

2.4. Physicochemical parameter

Physicochemical properties, which include descriptors such as
cLogP, H-acceptor, H-donors, molecular weight, polar surface area
(PSA), rotatable bond count (RB), relative polar surface area (RPSA),
topological polar surface area (TPSA), total surface area, were eval-
uated using various tools such as CDK, Instant Jchem, etc.

2.5. Chemical network visualization

Hierarchical clustering was performed by ECFP6 fingerprint
similarity [16,23]. The CDK nodes of the Knime Analytics Platform
(KNIME 4.1.2) were used to calculate the ECFP6 fingerprints for
‘‘antiviral dataset” and ‘‘anticorona dataset”. The fingerprints were
compared between these two datasets. The edges and nodes were
generated for the related compounds and were further used to rep-
resent these compounds’ chemical networks. We used Gephi 0.9.2
for visualization using variousalgorithmic configurations, for
example, Force Atlas, Fruchterman Reingold, Open Ord, Contrac-
tion, Force Atlas2, and Yifan, and Yifan Hu Proportional [28]. Bin-
ning clustering of the compounds in the database was done for
‘‘anticorona dataset” using the ChemMine web server [29], as the
experimental value for this dataset is known.

2.6. QSAR modeling by machine learning

We applied DCA (DMax Chemistry Assistant) software [30] to
derive the hypotheses and determine the relationship within the
morphological and structural features of the anti-COVID ligands
and their bioactivities. DCA is an ILP (inductive logic
programming)-based software that allows it to develop Prolog
rules hierarchically. Such a rule can form the basis for splitting
the molecules into two alternative arguments, one that satisfies
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the hypothesis and the other that does not. DCA can generate the
rules based on the individual functional groups and rings and also
by incorporating the background knowledge. The background
knowledge in DCA is defined by electrostatic, type of elements
(e.g., carbon, sulfur, nitrogen), functional group and rings, and link-
age (fused, linked, the positional topology of the ring, how different
functional groups and rings are connected) between the substruc-
tures of the chemical molecule. DCA can relate this background
knowledge of the chemical molecules to correlate with their exper-
imental biological activities, such as inhibition or activation. In this
study, we used DCA to construct the hypotheses to relate the stan-
dard structural features of the ‘‘anticorona dataset” with their pIC50

values.
2.7. Data visualization

R studio was used to process, analyze, and visualize the plots.
The boxplots were generated using the boxplot package of the R
language. To generate the 3D-PCA scatter plot, R studio with the
plot3d package was used [31]. All images were prepared using
Adobe Photoshop CS6 version 13.0 � 64 and Inkscape version 0.92.
3. Results and discussion

3.1. Scaffold analysis.

We analyzed the structures of ‘‘anticorona dataset” and ‘‘drug-
like antiviral dataset” using the scaffold representation as proposed
by Bemis and Murcko. In this method, the molecule is dissected
into ring systems, linkers, side-chain atoms, and the framework.
We analyzed the scaffolds with reported experimental biological
activity (pIC50 value). Murcko scaffold analysis revealed 227 and
4779 unique scaffolds from ‘‘anticorona dataset” and ‘‘drug-like
antiviral dataset” respectively, with varying degrees of frequencies.
The scaffolds benzyl (1-oxo-1-((2-oxo-2-((2-(2-oxopyrrolidin-3-yl)
ethyl)amino)ethyl)amino)-3-(pyridin-2-yl)propan-2-yl)carbamate
and 1-(tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione were
observed to have the highest frequencies of 13 and 13.02 respec-
tively (Fig. 1). Singleton scaffold frequency was observed to be
152 in the ‘‘anticorona dataset” and 3031 in the ‘‘drug-like antivir-
ial dataset”. Subsequent Murcko Skeleton analysis resulted in fur-
ther identification of 143 and 3034 skeleton scaffolds in the
‘‘anticorona dataset” and ‘‘drug-like antiviral dataset”, respectively.

To calculate if the ‘‘anticorona dataset” and ‘‘drug-like antiviral
dataset” are diverse, we used the well-known inequality distribu-
tion metrics, Gini coefficient [32,33]. The Gini coefficient was orig-
inally used to describe statistical distribution of income amongst a
population [32] and is widely used in many different fields [33–
36]. The Gini coefficient’s value varies between 0 and 1, where 0
implies an equal distribution of income, whereas 1 implies com-
plete inequality, that is, few wealthy individuals represent the
major percentage of the total income of the population. In drug dis-
covery, the Gini coefficient has been used to evaluate the diversity
of compounds from a sizeable dataset [37]. As in wealth, a lower
Gini coefficient shows perfect equality, that is, various molecular
scaffolds are important, indicating high scaffold diversity. A higher
Gini coefficient means activity is concentrated in a few molecular
scaffolds and hence indicating low scaffold diversity. It is particu-
larly advantageous as it only needs the molecules’ structure with-
out prior knowledge about the composition. The Gini coefficient
computed for the compounds from both the ‘‘antiviral dataset”
and ‘‘drug-like antiviral dataset” showed that both the dataset’s
compounds show low diversity. For example, ‘‘drug-like antiviral
dataset” (N = 20,963) shows a Gini index of 0.846762 and entropy
of 0.53381, confirming that this data set is of low diversity. This is a



Fig. 1. A) Murcko vs. pIC50 value presented as a scatter plot for the ‘‘anticorona dataset”. Colors indicate pIC50 values, with higher and lower values represented by red and
blue, respectively. The arrows depict the structures of the corresponding scaffold with the highest pIC50. B) Murcko vs. pIC50 value presented as a box plot. Colors depict the
Murcko frequency, ranging from blue (lower) to red (higher). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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disadvantage in terms of unearthing unique scaffolds for COVID
�19 drug discovery. We could not calculate the Gini coefficient
for the ‘‘anticorona dataset” as the dataset size (N = 433) is not suf-
ficient for statistical analysis. The Murcko scaffold diversity calcu-
lated in terms of the scaffold ratio and total molecules (Ns/M) [38]
was computed for both datasets (Table 1). The scaffold diversity
analysis of the ‘‘anticorona dataset” (Murcko scaffold (0.52), single-
ton scaffold (0.35), and skeleton scaffold (0.33) suggest diverse
chemical representation. It will still require efforts to populate this
library with more novel and unique scaffolds to increase diversity
further. In contrast, scaffold diversity analysis of ‘‘drug-like antivi-
ral dataset” (Murcko scaffolds (0.23), singleton scaffold (0.16), and
skeleton scaffold (0.14)) suggests low chemical diversity, as con-
firmed by Gini coefficient. Interestingly, we were able to identify
some promising scaffolds from the ‘‘anticorona dataset” with
favorable characteristics for designing novel derivatives by SAR
studies (Fig. S1). For instance, the scaffolds of N-(2-oxo-2-((2-(2-
oxopyrrolidin-3-yl)ethyl)amino)ethyl)-1H-indole-2-carboxamide
and benzyl (2-oxo-2-((2-oxo-2-((2-(2-oxopyrrolidin-3-yl)ethyl)a
mino)ethyl)amino)ethyl)carbamate showed highest biological
activity (Fig. 1A).

A scaffold tree of the compounds in the ‘‘anticorona dataset”
was generated to visualize the standard core structure or scaffold.
We first isolated the most active chemical scaffold from the data-
base, then generated the entire possible parent scaffold, followed
Table 1
Scaffold diversity analysis of ‘‘anticorona dataset” (N = 433) and ‘‘drug-like antiviral datas

Dataset size (M) Murcko
scaffolds (Ns)

Singleto
scaffold

‘‘Anticorona dataset” 433 227 152
‘‘Drug-like antiviral dataset” 20,963 4779 3301

(Nsc/M) shows proportion of Skeleton scaffolds (Nsc) to that of the either ‘‘anticorona d
Shows the ratio of Murcko scaffolds (Ns) to that of either ‘‘anticorona dataset” or ‘‘drug-
that of either ‘‘anticorona dataset” or ‘‘drug-like antiviral dataset” (M), and (Nss/N) show
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by selecting one parent–child pair. This process continued until
all of the possible successive parent–child scaffold pairs of the ‘‘an-
ticorona dataset” were exhausted. The scaffolds were achieved by
cutting all of the side chains but keeping the double bonds con-
nected directly to a ring [39]. All 433 molecules of the ‘‘anticorona
dataset” were pruned until a single ring was attained. We identi-
fied oxopyrrolidine, indoline, cyclopropylbenzene, thiophene,
indole, dioxole, cyclobutylbenzene, azaspiro, pyranone, and
phenylsulfane as some of the most frequent fragment by this scaf-
fold analysis (Fig. 2). Fragment-based analysis of the ‘‘anticorona
dataset” inhibitors revealed that spiro compounds represent an
interesting scaffold-point to develop potent coronaviruses inhibi-
tors. However, so far, only a few spiro compounds had been
explored to target coronaviruses (Fig. 2, azaspiro). Further, spiro
compounds have inherent three-dimensionality and structural
diversity [40]. Therefore, it will be promising to include novel spiro
scaffolds for targeting coronaviruses, incredibly challenging to
treat SARS-CoV-2 infection.

We then looked for common single ring scaffolds, that are com-
mon to molecules representing coronaviruses targets like main
protease, papain-like protease, replicase polyprotein 1ab, and heli-
case. The results depicted in Fig. 3 shows that oxopyrrolidine is the
standard basic structure core, present in all these molecules. By
scaffold hopping, we were able to construct the promising virtual
scaffolds, which can be used as polypharmacological ligands for
et” (N = 20,963).

n Murcko
s (Nss)

Skeleton
scaffold (Nsc)

Nsc/M Ns /M Nss/M Nss/Ns

143 0.33 0.52 0.35 0.67
3034 0.14 0.23 0.16 0.69

ataset” or ‘‘drug-like antiviral dataset” (M), Ns/M.
like antiviral dataset” (M), (Nss/M), show the ratio of singleton Murcko scaffolds to
s the ratio of singleton Murcko scaffold (Nss) to that of Murcko scaffold (Ns).



Fig. 2. Representative examples of frequent fragments identified from the ‘‘anticorona dataset” using scaffold hopping.
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targeting these proteins. These fragments are the ideal starting
point for the fragment-based drug discovery for targeting essential
SARS-CoV-2 proteins such as main protease, replicase polyprotein
1b, helicase, etc. The fragments and virtual scaffolds identified in
the present study (Fig. 3) could serve as a possible starting point
for further derivatization. These virtual scaffolds can also be used
directly as query molecules in high throughput three-
dimensional shape-based screening of commercial libraries to
identify novel and unique molecules for further biological testing.
Understanding and identifying scaffolds will result in the synthesis
of new diverse analogs for antiviral drug discovery, leading to the
generation of good quality, highly diverse database of small mole-
cules for targeting SARS-CoV-2.

3.2. Physicochemical properties

A drug is expected to specifically act on a biological target and
exert therapeutic effects by modulating its function [41]. The
bioavailability and efficacy of a drug mainly depends on its physic-
ochemical properties such as absorption, distribution, metabolism,
and elimination (ADME) [42,43]. We calculated six pharmaceuti-
cally relevant physicochemical descriptors of ‘‘anticorona dataset”
namely octanol–water partition coefficient (cLogP), molecular
weight (MW), hydrogen bond donors (HBD), hydrogen bond accep-
tors (HBA), rotatable bonds (nRotB), and topological polar surface
area using N, O, S and P polar contributions (PSA) to generate
ADME profiles.

The distribution of each physicochemical descriptor for inhibi-
tors of the most studied protein targets, including helicase [44],
replicase polyprotein 1ab [45], main protease [46,47], and
papain-like protease [48], are represented in the form of boxplots
in Fig. 4. Each box represents the values between the first and third
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quartiles; the bold black line depicts the middle value of the data-
set, i.e., the median, the ’whisker lines’ indicate the top quarter and
bottom quarter of the data, and the circles represent the outliers.
The shaded area represents the parameters off-limit to the rules
for favorable oral bioavailability [49]. The analysis revealed that
the almost all inhibitors of replicase polyprotein 1ab exhibit MW
value ‘greater than 5000, nRotB count ‘greater than 100, PSA ‘more
significant than 120 Å’ and HBA count ‘more than 100 (Fig. 4A–C,
E) suggesting negligible oral bioavailability. Similarly, the majority
of main protease inhibitors display MW value ‘greater than 5000,
nRotB count ‘greater than 100, and PSA ‘greater than 120 Å’
(Fig. 4A–C). Whereas, more than ~ 50% inhibitors of helicase have
PSA ‘greater than 120 Å’. Few outliers were observed in the case
of the HBA and HBD distribution for the main protease inhibitors
(Fig. 4E and F). In general, it can be concluded that most coron-
avirus inhibitors so far unearthed lack the general criteria for oral
bioavailability and, thus, are not drug-like.

3.3. PCA plot analysis

To assess the molecular diversity of the compounds in ‘‘anti-
corona dataset” we performed principal component analysis
(PCA) based on six 2D descriptors, namely, molecular weight
(MW), the logarithm of partition coefficient of a compound
between n-octanol and water (cLogP), number of hydrogen bond
acceptors (HBA), number of hydrogen bond donors (HBD), topolog-
ical polar surface area (PSA) and number of rotatable bonds
(nRotB). The PCs (principal components) were calculated for ‘‘anti-
corona dataset” against ‘‘repurposed drugs-COVID-19 pipeline
(N = 42)” [11] ‘‘natural products and drugs (N = 83)” [12], ‘‘repur-
posed drfugs-Covid-19-clinical trials (N = 19)” [13], and ‘‘FDA-
approved drugs (N = 2692)” [14] to represent a comparison of



Fig. 3. A. Oxopyrrolidine derivatives targeting SARS-CoV-2 main protease, SARS-CoV-2 replicase polyprotein 1ab, papain-like protease and helicase. B. Representative
examples of virtual scaffolds of oxopyrrolidine generated using scaffold hunter.

A. Kumar, S. Loharch, S. Kumar et al. Computational and Structural Biotechnology Journal 19 (2021) 424–438
the property space (Fig. 5). As summarized in Table 2, the first
three PCs capture 94.94% of the covariance, implying that the first
three PCs are sufficient to define the property space, and thus, it is
plausible to represent the property space in the form of a three-
dimensional PCA plot. The first PC has the highest loadings by
cLogP (0.26) and almost equal loadings by MW, HBA, HBD, PSA,
and nRotB. The second PC is primarily contributed by cLogP and
secondarily by nRotB and MW. These results indicate that the
property space is governed by different molecular descriptors
and differs substantially among ‘‘anticorona dataset”. Fig. 5 shows
a three-dimensional illustration of the property space scatterplot
of ‘anticorona dataset” (yellow spheres), ‘repurposed drugs-
COVID-19 pipeline’ (red spheres), ‘natural products and drugs’
(blue spheres), ‘repurposed drugs-COVID-19-clinical trials’ (black
spheres) and ‘FDA-approved drugs’ (green spheres). As observed,
many of the ‘anticorona dataset (yellow spheres) expand along
both the PC1 and PC3 axes, indicating that they vary significantly
from the ‘approved drugs’ (green spheres). Some of ‘natural prod-
ucts and drugs’ expand majorly along the PC1 axis and PC3 axis,
implying that they differ marginally in their property space.

Evaluation of the molecular diversity of molecules targeting
coronaviruses by PCA showed that the ‘‘anticorona dataset” ligands
differ significantly in chemical space from traditional medicinal
property space. Therefore, there is an urgent need to modify potent
scaffolds selected from the ‘‘anticorona dataset” into the drug-like
space using fragment-based drug design, computational medicinal
chemistry, and scaffold optimization.

3.4. Cluster analysis

Clustering is a powerful resource for medicinal and computa-
tional chemists and is extensively utilized to identify chemical
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scaffolds with similar structural features and further correlate
structural properties with biological activity profile [29]. We per-
formed a binning clustering analysis of 433 molecules belonging
to ‘‘anticorona dataset” for which experimental data were avail-
able, to understand the scaffold diversity of the chemical space of
the compounds targeting coronaviruses main protease (n = 364),
replicase polyprotein 1ab (n = 15), papain-like protease (n = 24),
and helicase (n = 20). Clustering was performed using a Tanimoto
similarity score of 0.4.

The Tanimoto coefficient is a chemical fingerprint or feature
based similarity metrics to measure the chemical similarity
between pairs of the molecules [29]. In this study, the similarity
is measured between the reference and the database structure.
The bin clustering partition grouped the molecules into various
similarity groups (Table S4). For main protease inhibitors, the lar-
gest bin cluster (n = 275), represented by oxopyrrolidine scaffold,
was observed (Fig. 6). Additionally, singleton bin clusters of disul-
furam, ebselen, and shikonin scaffolds were also noticed (Fig. 6).
For papain-like protease, 12 bin clusters were observed, where
naphthalene-based scaffold constitutes the largest bin cluster.
Furthermore, a singleton bin cluster comprising nitrophenyl-
piperazine, nitropyridine-amine, and ethyl (phenyl) carbamo-
dithioate scaffold was also observed. For helicase, four bin clusters
were observed, with the chromenone scaffold representing the lar-
gest bin cluster. Additionally, singleton bin clusters, including tria-
zole and benzothiazole scaffold, were detected. For replicase
polyprotein 1ab, four bin clusters were observed with an oxopyrro-
lidine scaffold representing the largest bin cluster. The
phenanthro-furan scaffold represented singleton bin clusters. The
clusters identified by this analysis can be further explored to
design scaffold derivatives by using medicinal chemistry and
SAR information. For example, for targeting main protease of



Fig. 4. Distribution of physicochemical properties of major protein targets of coronaviruses: A) MW, B) nRotB, C) PSA, D) cLogP, E) HBA, and F) HBD. The shaded area
represents the region of the parameters deviating from the accepted rules of oral bioavailability.

Fig. 5. PCA based three-dimensional property space analysis of coronavirus inhibitors showing spatial representation of six physicochemical properties namely MW, cLogP,
HBA, HBD, PSA, and nRotB.
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Table 2
Comparative principal component analysis (PCA) of physicochemical properties for COVID inhibitors to FDA approved drugs.

Property PC1 PC2 PC3 PC4 PC5 PC6

MW �0.41 0.37 �0.29 0.61 �0.49 �0.08
cLogP 0.26 0.83 �0.32 �0.29 0.24 �0.02
HBA �0.46 0.00 �0.14 0.14 0.53 0.68
HBD �0.43 �0.11 �0.33 �0.71 �0.42 0.11
PSA �0.46 �0.09 �0.16 �0.03 0.49 �0.72
nRotB �0.39 0.39 0.82 �0.17 �0.06 �0.01
Cumulative proportion% 74.78 90.47 94.94 98.15 99.65 100.00

Fig. 6. Binning cluster of main protease inhibitors: (A) a few representative examples of largest bin cluster (n = 275); (B) a few representative examples of second bin cluster
(n = 4); (C) examples of singlet bin clusters.
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SARS-Cov-2, it will be good idea to design and synthesize
molecules, based on the disulfuram, ebselen and shikonin based
molecular scaffolds, as the population of these molecules is under-
represented in the already know inhibitors of coronaviruses. On
the other hand, many different derivatives of oxopyrrolidine are
well known for targeting main protease. However, the advantage
in terms of designing of novel derivatives of oxopyrrolidine is that
oxopyrrolidine scaffold shows activity for other essential targets of
coronaviruses family, so it can be exploited as an excellent
polypharmacological ligand for coronaviruse family.

Further, we performed the hierarchical clustering of ‘‘anti-
corona dataset” versus ‘‘antiviral dataset” to inspect the common
substructures and their anticipated role in the structure–activity
431
relationship. We used ECFP6 (extended-connectivity fingerprints)
to cluster the molecules [16,50]. ECFP6 are circular fingerprints
that not only determine the substructure and similarity but can
be generated quickly. They represent the novel structural classes,
including stereochemical information, and define both favorable
and unfavorable structural information for molecular activity
[51]. The ECFP6 fingerprints were determined by exploiting the
CDK nodes for KNIME. To visualize the similarity network map of
the related compounds, Gephi was utilized [52] (Fig. 7). Each node
represents an inhibitor compound, where the yellow-colored
nodes represent a set of ‘‘antiviral dataset” compounds. The
remaining nodes belong to the ‘‘anticorona dataset” with color
variations based on different protein targets. For example, ligands
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that inhibit the Main protease of coronaviruses are depicted in blue
color nodes (Fig. 8). The nodes are sized according to their reported
pIC50 values, and the width of the edge (lines connecting the
nodes) is proportional to the Tanimoto Coefficient of related com-
pounds. Thus, the nodes connected by thicker edges represent the
most similar compounds, and vice-versa. The analysis revealed the
similarity of the ‘‘anticorona dataset” to a total of 245 compounds
from the ‘‘antiviral dataset” (Supplementary Table S1 and S2). We
identified analogs from the antiviral dataset that share similar
structures and chemical features to the ‘‘anticorona dataset”
(Fig. 8, Supplementary Table S1). For example, ‘‘antiviral dataset”
compound AV18985 showed similarity to ‘‘anticorona dataset”
compounds 54, 83, and 138, with the Tanimoto coefficient of
0.43, 0.42, and 0.34, respectively. These three compounds (com-
pounds 54, 83, and 138) of the ‘‘anticorona dataset” show high
Fig. 7. Chemical network visualization of inhibitors of ‘‘anticorona dataset” in conjunctio
of Coronaviruses, and node size (except for yellow nodes) complies with the pIC50

interpretation of the references to color in this figure legend, the reader is referred to th
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inhibitory activity against coronavirus main protease and replicase
polyprotein 1ab’ proteins. Similarly, AV18965 from the ‘‘antiviral
dataset” exhibits similarity to ‘‘anticorona dataset” compounds
248 and 350, which are active against main protease and spike gly-
coprotein proteins. Further, we also generated chemical networks
to investigate the similarity of inhibitors, individually for each pro-
tein target such as, ‘‘Main Protease”, ‘‘Helicase”, ‘‘Papain-like pro-
tease”, ‘‘Replicase polyprotein 1ab”, ‘‘Replicase polyprotein 1a”,
‘‘Spike glycoprotein” and ‘‘Non-structural protein 5” (Supplemen-
tary Figs. S2–S8). Many of the potential inhibitors (with high
pIC50 values) of Main protease show significant similarity to
already reported antiviral compounds in literature, such as
AV18982, AV18952, AV44780, AV21576, AV22574, AV18985, and
AV18954. In comparison, most inhibitors for other protein targets
possess similarity to antiviral compounds though not that high.
n with antiviral compounds. The node color represents the different protein targets
values. The edge thickness is in proportion with the Tanimoto coefficient. (For
e web version of this article.)



Fig. 8. A) Representative examples of main protease inhibitors with high pIC50 values, highlighting the characteristic patterns of hypothesis. The hypothesis states that
inhibitors with high pIC50 may have a hetero-aromatic-5-ring (shown in blue) that contains two heteroatoms (shown in green and red at a distance 2), an aromatic ring
(shown in purple), and a general function group (shown in orange). The aromatic ring (shown in purple) is connected to the general function group (shown in orange) by a
single bond. On the aromatic ring (shown in purple) substituent general function group (shown in orange) and unsubstituted atoms (shown in cyan) are at a distance 1. B)
Cumulative response plot of the inhibitor model, representing the relationship between the percentage of hits (y-axis) and percentiles (x-axis). C) Lift plot of the inhibitor
model, to evaluate the performance of the model. The observation suggests that the top 30% of data will outperform a random model by ~ 2 times (y-axis). D) ROC plot of the
inhibitor model clearly distinguishes the non-hits (x-axis) from hits. AUC of 0.78 represents a good measure of separation between hits and non-hits E) Predicted– actual
scatter plot of the inhibitor model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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However, some of the prominent examples are AV43733, AV10045,
AV9951, AV14839, and AV9998 for Helicase; AV19030, AV15612,
AV29882, and AV40889 for Papain-like protease; AV18985 and
AV15148 for Replicase polyprotein 1ab. We also identified many
other known antiviral compounds that showed significant similar-
ity to ‘‘anticorona dataset” compounds but exhibited different
chemical features (Supplementary Table S2). Collectively, these
antiviral compounds identified from the ‘‘antiviral dataset” hint
towards their potential use against COVID. The similarity of multi-
ple inhibitors from different protein targets to a single antiviral
433
compound inspires to utilize the multi-targeted drug approach to
combat coronaviruse, especially to address the problem of drug
resistance due to mutation [53,54].

3.5. Identification of potent chemical features by machine learning

Machine learning is a rising field of artificial intelligence that
offers automated learning and enhances prediction quality from
various data types. This can be used seamlessly to predict the clin-
ical usefulness of a particular chemical dataset. To determine and



Fig. 9. Selected examples of FDA approved drugs that showed high predicted pIC50 values in agreement with the hypothesis.
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relate the common chemical patterns of the ‘‘anticorona dataset”
inhibitors and their bioactivities, we used the machine learning
tool DCA (DMax Chemistry Assistant) [30]. DCA is an ILP (Inductive
Logic Programming) based approach that uses the existing knowl-
edge such as electron flow, element, moiety, and substructure rela-
tionship, to generate the hypotheses that best corroborates with
the given data. It starts by reading the functional groups and rings
and then constructs the hypotheses to determine the building
blocks and their relation to each other. To deduce a significant out-
come, we needed a reasonable number of inhibitors with varying
high and low activity measurements. Thus, we selected the coron-
aviruses main protease inhibitors for this investigation. We were
successful in generating the inhibitor model hypothesis. The
hypothesis suggested that inhibitors with specific patterns con-
taining a benzene ring and a five-membered hetero-aromatic rings
such as imidazole, thiazole, triazole, thiadiazole, tetrazole, etc. may
434
possess high pIC50 (P-value = 7.06 � 10�4). The representative
examples of compounds with high pIC50 are shown in Fig. 8A.
The generated model was satisfactory with a ‘rank high’ cut-off
of 7.426, and RMSE (Root Mean Square Error) of 0.74. The inhibitor
model’s cumulative response plot shows the coverage of ~ 75% of
hits at the 50th percentile (Fig. 8B), and the lift curve suggests that
the top 30% of data will outperform a random model by ~ 2 times
(Fig. 8C). The ROC curve (receiver operating characteristic curve)
clearly distinguishes the non-hits (x-axis) from hits, and an AUC
(Area Under the Curve) value of 0.78 marks a good measure of sep-
aration between hits and non-hits (Fig. 8D). The predicted versus
actual scatter plot of the inhibitor model is shown in Fig. 8E.

To verify the analysis, we applied the hypothesis to screen FDA
approved drugs library [8,55]. The results showed an aromatic ring
and a five-membered hetero-aromatic ring, in agreement with the
generated hypothesis model for ‘‘anticorona dataset”. The selected



Fig. 10. (A) SALI plot of compound pairs generated from the ‘‘anticorona dataset”. X- and Y-axis represents activity values; color indicates the delta activity; higher and lower
values are indicated by red and blue, respectively. The size of the scatters is indicated by the SALI value. (B) The activity cliff set was grouped based on neighborhood similarity
relationships. Colors indicate pIC50 value with the higher value represented by red color and lower value represented by blue high. The scatters size suggests a max of SALI
pIC50 value/SkeleSpheres. (C) An example of a compound pair from the ‘‘anticorona dataset” (ID: 205 and ID: 206) represents the ‘activity cliff’. The red circle shows the
structural variation in the ‘activity cliff’ pair. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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examples of FDA approved drugs that showed high predicted pIC50

values are displayed in Fig. 9. Our results showed Tizanidine HCl,
Cefazolin, Raltegravir (MK-0518), Azilsartan (TAK-536), Acalabruti-
nib (ACP-196), Luliconazole, Sitagliptin, Meloxicam (Mobic), Suc-
cinyl sulfathiazole Fluconazole and Pranlukast as some of the
exciting candidates for further development of SARS-CoV-2 inhibi-
tors. Interestingly, Raltegravir has been used to prevent viral repli-
cation of HIV-1 by inhibiting the Integrase protein [56] and has
recently been proposed as a lead candidate to target coronavirus
by Khan et al. [57]. Similarly, Sitagliptin, which is used traditionally
to treat diabetes, has been proposed by another group to reduce
the severity of COVID-19 patients [58]. The findings of this analysis
are quite intriguing and can be widely applied to repurpose the
existing drugs. Considering the hour of need, our machine learning
results, together with established literature, recommends the
immediate need for a detailed study on these antiviral drugs to
understand their mechanisms about protein targets of SARS-CoV-
2 and repurpose them for COVID-19 treatment until new drugs
or vaccines are developed.

3.6. Structure-activity relationship and activity cliff analysis

Activity cliffs can be evaluated by investigating the biological
landscape using similarity metrics that work under the evidence
that structurally similar compounds are inclined to have a similar
biological response. We generated affinity scatters plot (pIC50

value) for each molecule of the ‘‘anticorona dataset” (Fig. 10 A).
This similarity and activity analysis represent all 957 pairwise
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comparisons between the 433 compounds of the ‘‘anticorona data-
set, identified using the cut-off similarity threshold of 86%. The vast
amount of ‘‘activity cliff” pairs provides vital information on QSAR
models and is also useful for designing virtual molecules libraries
to be employed for COVID-19 screening.

For the paired comparison between pair ID 205 and ID 206
(Fig. 10C), the determined SALI value is 69.707, the similarity is
0.959, and the activity values are 8.9 and 6.1, respectively. A higher
SALI value indicates a significant difference between the biological
activities of two structurally similar compounds (Table S5).
Fig. 10B represents groups based on neighbouring similarity and
their respective SALI values. A representative example of activity
cliff in phenyl cinnamamide derivatives is shown in Fig. 11. These
results confirm that small changes in structures can induce signif-
icant potency variations. The design of new focused libraries for
targeting SARS-CoV-2 is possible by incorporating potent moieties
identified by ‘‘activity cliff” analysis as displayed in Fig. 11.

Using the ‘‘anticorona dataset” of 433 compounds with reported
pIC50 values, SAR based on R-group decomposition [59] was per-
formed, which generated the R group and core fragment using
the most central ring system. Different core fragments and six R-
groups were generated for the ‘‘anticorona dataset”. The analysis
revealed that compounds with the same core fragment showed dif-
ferent activity (Fig. 12), implying that different R-groups influence
biological activity differentially. The analysis revealed that pyrro-
lidine and the indole core fragment yielded the highest biological
activity in the dataset. Pyrrolidine derivatives have been identified
to interact with viral main protease protein family [60,61]. While,



Fig. 11. ”Activity cliff” analysis of phenyl cinnamamaide derivatives. The value of pIC50 is color-coded with green color denoting lower activity and blue color denoting the
highest activity. The structural variation is highlighted in the red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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indole-containing molecules have been widely implicated in
antiviral drug research [62].

The results from the SAR study are expected to help design dif-
ferent derivatives with the desired activity against COVID-19.
These core fragments are structurally similar to the fragments gen-
erated based on scaffold-hoping, as shown in Fig. 2. This corrobo-
ration further proposes that pyrrolidine and the indole are the
potent fragments for designing and synthesizing the novel drug-
like molecules for targeting SARS-CoV-2.
4. Conclusion and perspective

The current coronavirus pandemic has severely impacted the
world, causing more than 961 K deaths and 31.1 million coron-
avirus cases and still increasing. Although researchers are working
diligently to find a cure or vaccine for this deadly virus, no suc-
cesses have been found. Furthermore, because vaccine develop-
ment might take a long time to enter the market, finding a drug
or inhibitor is optimistic and can impede the further spread of
the virus. Keeping this in mind, we conducted this study to assess
the chemical space using the available knowledge base of closely
related coronavirus inhibitors.

This report has clearly defined the molecules’ chemical space,
which can potentially be used for targeting SARS-CoV-2. We have
determined common fragments and generated promising virtual
scaffolds which have not been described before and can be further
explored for targeting SARS-CoV-2. We also identified oxopyrro-
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lidine based scaffolds that can be used as polypharmacological
ligands [63].We have generated dataset of curated ~20,000 antivi-
ral compounds, among which, 245 molecules show structural sim-
ilarity with ‘‘anticorona” compounds, therefore can enrich the
‘‘anticorona dataset” chemical space and can further be used for
structure or ligand-based drug discovery to target important
SARS-CoV-2 targets. Among the ‘‘anticorona dataset”, indole and
pyrrolidine core fragments show the highest biological activity
and may be used as a framework to design novel SARS-CoV-2 inhi-
bitors. Indole and pyrrolidine based scaffolds have been exten-
sively used in drug discovery and have resulted in the
development of many approved drugs. Additionally indole scaffold
is widely used in the design and synthesis of the antiviral inhibi-
tors. A few examples of marketed indole-containing antiviral drugs
include Arbidol and Delavirdine. Currently, a number of indole
derivatives are actively undergoing different phases of clinical
evaluation, such as Atevirdine, GSK2248761 (IDX-12899), Goloti-
mod, Panobinostat (LBH589), BILB 1941, BMS-791325, MK-8742
and Enfuvirtide. Commercial availability of indole and pyrroldine
based building blocks and their significant interactions within
the active site of the Mpro protein suggest [61] these
pyrrolidine-based derivatives as promising candidates for further
investigation. Experimental validation of our results will be really
useful and we are currently synthesizing the molecules to prove
our hypothesis that indole and pyrroldine based chemical scaffolds
will be highly active.

Previous studies indicate that COVID viruses are notably diverse
and mutate rapidly [64], so it is complicated and challenging for an



Fig. 12. Scatter plot of Core fragments vs. pIC50 generated from ‘‘anticorona
dataset”. The value of the pIC50 is color coded, with red and blue colors showing
higher and lower pIC50 values, respectively. The structure of the core fragment
marked by asterisk is indicated at the bottom of the illustration. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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anti-COVID drug to work against the virus. Therefore, in our study,
we focused on essential targets of the COVID virus and conducted
machine learning and cheminformatics based research to predict
the specific scaffold responsible for inhibiting a target. Machine
learning resulted in the hypothesis generation of structural pat-
terns and identification of FDA-approved drugs that can be reposi-
tioned for COVID-19.

In conclusion, this analysis provides the groundwork for design-
ing diverse chemical libraries, fragment libraries, virtual scaffolds
for shape and ligand-based screening, and identification of essen-
tial FDA drugs. It thus will be useful for the discovery of small
molecule therapeutics for COVID-19.
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