Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2-Dibromo-1-(4-hydroxy-3-methoxy-phenyl)ethanone

Xiao-Hui Yang, Yong-Hong Zhou* and Xing Song

National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering SFA, Institute of Chemical Industry of Forest Products CAF, Nanjing 210042, People's Republic of China Correspondence e-mail: yhzhou1966@yahoo.com.cn

Received 24 May 2009; accepted 31 May 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.012 Å; R factor = 0.067; wR factor = 0.159; data-to-parameter ratio = 15.0.

The molecule of the title compound, $C_9H_8Br_2O_3$, is stabilized by an intramolecular O-H···O interaction. Intermolecular C-H···O interactions connect molecules into a two-dimensional array in the *bc* plane; connections between these are afforded by π - π stacking interactions [centroid–centroid distance 3.596 (5) Å].

Related literature

For the beta-O-4 substructure in lignin, see: Cathala *et al.* (2003). For attempts to prepare well defined linear polymers with the β -O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto *et al.* (2005).

Experimental

Crystal data

$C_9H_8Br_2O_3$	b = 10.805 (2) Å
$M_r = 323.97$	c = 13.871 (3) Å
Monoclinic, $P2_1/n$	$\beta = 98.80 \ (3)^{\circ}$
a = 7.0370 (14) Å	V = 1042.3 (4) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 7.76 \text{ mm}^{-1}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.511, T_{\max} = 0.698$ 2060 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.159$ S = 0.961900 reflections 127 parameters $\begin{array}{l} T=295~\mathrm{K}\\ 0.10\,\times\,0.05\,\times\,0.05~\mathrm{mm} \end{array}$

1900 independent reflections 894 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ 3 standard reflections every 200 reflections intensity decay: 1%

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
02-H2A···01	0.85	2.27	2.617 (11)	105
$C1-H1A\cdots O2^{i}$	0.96	2.51	3.398 (11)	153
$C5-H5A\cdots O3^{ii}$	0.93	2.57	3.460 (10)	161
$C9-H9A\cdots O3^{ii}$	0.98	2.38	3.222 (11)	143
Symmetry codes: (i) -	$-x + \frac{1}{2}, y + \frac{1}{2}, -$	$z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}$	$\frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$	

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2463).

References

- Cathala, B., Saake, B., Faix, O. & Monties, B. (2003). J. Chromatogr. A, 1020, 229–239.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kishimoto, T., Uraki, Y. & Ubukata, M. (2005). Org. Biomol. Chem. 3, 1067– 1073.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o1489 [doi:10.1107/S1600536809020650]

2,2-Dibromo-1-(4-hydroxy-3-methoxyphenyl)ethanone

X.-H. Yang, Y.-H. Zhou and X. Song

Comment

Lignin is natural polymer occurring in plant cell walls and is considered to be the second most abundant biopolymer after cellulose. The beta-O-4 structure is the most abundant substructure in lignin (Cathala *et al.*, 2003). In order to prepare well defined linear polymers composed of the β -O-4 structure and in attempt to develop new utilization methods of lignins (Kishimoto *et al.*, 2005), a new compound, 2,2-dibromo-1-(4-hydroxy-3-methoxyphenyl)ethanone, (I), was synthesized and its structure determined using single-crystal X-ray methods.

The molecular conformation of (I), Fig. 1, is stabilized by an intramolecular O—H···O interaction formed between the hydroxyl-H and methoxy-O atoms (H···O = 2.27 Å). The molecules are connected into a 2-D array via C-H···O interactions in the bc-plane (Table 1). Connections between the layers are afforded by π - π stacking interactions, with the shortest centroid···centroid distance being 3.596 (5)Å.

Experimental

To a stirred solution of acetovanillone (5 g, 0.03 mol) in anhydrous CHCl₃, bromine (3.1 ml, 0.06 mol) was added dropwise under nitrogen over 2 h at 273 K. The reaction mixture was kept at 273k for 1 h. The reaction mixture was diluted with ether and washed with ice-cold water and brine. The solution was dried over anhydrous Na₂SO₄ and concentrated to dryness *in vacuo*. The crude crystalline product was purified by column chromatography to obtain a pure white solid, (I). Colourless single crystals were grown by slow evaporation of an ethyl acetate solution of (I).

Refinement

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.93–0.98 Å and O—H = 0.85 Å, and with $U_{iso}(H) = 1.2U_{eq}(C, O)$ or $1.5U_{eq}(C)$ for methyl-H atoms.

Figures

Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

(I)

Crystal data	
$C_9H_8Br_2O_3$	$F_{000} = 624$
$M_r = 323.97$	$D_{\rm x} = 2.065 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
<i>a</i> = 7.0370 (14) Å	$\theta = 10-13^{\circ}$
b = 10.805 (2) Å	$\mu = 7.76 \text{ mm}^{-1}$
c = 13.871 (3) Å	T = 295 K
$\beta = 98.80 \ (3)^{\circ}$	Needle, colourless
$V = 1042.3 (4) \text{ Å}^3$	$0.10\times0.05\times0.05~mm$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.041$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.4^{\circ}$
T = 295 K	$h = 0 \rightarrow 8$
$\omega/2\theta$ scans	$k = 0 \rightarrow 12$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -16 \rightarrow 16$
$T_{\min} = 0.511, \ T_{\max} = 0.698$	3 standard reflections
2060 measured reflections	every 200 reflections
1900 independent reflections	intensity decay: 1%
894 reflections with $I > 2\sigma(I)$	

Refinement

sup-2

•	
Refinement on F^2	Secondary aton
Least-squares matrix: full	Hydrogen site l sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parame
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2)]$ where $P = (F_o^2)$
S = 0.96	$(\Delta/\sigma)_{\rm max} < 0.00$
1900 reflections	$\Delta \rho_{\text{max}} = 0.56 \text{ e}$
127 parameters	$\Delta \rho_{\min} = -0.65$
61 restraints	Extinction corre
Primary atom site location: structure-invariant direct	

Pri methods m site location: difference Fourier map location: inferred from neighbouring

eters constrained

 $(0.0723P)^2$ + (0.0723P)²] $(+2F_{\rm c}^2)/3$ 01 $\mathrm{\AA}^{-3}$ e Å⁻³ rection: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.08467 (19)	0.97920 (12)	0.38634 (8)	0.0775 (5)
Br2	0.51183 (19)	0.91674 (13)	0.35768 (10)	0.0890 (5)
01	0.1990 (9)	1.1174 (7)	-0.1321 (4)	0.0521 (17)
O2	0.2770 (9)	0.8866 (7)	-0.1677 (4)	0.062 (2)
H2A	0.2526	0.9407	-0.2123	0.074*
O3	0.2364 (10)	1.1382 (6)	0.2363 (4)	0.0578 (19)
C1	0.1731 (15)	1.2472 (10)	-0.1180 (7)	0.065 (3)
H1A	0.1408	1.2869	-0.1802	0.097*
H1B	0.2900	1.2820	-0.0840	0.097*
H1C	0.0712	1.2596	-0.0802	0.097*
C2	0.2291 (13)	1.0450 (8)	-0.0514 (6)	0.041 (2)
C3	0.2247 (12)	1.0754 (8)	0.0407 (5)	0.036 (2)
H3A	0.2002	1.1572	0.0554	0.043*
C4	0.2555 (12)	0.9894 (8)	0.1168 (5)	0.0303 (19)
C5	0.2965 (12)	0.8669 (8)	0.0924 (5)	0.037 (2)
H5A	0.3198	0.8071	0.1410	0.045*
C6	0.3021 (13)	0.8348 (9)	-0.0047 (6)	0.043 (2)
H6A	0.3279	0.7536	-0.0208	0.052*
C7	0.2714 (13)	0.9187 (9)	-0.0728 (6)	0.044 (2)
C8	0.2469 (13)	1.0318 (9)	0.2175 (6)	0.039 (2)
C9	0.2485 (13)	0.9338 (9)	0.2920 (6)	0.048 (2)
H9A	0.2046	0.8555	0.2606	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0952 (10)	0.0694 (9)	0.0809 (7)	0.0149 (8)	0.0546 (7)	0.0129 (7)
Br2	0.0631 (8)	0.0828 (11)	0.1166 (10)	0.0081 (8)	-0.0004 (7)	0.0338 (8)
O1	0.051 (4)	0.059 (5)	0.046 (3)	-0.001 (4)	0.008 (3)	0.009 (3)
O2	0.065 (5)	0.072 (5)	0.055 (4)	0.001 (4)	0.030 (3)	-0.003 (4)
O3	0.105 (6)	0.018 (4)	0.058 (4)	0.001 (4)	0.037 (4)	-0.001 (3)
C1	0.072 (8)	0.055 (8)	0.068 (7)	-0.007 (7)	0.017 (6)	0.020 (6)

supplementary materials

C2	0.044 (5)	0.035 (5)	0.045 (4)	-0.001 (4)	0.009 (4)	0.003 (4)	
C3	0.041 (5)	0.020 (4)	0.048 (4)	-0.006 (4)	0.013 (4)	0.000 (3)	
C4	0.027 (4)	0.024 (4)	0.040 (3)	-0.003 (4)	0.006 (3)	0.000 (3)	
C5	0.038 (5)	0.031 (4)	0.041 (4)	0.004 (4)	-0.002 (4)	0.001 (4)	
C6	0.046 (5)	0.034 (5)	0.052 (4)	0.000 (4)	0.015 (4)	-0.005 (4)	
C7	0.046 (5)	0.048 (5)	0.045 (4)	0.002 (5)	0.025 (4)	-0.005 (4)	
C8	0.042 (5)	0.025 (5)	0.053 (4)	0.004 (4)	0.019 (4)	0.001 (4)	
C9	0.049 (5)	0.033 (5)	0.064 (5)	-0.002 (5)	0.015 (4)	0.004 (4)	
Geometric p	parameters (Å, °)						
Br1—C9		1 935 (9)	C2-		1	437 (12)	
Br2-C9		1.935 (9)	C3-		1.	398 (10)	
01-C2		1.355(10)	C3-	-H3A	0	9300	
01 - C1		1.333 (10)	C4-	-C5	1	407 (11)	
$0^{2}-C^{7}$		1 369 (9)	C4-	-C8	1.	481 (11)	
02 U7		0.8500	C5-	-C6	1	398 (11)	
03-08		1 184 (10)	C5-	_H5A	0	9300	
C1—H1A		0.9600	C6-		0.	302 (11)	
C1—H1B		0.9600	C6-	-H6A	0	9300	
C1—H1C		0.9600	C8-		1	478 (12)	
$C^2 - C^3$		1 324 (11)	C9-	_H9A	0	9800	
$C^2 = 01 = C$	1	113 ± 1 (11)	C6-	-С5Н5А	11	0 0	
C7 02 H	1 2 A	117.4 (7)	C0-	-C5-H5A	11	0.0	
01 С1 Ц	2A	100.5	C4-	-C3H3A	11	(9.9)	
01 C1 H	1 R	109.5	C7=	-C6_H6A	1/	20.0 (9)	
	HIR	109.5	C7=	-C0H0A	1/	20.0	
01 C1 H		109.5	C5=	-C0 $-H0A$	11	(0.0)	
		109.5	C0-	$-C_{7}$ C2	11	(9.7(9))	
		109.5	02	-C7 - C2	11	21.9 (8)	
$C^2 C^2 O$	1	109.3	02-	$-C^{2}$	11	10.4(0)	
$C_{3} = C_{2} = C_{3}$	7	129.0(9)	03-	$-C_{8}$ C_{4}	1/	22.4(8)	
$C_{3} - C_{2} - C_{3}$	7	112.0 (8)	C9-	$-C_{0}$ $-C_{4}$	11	121.4(8) 116.2(8)	
$C^2 = C^2 = C^2$	1	112.9(7)	C9-	$-C_0 - C_4$	11	0.2(6)	
$C_2 = C_3 = C_4$	4	122.7 (8)	C8-	-C9 $-D11$	1	10.3(0)	
$C_2 - C_3 - \Pi$	2 A	110.7	Co	-C9 - B12	10	(0)	
$C_4 - C_5 - \Pi$	5	110.7 117.2(7)	DI I-	—Сэ—Bl2	10)9.3 (4))0.8	
$C_3 = C_4 = C_3$	8	117.2(7) 118.0(7)	Co	-C9-H9A	10	0.8	
$C_{3} - C_{4} - C_{6}$	0	110.9(7)	D11-	—С9—П9А С0—Н0А	10	0.8	
$C_{5} - C_{4} - C_{6}$	0 1	123.9(7) 120.1(8)	D12-	—C9—II9A	IV.	19.0	
$C_{1} = 0_{1} = 0_{1}$		5 5 (14)	01-		_	179 1 (8)	
C1 - 01 - C	2 C7	-1744(8)	C3-	$-C^2 - C^7 - O^2$	_	179.7 (9)	
01-C2-C	3—C4	178 7 (8)	01-	-C2-C7-O2	0	2 (12)	
C7—C2—C	3—C4	-1.3(13)	C3-	-C4-C8-03	-1	= (1 <u>-</u>) 8.6 (13)	
C2-C3-C4	4—C5	1.4 (13)	C5-	-C4-C8-03	1′	70.2 (9)	
$C_2 - C_3 - C_4$	4—C8	-179 7 (9)	C3-	-C4-C8-C9	1	70.2.(8)	
C_{3} C_{4} C_{4} C_{5} C_{5	5—C6	-10(12)	C5-	-C4-C8-C9	-	10.9(12)	
C8-C4-C	5—C6	-1798(8)	03-	-C8-C9-Br1	34	5.2 (12)	
C4—C5—C	6—C7	0.7 (14)	C4-	-C8-C9-Br1	_	143.6 (7)	
			9.				

supplementary materials

C5—C6—C7—O2	-179.9 (8)	O3—C8—C9—Br2	-84.0 (10)
C5—C6—C7—C2	-0.7 (14)	C4—C8—C9—Br2	97.2 (8)
C3—C2—C7—C6	1.0 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2A…O1	0.85	2.27	2.617 (11)	105
C1—H1A····O2 ⁱ	0.96	2.51	3.398 (11)	153
C5—H5A···O3 ⁱⁱ	0.93	2.57	3.460 (10)	161
С9—Н9А…ОЗ ^{іі}	0.98	2.38	3.222 (11)	143
Symmetry adday (i) $w + 1/2 = w + 1/2$	1/2 (ii) $w + 1/2$ $v + 1/2$	1/2		

Symmetry codes: (i) -x+1/2, y+1/2, -z-1/2; (ii) -x+1/2, y-1/2, -z+1/2.

