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Abstract

Longitudinal studies of the microbiota are important for discovering changes in microbial communities that affect the host.
The complexity of these ecosystems requires rigorous integrated experimental and computational methods to identify
temporal signatures that promote physiologic or pathophysiologic responses in vivo. Employing a murine model of
infectious colitis with the pathogen Citrobacter rodentium, we generated a 2-month time-series of 16S rDNA gene profiles,
and quantitatively cultured commensals, from multiple intestinal sites in infected and uninfected mice. We developed a
computational framework to discover time-varying signatures for individual taxa, and to automatically group signatures to
identify microbial sub-communities within the larger gut ecosystem that demonstrate common behaviors. Application of
this model to the 16S rDNA dataset revealed dynamic alterations in the microbiota at multiple levels of resolution, from
effects on systems-level metrics to changes across anatomic sites for individual taxa and species. These analyses revealed
unique, time-dependent microbial signatures associated with host responses at different stages of colitis. Signatures
included a Mucispirillum OTU associated with early disruption of the colonic surface mucus layer, prior to the onset of
symptomatic colitis, and members of the Clostridiales and Lactobacillales that increased with successful resolution of
inflammation, after clearance of the pathogen. Quantitative culture data validated findings for predominant species, further
refining and strengthening model predictions. These findings provide new insights into the complex behaviors found within
host ecosystems, and define several time-dependent microbial signatures that may be leveraged in studies of other
infectious or inflammatory conditions.
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Introduction

Large-scale characterization of the host’s microbiota has been

enabled by recent innovations in sequencing technologies [1] and

computational methods [2–4]. These developments have provided

initial insights into the microbiota’s association with normal

physiology and disease [5–11]. Longitudinal studies are particu-

larly valuable for unraveling causal interactions among the host

and microbial inhabitants. However, studies of these ecosystems

over time require new analytic approaches to fully explore their

extraordinarily complex dynamics and identify signatures relevant

to host outcomes [12,13].

We used a mouse model of inflammatory colitis, caused by the

attaching and effacing pathogen Citrobacter rodentium [14,15], to

investigate dynamic changes in microbial communities relative to

a defined perturbation in the host. Prior studies have identified

alterations in the gut flora at the height of acute infection [16–19],

supporting our hypothesis that commensal populations change

dynamically before and after onset of host symptoms, and may

thus play important roles at different stages of disease. However,

the kinetics of these changes are neither known, nor characterized.

This experimental model thus provides a valuable system in which

to discover the complex behaviors of the microbiota, across gut

locations, and at different stages of host disease.
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In immunocompetent mice C. rodentium infection follows four

distinct stages [20]: 1) early colonization (<1–6 days post-

challenge), during which the pathogen establishes a small free-

living reservoir in the cecum and ileum and initiates adherent

infection in the distal colon [20,21], 2) symptomatic infection (<7–

17 days), characterized by epithelial hyperplasia, influx of host

immune cells, colitis, and development of early adaptive antibody

responses [14,22], 3) resolution (<17–25 days), during which

pathogen-specific IgG responses evolve and the pathogen is

cleared from the host [23], and 4) convalescence (<26–62 days),

during which tissue damage is repaired.

We used high-throughput 16S rDNA gene sequencing to

broadly characterize the microbiota over the course of infection.

We also employed quantitative culture of the pathogen and

predominant commensals to provide a complementary, non-

nucleic acid based dataset. This approach allowed evaluation of

the ecosystems under study at progressively finer levels of

resolution, starting with systems-level properties, such as diversity

and time to recovery, progressing to sets of taxonomic units, and

lastly incorporating quantitative culture data to identify changes at

the level of individual species.

Longitudinal analyses of complex microbial ecosystems present

several computational challenges. First, the numbers of time-points

and replicates collected from the host population(s) are frequently

small due to sampling logistics and experimental costs. Second,

biologic and analytic factors cause high amounts of noise. Third,

limited sequencing depth, constrained by cost, and combined with

relative rarity of certain organisms, can lead to low sequence

counts for some taxa. Although a number of existing computa-

tional tools readily compare ecosystems’ taxonomic compositions

and diversities [2–4], or abundances of taxa between conditions

[24], they have not been designed to analyze time-dependent

changes in taxa relative to perturbations in the ecosystem. Tools

for analyzing microarray time-series data [25–28] are also

suboptimal for this latter application as their underlying algorithms

do not model the characteristics of high-throughput sequencing

data or microbiome data.

To address these challenges we extended a computational

model that we recently developed, Microbial Counts Trajectories

Infinite Mixture Model Engine (MC-TIMME) [29] to enable

analysis of longitudinal changes in the microbiota during a host

infection. MC-TIMME represents a new approach to analyzing

microbiome time-series data, employing nonparametric Bayesian

methods and continuous-time models of dynamics coupled with an

error model tailored for high-throughput sequencing data. In prior

work, we introduced the algorithm and applied it to a publicly

available dataset measuring the microbiota of human subjects

exposed to sequential antibiotic exposures [12]. In that work, we

showed that MC-TIMME accurately inferred time-varying

signatures for individual taxa while simultaneously compressing

similar signatures into groups. Our method further identified a

number of new features in the dataset that had not been found

using standard analysis techniques. These new findings included

characterization of relaxation time distribution, or the kinetics of

ecosystems’ return to baseline or new levels after introduced

perturbations, and discovery of consensus signature groups

(CSGs), which represent sets of reference OTUs within or among

subjects that share common behaviors over the time-series. In the

present work, we extend MC-TIMME with a new, flexible model

of dynamics to capture behavior of the microbiota during an

ongoing host infection and introduce methods for incorporating

complementary data sources into analyses, including quantitative

culture data.

Application of the extended version of MC-TIMME to our

datasets of 16S rDNA gene signatures and quantitatively cultured

isolates from mice infected with C. rodentium enabled study of host

microbial ecosystems during an infection at progressively finer

levels of resolution. First, we analyzed time-dependent changes in

systems-level properties of the intestinal ecosystems and found

substantial differences across anatomic sites. Second, we used

Consensus Signature Group (CSG) analyses to characterize the

range of time-varying signatures observed in the microbiota

subsequent to host infection with the pathogen. Third, we

generated time-maps to temporally order CSG dynamics and to

visualize coordinate and cascading changes contributed by

individual taxa across intestinal sites. Lastly, we incorporated

quantitative culture data for the pathogen and predominant

commensals to validate and refine model predictions of the

dynamics observed, providing the final component of our

ecosystem-to-species level discovery of temporal dynamics in the

microbiota during a host infection.

Results

High-throughput longitudinal profiling of the microbiota
during host infection

To explore the dynamic effects of C. rodentium infection on

intestinal ecosystems, samples from ileum, cecum and distal colon

were collected from infected mice and uninfected controls, at days

3, 7, 10, 14, 21, 28 and 62 post-challenge with the pathogen. Each

time point consisted of biological replicates for the infected or

uninfected groups. Samples were subjected to massively parallel

16S rDNA gene sequencing and quantitative culture using media

selective for the pathogen and predominant commensals (Fig. 1A,

Tables 1, 2, Table S1, Datasets S1, S2).

We calculated Good’s coverage estimator [30] (Table 1) for

sequenced samples to determine if sequencing coverage was

equivalent between infected and uninfected mice, particularly in

distal colon where large pathogen burdens (maximum of <99% of

sequencing reads in the colon, and <4% of sequencing reads in

cecum and ileum) could impact ability to detect shifts in the

underlying microbiota. Average coverage was lowest in the more

microbiologically diverse cecal samples at <85%, and highest, at

<95–98% for colon and ileum. However, infected and uninfected

mice demonstrated comparable coverage at each location,

indicating that introduction of the pathogen did not prevent

detection of underlying commensal populations in infected mice.

Robust inference of time-varying signatures of taxa
We applied an extended version of MC-TIMME to our dataset

to infer time-varying signatures of taxa. Replicated time-series of

counts, either of Operational Taxonomic Units (OTUs) derived

from sequencing data, or of individual species measured by

quantitative culture, served as input to MC-TIMME (Fig. 1B).

MC-TIMME uses nonparametric Bayesian methods to simulta-

neously estimate the number of signatures, the shapes of

signatures, and assignments of taxa to signatures (Fig. 1C). Taxa

may follow different signatures in distinct anatomic sites and in the

infected and uninfected states, which our algorithm automatically

detects [29]. From the 16S rDNA data, 210 OTUs had sufficient

counts for analysis. Of these, MC-TIMME identified 45 OTUs

with detectable changes in response to infection in at least one

intestinal site. For the culture data, out of 7 predominant

commensal species determined to have sufficient counts for

analysis across biological replicates, all demonstrated detectable

changes in response to infection in at least one site. The inferred
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trajectories formed the basis for subsequent analyses at ecosystems-

to-species levels of detail (Fig. 1C).

Ecosystems-level measures: dynamics of microbiota
diversity and ecosystem recovery times

We used inferred signatures to estimate an ecosystem-level

measure of microbiologic diversity, Shannon entropy [31], and to

detect changes in this measure over the infection. In both groups

of mice, the Shannon entropy measure indicated that cecum had

the highest levels of diversity over the time series (Fig. 2C),

followed by colon (Fig. 2E), and ileum (Fig. 2A). Diversity

decreased with infection across all gut locations, with nadirs

occurring over days 7–14, the period of symptomatic infection. Of

note, the most profound decreases occurred in distal colon at the

primary site of infection. However, by 2 months post-challenge,

overall diversity in the infected mice returned to that of uninfected

mice at all gut locations.

We next evaluated the time it took for each ecosystem to return

to baseline after introduction of the pathogen. To quantify this

duration, we developed a new measure, the Microbiota Recovery

Time (MRT). The MRT is defined as the latest time-point post-

challenge with C. rodentium for which microbial communities from

infected mice and controls exhibit no detectable differences (.

95% similarity). For the MRT, the calculated similarity between

microbial communities takes into account the relative taxa

frequencies derived from their inferred signatures (Protocol S1).

The estimated MRT was 62 days for ileum, 14 days for cecum,

and 62 days for colon. This analysis highlighted very different

patterns of change among gut locations over the course of the

infection as well as the time required for recovery to a stable state.

Ileum (Fig. 2B) showed a biphasic pattern with prominent

Figure 1. Experimental and computational framework. (A) Experimental model, with cohorts of infected mice (red) or uninfected age-
matched controls (blue), from which ileum, cecum and distal colon samples were collected. Samples were subjected to high-throughput 16S rDNA
sequencing as well as quantitative culture for the pathogen and predominant commensals. (B) Computational pipeline begins with preprocessing
and clustering of 16S rDNA sequences into Operational Taxonomic Units (OTUs). Normalized OTU or culture counts serve as input to MC-TIMME,
which simultaneously infers the number, shapes, and assignments of taxa to prototype signatures. (C) MC-TIMME outputs summarize dynamic
changes in microbial communities across intestinal sites at multiple levels of detail. Systems measures detect large-scale changes in microbial
community structure and dynamics. Consensus Signature Groups (CSGs) compress OTUs into sets with members exhibiting similar behaviors over
time. Time-maps compactly visualize microbiota dynamics in tissues, organizing CSGs by their times of maximal change to reveal cascades of
coordinate alterations. Signature Match Percentiles (SMPs) identify taxa for which sequence and culture-derived signatures have strong
correspondences.
doi:10.1371/journal.pone.0095534.g001
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increases of taxa abundances during early infection followed by

decreases during acute infection. The microbiologically diverse

cecum showed little detectable change throughout infection

(Fig. 2D), while colon showed uniform decreases in early infection

that resolved after the recovery phase (Fig. 2F).

Consensus Signature Groups: defining patterns of
commensal responses to infection

We next used Consensus Signature Groups (CSGs) to categorize

the types of dynamic changes that occurred in the gut microbiota

after introduction of the pathogen (Figs 3,4). A Consensus

Signature Group represents a set of taxa that share similar

dynamics within a tissue, providing a means to identify common

behaviors among taxa regardless of their phylogenetic relation-

ships. All 45 OTUs identified by MC-TIMME as having

detectable changes in response to infection in at least one intestinal

site were assigned to CSGs.

Figure 3 illustrates representative signatures discovered by our

method for individual OTUs. These OTUs belong to CSGs that

exemplify predominant patterns of change in the ecosystems

studied. As expected, the pathogen Citrobacter rodentium in colon

(OTU#6; Fig. 3A), shows a rapid increase with maximal change

during acute infection, and returns to baseline by the resolution

phase. In contrast, Mucispirillum in colon (OTU#1; Fig. 3B),

demonstrates a rapid decrease during early infection. This

decreased exhibits a prolonged delay to recovery, beyond the

period of pathogen clearance between days 21–28. Of note,

Parabacteroides in colon (OTU#8; Fig. 3C) also decreased during

early infection, but returns to baseline by the recovery phase when

the pathogen has been cleared. Lactobacillus (OTU#3; Fig. 3E) in

ileum shows an increase that occurs during acute infection, and

then quickly returns to baseline by the recovery phase, whereas a

second Lactobacillus (OTU#13; Fig. 3F) shows an immediate and

prolonged decrease in the ileum. In contrast, Clostridium

(OTU#24) in ileum (Fig. 3G) and cecum (Fig. 3H), shows a very

delayed increase that persists into the convalescent phase.

Of note, many taxa demonstrated no detectable differences

between infected and uninfected mice, highlighting the fact that

profound changes in host microenvironments may preferentially

affect select taxa. For instance, Parabacteroides (OTU#8), which

showed changes in the colon (Fig. 3C), had no detectable changes

at its predominant site of residence in the cecum (Fig. 3D). Other

examples of taxa that showed no differences between infected and

uninfected mice include a member of family Lachnospiraceae in

colon (OTU#10; Fig. 3I) and a member of family Clostridiaceae

in ileum (OTU#4; Fig. 3J), which further classified as segmented

filamentous bacteria (SFB) by the RDP Sequence Match tool [32].

The analysis of Consensus Signature Groups suggested that a

substantial number of taxa in each tissue responded to infection in

a coordinate manner over the 2-month period. To quantify this

effect, we developed a measure, Consensus Signature Group

Coordination (CSGC), which is one minus the ratio of the number

of CSGs identified in a tissue to the number of taxa present in that

location across the time-series. CSGC thus measures the degree of

coordination of the changes among taxa within the microbial

tissue ecosystem. Higher CSGC values indicate more coordinated

behavior, while lower values indicate more varied responses. The

CSGC values for our dataset were 83% in ileum, 92% in cecum,

and 90% in colon. These values indicate highly coordinated

changes in the microbiota within all intestinal ecosystems during

infection, but with ileum showing notably more varied changes

than cecum or colon.

Time-maps: identifying tissue-specific, cascading
changes among commensal taxa

We created time-maps to visualize interrelations among the

dynamic responses observed for taxa within intestinal ecosystems

(Figs 4A, 4B, 4C). Time-maps revealed cascading and coordinate

changes across all gut locations studied, identifying distinct

patterns within each tissue.

In ileum (Fig. 4A), groups of OTUs coordinately increased or

decreased in response to infection, with the majority showing two

waves of peak responses. The first peak occurred early during

infection, over days 3–7 post-challenge (CSG IL1 and IL6), while

the second wave occurred during acute symptomatic infection

over days 10–14 post-challenge (CSGs IL2, IL3, IL7–IL10).

Overall, dominant effects in infected mice were seen in the orders

Clostridiales and Lactobacillales within phylum Firmicutes,

Table 2. Species identified by quantitative culture.

Species Selective Media Growth Conditions Identification
Threshold of
detection 16S rDNA gene ID

Citrobacter rodentium MAC Aeroboic1, 24 hr API-20E panel and full 16S
sequence.

100 CFU/g Citrobacter rodentium

Enterobacter hormachei MAC Aeroboic1, 24 hr API-20E panel and full 16S
sequence.

100 CFU/g Enterobacter hormachei

Lactobacillus johnsonii CNA Anaerobic2, 48–72 hr. Biochemical typing and 16S
sequence

500 CFU/g Lactobacillus johnsonii

Lactobacillus murinus BKV and CNA Anaerobic2, 48–72 hr. Biochemical typing and 16S
sequence

100 CFU/g Lactobacillus murinus

Lactobacillus reuteri CNA Anaerobic2, 48–72 hr. Biochemical typing and 16S
sequence

500 CFU/g Lactobacillus reuteri

Proteus vulgaris MAC+TET Aeroboic1, 24 hr API-20E panel and full 16S
sequence.

100 CFU/g Proteus vulgaris

Agar media used: MAC (MacConkey agar) for selection of enteric and bile-resistant non-fermenter species; MAC+TET (MacConkey agar with 10 mg/mL of Tetracycline) to
select for Proteus vulgaris. CAN (Colistin Naladixic Acid agar with 5% sheep’s blood on a Columbia agar base) for suppression of enteric species; BKV (Brucella-
Kanamycin-Vancomycin agar) for selection of aminoglycoside+vancomycin-resistant Lactobacilli;
1Aerobic incubation conditions were in 5% CO2 humidified atmosphere at 37uC; plates read at 24 and 48 hours of incubation.
2Anaerobic conditions were in a Coy anaerobic chamber at 37uC. Plates were read in the chamber at 72 hours of incubation.
doi:10.1371/journal.pone.0095534.t002
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Figure 2. Systems-level measures of microbiota diversity dynamics and tissue recovery times in response to infection. (A, C, E)
Shannon entropy calculated from inferred Operational Taxonomic Unit (OTU) signatures measures dynamic changes in the diversity of the microbial
ecosystems in each tissue. Red line = entropy of infected tissue ecosystem; blue line = entropy for controls. Vertical bars denote 95% credible
intervals. (B, D, F) The Microbiota Recovery Time (MRT) in each tissue measures the latest time-point post-challenge with the pathogen for which
microbial communities from infected mice and controls exhibit .95% similarity overall. Red bars = weighted measure of detected changes in taxa
increasing with infection; blue bars = corresponding measure for decreasing taxa. The weighted measure takes into account relative taxa
abundances in both infected and uninfected cohorts. The recovery time was 62 days for ileum, 14 days for cecum, and 62 days for colon.
doi:10.1371/journal.pone.0095534.g002
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though many OTU classifying at the same taxonomic level

exhibited quite different dynamics. In infected mice, OTU

associated with the genus Lactobacillus both increased (OUT#3,

#10) and decreased (OTU#13, #14), while members of the

Clostridiales increased (OTU#33, Coprobacillus; OTU# 46, #60,

Clostridiales; and OTU#69, Dorea) and also decreased (OTU#11,

Clostridiales).

In cecum (Fig. 4B), although the Citrobacter signature comprised

,<5% of total reads per sample, even at the height of infection,

numerous OTUs demonstrated altered trajectories in infected

mice. Members of family Lachnospiraceae both increased

(OTU#29) and decreased (OTUs #117 and #017) in infected

mice as compared to uninfected controls. Within the Clostridiales

OTUs #045 and #071 (CE2) increased in infected mice only over

the first 7 days of infection. In contrast, OTU#67 increased over

early and acute stages of infection (CSGs CE4), while OTUs

corresponding to genus Clostridium and that typed taxonomically to

other members of the Clostridiales (OTU#24, 131 and 294),

increased after the pathogen’s clearance (CSGs CE5, CE6, CE8).

Among the Lachnospiraceae, OTU #29 (CE3) increased over

acute infection, while OTU#117 (CE7) declined during early

stages of colonization, as did OTU #017 (CE9). In contrast, these

taxa showed nominal variation over the course of infection in

uninfected mice.

In colon (Fig. 4C), other than the pathogen, OTUs with

detectable changes showed profound decreases in infected mice,

with many CSGs exhibiting a time of maximal decrease by day 3

(CSGs CO2–CO5), prior to the onset of symptomatic infection.

Affected taxa included Anaerostipes (OTU#56) and members of the

Lachnospiraceae (OTUs#82, 103, 122 and 153). A second wave

of affected CSGs showed maximal decrease by day 10 during

symptomatic infection (CSGs CO6–CO8). Both waves of affected

CSGs largely recovered by the time of pathogen clearance at day

28. Genus Mucispirillum in colon (OTU#1; CSG CO9) was an

exception, exhibiting a sustained decrease into the convalescent

phase, beyond C. rodentium’s clearance by day 28. Of the tissues

studied, the colon demonstrated the most phylogenetically diverse

set of OTUs that changed in response to infection, including

OTUs classifying at the genus level as Mucispirillum (phylum

Deferribacteres), Robinsoniella, Lactobacillus, Turicibacter (phylum

Firmicutes) and Parabacteroides (phylum Bacteroidetes).

Validating predictions to the species level with
complementary data sources

We used quantitative culture of predominant species to validate

dynamics of corresponding taxa identified with high-throughput

sequencing. Sequence and culture-based datasets provide com-

plementary information. With sequence-based counts the preva-

lence of a given OTU must be interpreted relative to the total

counts for all OTUs in the ecosystem. In contrast, quantitative

culture normalizes counts for a species relative to the input mass of

tissue. By measuring viable organisms, culture-based analyses are

not confounded by the presence of nucleic acid signatures from

large numbers of dying organisms, which could occur with

pathogen clearance. Thus, although culture based methods cannot

be used to broadly characterize a complex ecosystem, selective use

provides an alternate and sensitive method for measuring changes

in defined species. The presence of common signals in both data

sources for a given taxon, and corresponding species, provides

stronger evidence that the signatures reflect the underlying

dynamics in vivo.

In addition to sequence and culture-based dynamics detected

for C. rodentium (OTU#6; Fig 5), MC-TIMME detected altered

ileal or cecal dynamics in response to infection for five OTUs, (#2,

3, 9, 13 and 14), which the RDP Classifier [33] classified to the

genus Lactobacillus. These OTUs proved resolvable to the species

level with the RDP Sequence Match tool (34). OTU#2 classified

as L. johnsonii, OTUs#3 and 9 as L. murinus, and OTUs#13 and

14 as L. reuteri. Interestingly, quantitative culture of predominant

organisms identified these same species, and we applied MC-

TIMME to generate signatures based on the culture counts (Fig 6).

To evaluate the similarity of signatures inferred from sequence

and culture-based datasets, we calculated the rank of the match

between the culture-based signature and the corresponding OTU

signature, relative to all other OTU signatures in the system (the

Signature Match Percentile, SMP). This measure provides a

principled way to leverage alternate methods for measuring

individual members within a complex ecosystem, such as

quantitative culture or use of a different sequencing methodology,

to validate findings identified by the originally used method. SMP

values .50% indicate specific matches between the culture and

sequence-based signatures. In contrast, SMP values ,50%

indicate relatively non-specific matches between the culture and

sequence-based signatures, raising the possibility that the observed

correspondence may be due to chance alone, and thus may be less

reflective of true in vivo behaviors.

The three Lactobacillus species exhibited specific matches

between culture and sequence-derived signatures for each

organism in ileum and cecum (Table 3). In both sources of data,

L. johnsonii exhibited a decrease during acute infection (79th-centile

SMP in ileum and 80th-centile SMP in cecum; Fig. 6A), L. murinus

exhibited an increase during acute infection (94th-centile SMP in

ileum and cecum; Fig. 6B), and L. reuteri exhibited a decrease in

acute infection (91th-centile SMP in ileum and 80th-centile SMP

in cecum; Fig. 6C). The high SMP values indicate that the

identified signatures are in close agreement between the two data

sources, suggesting that each Lactobacillus species may play different

functional roles within the ileal and cecal ecosystems.

MC-TIMME detects differing signatures among low
abundance commensal species phylogenetically related
to C. rodentium

Enterobacter hormachei and Proteus vulgaris, both members of family

Enterobacteriaceae, normally attain their highest biomass in the

Figure 3. Consensus Signature Groups systematically characterize patterns of time-dependent microbiota changes in response to
infection. Consensus Signature Groups (CSGs) represent sets of taxa that share similar dynamics within a tissue, providing a means to identify
common behaviors among taxa regardless of their phylogenetic relationships. Representative signatures of individual Operational Taxonomic Units
(OTUs) from CSGs are shown. Horizontal axis indicates days post-inoculation with the pathogen; vertical axis shows normalized sequencing counts for
the OTU. Dashed or dotted lines indicate median signature shapes for OTUs. Shaded regions indicate 95% credible intervals for signatures; regions of
overlap indicate time-periods during which changes were not detected. Phases of infection are E = early, A = acute, R = recovery, C =
convalescence. (A) The pathogen, Citrobacter rodentium (OTU#6) in colon. (B) Mucispirillum (OTU#1) in colon, rapidly decreases and does not return
to baseline until the convalescent phase. (C) Parabacteroides (OTU#8) in colon, decreases during early infection, but returns to baseline by the
recovery phase. (D) Parabacteroides (OTU#8) in cecum had no detectable change between cohorts. (E–F) Two Lactobacilli in ileum, showing different
dynamics: OTU#3 increases during acute infection, while OTU#13 decreases. (G–H) Clostridium (OTU#24) in ileum and cecum, has a delayed
increase that persists into the convalescent phase. (I–J) Representative OTUs in colon and ileum showing no detectable changes between cohorts.
doi:10.1371/journal.pone.0095534.g003
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mouse cecum where they comprise a minor (103–105 CFU/g), but

consistently present, population of the ecosystem involved in

rodent hindgut metabolism [34]. With 2000–3000 sequencing

reads/sample these organism are effectively undetectable. Thus,

we used culture-based methods and input these counts into MC-

TIMME to gain an understanding of the dynamics of these

organisms during the C. rodentium infection. E. hormachei showed a

detectable increase then decrease that correlated with the

signature of C. rodentium (Fig 7A, C, E). In contrast, P. vulgaris

demonstrated a detectable decrease in ileum and distal colon

(Fig 7B, 7F), though negligible effects in cecum (Fig 7D).

Discussion

Our study demonstrates the power of using an integrated

experimental and computational approach to analyze complex

microbial ecosystems over time. Utilization of a defined experi-

mental system enabled collection of high-quality samples from

multiple intestinal sites, and reduced confounding factors though

use of age-matched controls and biological replicates. Our

computational model was designed to effectively leverage sparse

and noisy time-series of counts produced from high-throughput

sequencing and quantitative culture data. These approaches

enabled robust detection of temporal changes in the behavior of

the microbiota at multiple levels of resolution. Furthermore, this

approach characterized reproducible changes in predominant

organisms to the level of culturable isolates, illustrating the utility

of combining molecular, microbiologic and computational meth-

ods for study of dynamically changing microbial ecosystems.

Many of the time-dependent microbial signatures discovered by

our analyses are associated with key events in the host response to

C. rodentium infection. For example, Consensus Signature Group

(CSG) CO9, represented by the genus Mucispirillum (OTU#1) in

colon, showed a prolonged decrease in infected mice. In vivo,

Mucispirillum inhabits the mucus layer over colonocytes. C.

rodentium’s adherence to colonic epithelium actively destroys this

microenvironment [35–37]. Full regeneration of the mucus layer

occurs some time after the pathogen’s clearance, providing a

possible explanation for the observed delay in Mucispirillum’s

recolonization of distal colon. This CSG could thus provide a

marker for health of the surface mucus layer in distal colon, with

potential application to other models of inflammatory colitis. As

another example, MC-TIMME identified multiple CSGs exhib-

iting maximal decreases in infected mice over the second and third

weeks post-challenge. This timeframe covers the period of

maximal pathogen burden in the distal colon, the height of host

symptoms, and the early development of pathogen-specific

adaptive immune responses. Interestingly, some of these CSGs

were detected in ileum and cecum, sites in which free-living

populations of the pathogen reside at considerably lower

biomasses than populations in the colon. These microbial

signatures, which occur proximal to the primary site of infection,

could reflect direct interactions with the pathogen, but given the

lower biomasses of pathogen at these sites, may well reflect effects

of systemic host responses elicited in response to the colitis. Finally,

MC-TIMME detected CSGs exhibiting prolonged increases after

clearance of the pathogen, such as CSGs represented by the genus

Clostridium (OTU#24) in ileum or cecum. During the recovery and

convalescent phases, the host resolves local inflammatory respons-

es and actively repairs damaged tissues, a process that takes weeks

to complete. The finding that some organisms attain higher

biomass during this phase suggests that these taxa may promote or

otherwise benefit from changes in intestinal microenvironments

that occur during tissue repair and resolution of inflammation, a

pattern warranting further evaluation in other models of colitis.

Consensus Signature Groups provide a useful method to

compress the potentially enormous variety of dynamic behaviors

seen across taxa into smaller sets of interpretable patterns. Many

CSGs contained phylogenetically diverse taxa, identifying groups

of organisms that may share functional traits needed to compete

with the pathogen or otherwise take advantage of microenviron-

ments changing in concert with evolving host responses. These

CSGs identify candidate taxa and species to validate in further

directed experimental systems. Conversely, CSG analysis also

found closely related taxa with dramatically different behaviors

during infection, such as members of the families Clostridiaceae

and Lactobacillaceae in cecum and ileum. In particular, MC-

TIMME used sequencing data to discover three Lactobacillus

species with different dynamic behaviors, which were subsequently

validated with quantitative culture data. Of note, prior studies in

C. rodentium and other mouse models of colitis have suggested that

these three Lactobacillus species may behave differently in specific

intestinal microenvironments, exerting different effects on the host

[38,39].

Analyses on species detectable only with culture also demon-

strated significant effects of C. rodentium infection on the dynamics

of related Enterobacteriacaea, namely mouse commensal species of P.

vulgaris and E. hormachei. In the cecum of infected mice, E.

hormachei’s trajectory generally paralleled that of C. rodentium.

Enterobacter species are the most similar phylogenetically and

metabolically to Citrobacter species [40]. These findings would thus

suggest that, rather than directly competing for nutrients, C.

rodentium’s introduction into the ecosystem results in conditions also

favorable for E. hormachei, with negligible or negative impact upon

P. vulgaris. The mechanism(s) underlying these interactions are

likely complex, but subject to experimental analysis in in vitro co-

culture systems and specific association studies in germfree mice,

and may include direct interactions among species, as well as host-

elicited alterations to the gut luminal environment, stimulated by

active infection and necessary immune and epithelial responses

that ultimately clear the pathogen from enteric environments.

Our computational model provides a general framework for

analyzing data from longitudinal studies of the microbiota. In this

study, we used MC-TIMME to analyze 16S rDNA phylotyping

and quantitative culture data. The model is also applicable to

other time-series of counts, including longitudinal sequence-based

Figure 4. Time-maps reveal tissue-specific cascading and coordinate changes among commensal taxa in response to infection. MC-
TIMME detected 45 Operational Taxonomic Units (OTUs) that change over time between infected and uninfected mice in at least one intestinal site,
and assigned these OTUs to Consensus Signature Groups. Time-maps use CSG information to visualize interrelations among the dynamic responses of
OTUs within intestinal ecosystems. X-axis indicates days post-challenge with C. rodentium. Rows in each panel depict OTUs with detectable changes in
infected mice relative to uninfected controls. Red indicates an increase in the signature for infected mice relative to baseline, and blue indicates a
corresponding decrease. Intensity of colors corresponds to magnitude of change of signatures; regions in which changes were not detected are
attenuated in color. Yellow marks indicate the time of maximal increase or decrease relative to the uninfected baseline controls for the CSG. Note that
magnitudes of changes are not directly comparable across OTUs in this visualization. Phases of infection are E = early, A = acute, R = recovery, C =
convalescence. Vertical axis on the right-hand side indicates the OTU#, level of taxonomic assignment by the Ribosomal Database Project (RDP)
classifier (L = level; K = kingdom; P = phylum; O = order; F = family; G = genus), and RDP taxonomic assignment.
doi:10.1371/journal.pone.0095534.g004
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metagenomic and transcriptomic data. The model’s ability to

automatically discover and compress a potentially large range of

dynamic patterns into smaller and refined sets holds value for

extracting relevant signatures from rich time-series datasets.

Further, because MC-TIMME uses a fully specified probabilistic

model, additional covariates may be readily incorporated into the

analysis, which will be essential for supporting future studies

linking dynamic changes in the human microbiota to patient

phenotypes and outcomes from disease.

Methods

C. rodentium infection and tissue harvest
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee (IACUC) for Brigham & Women’s Hospital (Permit

Number: A-3431-01). All efforts were made to minimize suffering.

Male C57BL/6 mice at 3 weeks of age were purchased from

Taconic Farms (Taconic, NY) and maintained in-house for 2

weeks prior to challenge at 5 weeks of age with 5 X 107 CFU/

mouse of strain DBS100 of C. rodentium as described [23,41]. Prior

to inoculation, bedding was mixed and distributed among cages

twice a week to limit development of varied flora across mice. Post-

inoculation, longitudinal tissue samples were harvested at the same

time each day. For tissue collection, mice were placed in pre-

sterilized plastic containers for up to 30 minutes to allow clearance

of fecal pellets from the distal colon through normal defecation.

Mice were anesthetized and sacrificed by overdose with volatile

isoflurane (Vedco Inc., St. Joseph, MO). The abdomen was

sprayed with 70% ethanol to wet the fur. To prevent cross-

contamination of intestinal contents across samples harvested from

gut tissues, three sets of sterile, UV-irradiated tools were used on

each mouse to open skin, the abdominal cavity, and then to

remove the digestive tract en bloc. Individually sterilized razor

blades were used on each tissue location to remove 1.0 cm

segments of ileum, 2–5 cm proximal to the ileo-cecal valve, 0.5 cm

of cecum taken 0.5 cm proximal from the cecal tip, and terminal

3 cm of distal colon, starting 0.5 cm from the anal canal. Segments

of distal colon were harvested that lacked fecal pellets, to insure

detection of resident colonic flora.

Ileum, cecum and distal colon (devoid of fecal pellets) from

infected mice and uninfected controls were harvested at days 3, 7,

10, 14, 21 and 28 post-inoculation for 16S rDNA gene sequencing

and quantitative culture of the pathogen and predominant

commensals. Samples to be subjected to 16S rDNA gene

sequencing were snap frozen on liquid nitrogen and stored at 2

80uC until processed for DNA. Samples to be used for culturing

were placed in 1.0 mL of pre-reduced phosphate buffered saline

(PBS) containing 40 mM L-cysteine-HCl (Sigma Chemical, St.

Louis, MO). Remaining segments were placed in 10% zinc-

buffered formalin for fixation and paraffin-embedding to evaluate

tissue histopathology.

Figure 5. Sequence and culture-based signatures for Citrobacter rodentium in all tissues. Horizontal axis indicates days post-inoculation
with C. rodentium. Dashed lines indicate the inferred median signature shape for each trajectory. Shaded regions indicate the 95% credible interval.
(A, B, C) Signatures derived from sequencing data for the predominant C. rodentium Operational Taxonomic Unit (OTU) in ileum, cecum, and colon.
Vertical axis indicates the number of normalized sequencing counts. (D, E, F) Signatures derived from culture-based data for C. rodentium in ileum,
cecum and colon. Vertical axis indicates log10 Colony Forming Units (CFUs) per gram of input tissue. Of note, although C. rodentium was not cultured
from uninfected mice, the estimated upper bound of the 95% credible interval for the culture counts in uninfected and infected mice trends to
1X102 CFU/g, which was the threshold of detection when using MacConkey agar for selective culture (Table 3).
doi:10.1371/journal.pone.0095534.g005
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Quantitative aerobic and anaerobic culture
Preliminary cultures, conducted prior to infection, were used to

identify dominant aerotolerant and obligately anaerobic commen-

sals (data not shown). In particular, efforts were directed at 1)

commensal species demonstrating counts of 1 X 108 CFU/gram

or higher in cecum, and preferably in ileum or distal colon, with

the intent of providing ‘‘reference’’ species that could be detected

both by culture and pyrosequencing, and 2) members of the

Enterobacteriaceae to ascertain if the 16S rDNA V1 and V2 gene

regions could discriminate enteric commensals from C. rodentium.

From this initial screen, species of Lactobacillus and were found to

be the most prevalent, culturable commensals with biomass .

108 CFU/g of tissue. Though members of the Bacteroidales and

Clostridiales were also cultured, these species did not exceed this

threshold.

Samples were weighed prior to homogenization in an anaerobic

Coy chamber with serial dilution and plating to the media

described in Table 2. Quantitative culture was used to obtain

Figure 6. Sequence and culture-based signatures for three Lactobacillus species in ileum and cecum. Horizontal axis indicates days post-
inoculation with Citrobacter rodentium. For sequence-based signatures, vertical axis indicates the number of normalized sequencing counts for the
Operational Taxonomic Unit (OTU). For culture-based signatures, vertical axis indicates log10 Colony Forming Units (CFUs) per gram of input tissue.
Dashed lines indicate the inferred median signature shape for each trajectory. Shaded regions indicate the 95% credible interval. (A, G) Sequence
and (D, J) culture-based signatures for Lactobaillus johnsonii. (B, H) Sequence and (E, K) culture-based signatures for Lactobacillus murinus. (C, I)
Sequence and (F, L) culture-based signatures for Lactobacillus reuteri.
doi:10.1371/journal.pone.0095534.g006
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species-level counts for the pathogen, Citrobacter rodentium, and for

the commensals listed in Table 2. With the exception of

MacConkey agar with 10 mg/mL of Tetracycline (Sigma Chem-

ical, St. Louis, MO) all agar media listed in Table 2 were

commercially purchased from Remel (Lenexa, KS). Aerobic

incubation was in a 5% CO2 humidified incubator at 37uC.

Colony types were enumerated at 24 and 48 hours of incubation.

Anaerobic incubation was conducted in a Coy chamber with

atmosphere of 10% carbon dioxide, 10% hydrogen and 80%

nitrogen at 37uC. Plates were incubated for a minimum of

72 hours after which colony types were enumerated and

described. Representative isolates from each tissue sample were

re-streaked to anaerobic Brucells modified broth (BMB) agar,

Gram stained, and aerotolerance tests were performed to confirm

obligate anaerobes versus aerotolerant species.

Citrobacter rodentium was identified by growth on

MacConkey agar as dark pink, lactose-positive, indole-negative

colonies, producing Gram-negative rods by morphology. Repre-

sentative isolates were typed by API-20E panels (Biomérieux,

Durham, NC) and full 16S rDNA sequencing.

Enterobacter hormachei was identified as opaque, light

pink, lactose-fermenting, Gram-negative rods on MacConkey

agar, and typed by API-20E panel and full 16S rDNA sequence.

This species produced larger colonies than C. rodentium at 24 hours

of growth and thus was distinguishable within dense growth of the

pathogen. Putative isolates of E. hormachei from acutely infected

mice were selected and re-streaked to fresh MAC plates to verify

the species.

Lactobacillus johnsonii was identified by growth on CNA

agar, producing slender, elongated and non-sporulating Gram-

positive rods that were catalase negative. Isolates were susceptible

to vancomycin. Full 16S rDNA sequence was used to speciate

representative isolates from each time point.

Lactobacillus murinus was identified by growth on CNA

and BKV agar (vancomycin-resistant) that produced non-sporu-

lating Gram-positive rods that were catalase negative. Isolates

grew on BKV containing vancomycin. Full 16S rDNA sequence

was used to speciate representative isolates from each time point.

Lactobacillus reuteri was identified by preferential growth

under anaerobic conditions on BMB and CNA agar. Cell

morphology by Gram stain showed shorter Gram-positive, non-

spore forming rods that were catalase-negative. Full 16S rDNA

sequence was used to speciate representative isolates from each

time point.

Proteus vulgaris was the only organism to grow on

MacConkey agar + 10 ml/mL tetracycline where it produced

pale, lactose-negative colonies. Identification was confirmed by

API-20E typing of representative isolates from each time point,

and by full 16S rDNA sequence.

After final counts of each species at the highest dilution at which

it was detected, counts were entered into a spreadsheet containing

the starting tissue mass and dilution factor to obtain log10 of colony

forming units per gram of input tissue mass (log10 CFU/g).

454 Pyrosequencing of 16S rDNA gene signatures
DNA was extracted from mouse fecal pellets using the MoBio

Fecal DNA extraction kit per the manufacturer’s specifications

(MoBio Laboratories Inc, Carlsbad, CA). Fragments of the 16S

rRNA gene, spanning the V1 and V2 hypervariable regions were

PCR amplified from each tissue sample using sample-specific

barcodes adapted to universal 16S rDNA primers 27F (59-

AGAGTTTGATCMTGGCTCAG-39) and 338R (59-GACTCC-

TACGGGAGGCWGCAG-39). DNA was sequenced using a

Genome Sequencer FLX and GS-LR70 kit (Roche Applied

Sciences, Indiannapolis, IN) at Duke University’s IGSP Sequenc-

ing Core Facility (Durham, NC). Raw sequence datasets have

been deposited at NCBI’s Short Read Archive (SRA) under

BioProjectID PRJNA202962.

Data preprocessing
Mothur v.1.14.0 was used to preprocess sequences, and to

construct and taxonomically classify OTUs [4]. The pipeline used

was as follows:

1. Barcodes were trimmed and sequences were filtered based on

quality scores with the following parameters used: window

average quality score $ 35, window size = 50, no ambiguous

bases, homopolymer length # 8, primer differences # 2,

barcode differences # 1, and length between 200 bp and

300 bp.

2. Sequences were then chopped to 200 bp and aligned against

the SILVA compatible database provided with mothur.

Sequences that started before the 2.5-percentile or ended after

the 97.5-percentile in the alignment were filtered out.

3. The ChimeraSlayer and preclustering algorithms implemented

in mothur were run.

Table 4 indicates the number of reads after each filtering step.

Table 3. Correlation of Sequence and Culture-based Signatures.

Tissue Organism
Uncentered correlation of culture vs.
sequence signatures Percentile of correlation

Ileum C. rodentium 0.82 98%

L. johnsonii 0.59 79%

L. murinus 0.66 94%

L. reuteri 0.69 91%

Cecum C. rodentium 0.82 98%

L. johnsonii 0.63 80%

L. murinus 0.76 94%

L. reuteri 0.50 80%

Colon C. rodentium 0.89 .99%

doi:10.1371/journal.pone.0095534.t003
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Figure 7. Culture-based signatures for low abundance commensal species phylogenetically related to Citrobacter rodentium in
ileum, cecum, and colon. Horizontal axis indicates days post-inoculation with C. rodentium. Vertical axis indicates log10 Colony Forming Units
(CFUs) per gram of input tissue. Dashed lines indicate the inferred median signature shape for each trajectory. Shaded regions indicate the 95%
credible interval. (A, C, E) Signatures for Enterobacter hormachei. (B, D, F) Signatures for Proteus vulgaris.
doi:10.1371/journal.pone.0095534.g007
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Sequences were assigned to OTUs using the furthest neighbor

method and a threshold of 97% similarity. Distances between

sequences were calculated in mothur, and sequences were assigned

to OTUs using the furthest neighbor method with a threshold of

97% similarity. OTU numbers were assigned by the
mothur pipeline, which orders OTUs in descending
order by the sum of the sequencing reads across all
samples assigned to the OTU. The consensus taxonomic

classification for each OTU was determined using the naı̈ve Bayes

classifier [33] implemented in mothur against the RDP database

(bootstrap cutoff of 60%).

After filtering OTUs that failed to have $5 reads in $3

samples, 210 OTUs were available for input to MC-TIMME.

Relationships among the 210 OTUs were visualized by building a

tree of the most abundant sequence from each OTU and

rendering the results using the Dendroscope software [42]. The

tree was constructed using mothur, by aligning sequences against

the included ARB SILVA reference database, calculating distances

between sequences using the dist.seqs command (default options),

and then building a neighbor joining tree with the clearcut

command (default options).

Sequencing count normalization
To make sequence counts for OTUs comparable across

samples, we used a nonparametric regression method, Locally

Weighted Scatterplot Smoothing (LOWESS). This technique

allows for nonlinear normalization, which has been shown to be

important for data in which error characteristics differ substan-

tially at the extreme ranges of values such as with DNA microarray

data [43]. This error characteristic is evident in our data, as shown

in Figure S1. The LOWESS normalization on our data

compensates for differing numbers of sequencing reads in samples,

with allowance for a nonlinear relationship for samples with very

low or high numbers of reads.

To perform the LOWESS regression, all OTU counts across all

samples were included in the regression. The independent variable

for the regression was the relative abundance of the OTU in the

sample, and the dependent variable was the counts for the OTU in

the sample. We used the MATLAB 2010b (MathWorks, Natick,

MA) malowess function with the robust regression option and with

second degree curves to perform the analysis. Counts were then

rescaled and rounded based on the LOWESS output. These

normalized counts were then used as input for the MC-TIMME

algorithm (Dataset S1).

Microbial Counts Trajectories Infinite Mixture Model
Engine (MC-TIMME)

MC-TIMME is based on Dirichlet Process or Infinite Mixture

Models, a class of nonparametric Bayesian models in which data is

assumed to be generated from a weighted mixture of a potentially

unlimited number of components [29]. Mixture components

correspond to prototype signatures, with component k defined by a

set of signature shape variables dkt and a variable controlling data

variance ek. Observed count data is modeled using a Generalized

Linear Model (GLM) with a Negative Binomial Distribution

(NDB) data model with mean dependent on dkt and variance

controlled by ek. The model also specifies prior probability

distributions on model parameters controlled by hyperparameters.

We extended the original MC-TIMME model to use a continu-

ous-time model of dynamics based on a Gaussian random with

time-scaled variance (Protocol S1). We derived an efficient Markov

Chain Monte Carlo (MCMC) approximate inference algorithm

with Gibbs sampling steps for assignments of time-series of counts

for OTUs to prototype signatures, and specialized Metropolis-

Hastings (MH) steps for trajectory variable and hyperparameter

updates. We used 25,000 MCMC iterations for burn-in and then

an additional 75,000 iterations to estimate the posterior distribu-

tion.

Detecting signature changes in response to infection
Our model is fully Bayesian and thus does not use p-values. We

instead directly estimate probabilities of signatures differing

(Protocol S1). We used the following criteria to detect changes in

OTU signatures in response to introduction of the pathogen: a) the

posterior probability of infected and uninfected samples sharing a

prototype signature was ,5%, and b) the 95% credible intervals

for infected and uninfected signatures did not overlap for at least

two time-points. Using these criteria, we estimated the false rate of

detection at ,5% across our dataset.

Correlation analyses of sequence and culture-based
trajectories:

To assess the similarity of culture and sequence-derived

signatures, we performed the following analysis. For the culture-

derived signatures, we computed the difference between signatures

in the infected and uninfected states for each organism in each

tissue site. We performed analogous computations for all

sequence-derived OTU signatures (including for OTUs for which

there was no corresponding culture data). Then, for each

differenced culture-derived signature, we computed its uncentered

correlation coefficient [44] against all the differenced sequence-

derived signatures. This analysis provided an indication of how

similar or different a given culture signature was from all OTU

signatures analyzed in the longitudinal dataset, including the OTU

signature associated with the given isolate cultured. We then

computed the percentage of these correlations that were less than

the actual correlation between the culture-derived differenced

signature and the corresponding sequence-derived differenced

signature. For the computation of this percentage, we excluded

OTUs classified to the same genus as the cultured organism being

evaluated.

Table 4. Filtering steps in bioinformatics pipeline and remaining sequencing reads.

Filtering step Sequences remaining after filter

None 678,247

QC scores, ambiguous bases, homopolymers, min/max length, match barcodes 300,462

Alignment to 16S rDNA reference database 294,996

ChimeraSlayer 274,882

doi:10.1371/journal.pone.0095534.t004
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Supporting Information

Figure S1 Locally Weighted Scatterplot Smoothing
(LOWESS) normalization of sequence count data. The

LOWESS non-parametric regression method was applied to

sequencing data to normalize counts obtained across samples.

Data (blue plus signs) are plotted with the relative abundance as

the independent variable and sequence counts as the dependent

variable. Each data point represents an Operational Taxonomic

Unit (OUT) from a single sample (a particular time-point, tissue

and replicate). The red line indicates the best linear fit to the data.

Deviations from the linear fit are evident at the lower and upper

range of data values. The black dots represent the fitted values

from the LOWESS regression. The LOWESS estimated values

were rounded down and used as the effective number of reads for

each OTU.

(TIF)

Protocol S1 Detailed description of the MC-TIMME
algorithm and associated computational methods.

(PDF)

Table S1 Sample key.

(TXT)

Table S2 Sample barcode key for samples submitted
for 16S rRNA gene sequencing.
(TXT)

Dataset S1 LOWESS normalized counts for Operational
Taxonomic Units from 16S rDNA phylotyping data.
(TXT)

Dataset S2 Colony Forming Units per gram of input
tissue for cultured organisms.
(TXT)
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