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Abstract

Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is

a transcription factor induced by hypertonic stress in the kidney. However, the function of

NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed.

Indeed, although NFAT5 was reported to be critical for heart development and function, its

role in infectious heart diseases has remained obscure. In this study, we aimed to under-

stand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3

(CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although

the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level

decreased because the protein was cleaved. Bioinformatic prediction and verification of the

predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein

was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of

NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant neg-

ative effect on the full-length NFAT5 protein. We further showed that elevated expression of

NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable

mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5

resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported

to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was

supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5.

In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or

mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and

reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-

CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of

NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the

development of anti-CVB3 therapeutics.
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Author summary

Coxsackievirus B3 (CVB3) is one of the predominant pathogens of viral myocarditis,

which is a major cause of sudden death in children and young adults. CVB3 alters the

expression of many proteins in host cells to facilitate its multiplication. Nuclear factor of

activated T cells 5 (NFAT5) is known to be involved in the response to high salt concen-

tration in body fluids but its role in viral infection is not currently understood. Here, we

showed that NFAT5 was cleaved into several fragments during CVB3 infection, which

blocked the activity of the protein. We demonstrated that intact NFAT5 inhibited CVB3

multiplication, but that such antiviral activity was impaired by NFAT5 cleavage products,

indicating that CVB3 cleaves the NFAT5 protein as a survival strategy. When we used a

high concentration of saline or mannitol solution to induce NFAT5 production in CVB3-

infected cells and mice, we found that viral multiplication was significantly reduced, sug-

gesting that there is therapeutic potential for use of NFAT5 to combat CVB3 infection.

Taken together, our findings have uncovered a novel anti-CVB3 role of NFAT5 and pro-

vided a promising drug target for CVB3-induced myocarditis.

Introduction

Viral myocarditis is an inflammatory heart disease caused by viral infection. Acute viral myo-

carditis can be lethal in a short period of time and chronic viral myocarditis frequently pro-

gresses to dilated cardiomyopathy (DCM), a severe heart disease for which the only current

treatment is heart transplantation [1–3]. In patients less than 40 years of age, viral myocarditis

and DCM are the major natural causes of sudden unexpected death, accounting for as many as

20% of all sudden death cases [4–6]. There are no effective drugs available for the treatment of

viral myocarditis, partly due to the sporadic occurrence and rapid development of this disease.

In this study, we aimed to understand the molecular pathogenesis of viral myocarditis and

hopefully to discover new strategies for treatment. CVB3 is a member of the enterovirus genus

in the Picornaviridae family. The genome of CVB3 is a positive, single-stranded RNA molecule

encoding a single open reading frame. The viral genome transcription depends on its own

RNA-dependent RNA polymerase 3D. The genome also contains an internal ribosome entry

site (IRES) within the 5’ untranslated region. Upon infection, the viral RNA is translated by a

cap-independent/IRES-driven mechanism into a long polyprotein, which is processed by viral

proteases 2A and 3C [7, 8]. In addition to processing viral polyproteins to complete the viral

life cycle, CVB3 proteases also cleave various host proteins, modulating cellular signaling path-

ways to benefit viral replication. Several well-documented examples of such cleavage are the

cleavage of eukaryotic translation initiation factor 4G (eIF4G) by protease 2A, shutting down

host cap-dependent translation [9, 10], as well as cleavage of poly-A binding protein (PABP),

inhibiting host translation initiation [11], and cleavage of cardiac dystrophin, a structural pro-

tein required for maintenance of cardiomyocyte architecture, which results in structural dam-

age [12]. In addition, both 2A and 3C cleave Bid, a Bax-like BH3 protein, inducing the

intrinsic mitochondria-mediated apoptosis pathway and leading to cell death [10].

Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP)

is a master transcription factor (~170 kDa) activated in hypertonic stress. NFAT5 activation

promotes cell survival in hypertonic conditions via stimulation of the expression of different

tonicity-responsive genes by binding to the tonicity-responsive enhancer (TonE) located in

these genes’ promoters [13]. Most NFAT5 studies have been conducted in the kidney, as this is

the most common hypertonic environment in mammals. However, NFAT5 is actually
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ubiquitously expressed in almost all organs including those not exposed to hypertonic envi-

ronments, such as the brain, heart, and skeletal muscles [14, 15], but the function of the protein

in these organs has rarely been studied. Recently, a few reports have suggested the possible pro-

tective role of NFAT5 in some cases of heart injury. For instance, degradation of NFAT5 is

induced in cardiomyocytes treated with doxorubicin, a commonly used anti-tumor agent, and

a concurrent decrease of NFAT5 exacerbates myocyte death upon doxorubicin treatment [16].

In certain clinical trials, hypertonic saline solution (HSS), a common agent for inducing hyper-

tonic stress, was used as a auxiliary supplement to improve cardiac function in heart diseases

[17, 18]. The protective role of NFAT5 may be associated with the transcriptional activity of

nuclear factor κB (NFκB). NFAT5 enhances NFκB activity by forming an NFκB-NFAT5 com-

plex and enhancing NFκB’s binding to the κB elements of NFκB–responsive genes [19]. NFκB

has been shown to influence numerous cardiovascular diseases and can protect cardiovascular

tissues from injury [20]. More interestingly, NFκB has also been reported to promote host cell

viability in CVB3 infection [21] and inducible nitric oxide synthase (iNOS), a downstream sig-

nal of NFκB, exerts inhibitory effects on CVB3 replication and decreases mouse mortality rate

after viral infection [22]. Combined, these previous findings inspired us to link NFAT5 to

anti-CVB3 activity, a virgin field for studies of both NFAT5 and viral myocarditis.

In this study, we found that the reduction of NFAT5 expression during CVB3 infection is

primarily due to the post-translational cleavage of NFAT5 at glycine (G) 503 by CVB3 prote-

ase. Such cleavage impairs NFAT5 activity due to the dominant negative effect of the ~70 kDa

N-terminal cleavage product (p70-NFAT5). Ectopic expression of the full-length (FL) NFAT5,

especially a non-cleavable mutant of NFAT5, resulted in strong inhibition of CVB3 replication,

suggesting an antiviral effect of NFAT5. These data were further substantiated by siRNA-

mediated gene silencing of NFAT5, showing an increase of CVB3 replication. Mechanistic

analyses revealed that iNOS, a downstream protein of NFAT5, is activated by full-length (FL)

NFAT5 but inhibited by p70-NFAT5. Furthermore inhibition of iNOS by a specific inhibitor

(1400W) or iNOS-specific siRNA blocked the antiviral effect of NFAT5. In treatment studies

using cell cultures, we found that HSS or mannitol, two potential inducers of NFAT5, signifi-

cantly inhibited CVB3 replication. Finally, using a CVB3 myocarditis mouse model, we dem-

onstrated that treating the infected mice with HSS decreased viral load and alleviated heart

tissue damage. In all, our studies uncovered a novel cardiac protective role of NFAT5 against

CVB3 infection, revealing an underlying mechanism (activation of iNOS) by which NFAT5

protects the heart from CVB3 damage. Hypertonic agents may therefore have therapeutic

potential against CVB3 infection and viral myocarditis.

Results

CVB3 infection decreases NFAT5 protein level but not mRNA level

We first assessed the change of NFAT5 in SV40 human cardiomyocytes (HCM). HCM were

infected with CVB3 at a multiplicity of infection (MOI) of 40 or sham-infected with phos-

phate-buffered saline (PBS) and then protein and RNA were extracted from the cells at 8 or 10

h post infection (pi). Western blot analyses using antibodies against CVB3 capsid protein

(VP1) and NFAT5 were conducted to detect the level of CVB3 infection and CVB3-induced

NFAT5 protein reduction, respectively. Fig 1A shows that NFAT5 protein was highly

expressed in sham-infected HCM but was undetectable at 8 h pi; however, the mRNA levels

detected by quantitative real-time PCR (qPCR) using NFAT5-specific primers remained

unchanged (Fig 1B). Similar results were observed in HeLa cells infected with CVB3 at an

MOI of 10, which showed a dramatic decrease of NFAT5 protein beginning at 5 h pi (Fig 1C),

but no significant change in NFAT5 mRNA (Fig 1D). To test whether the observed changes in
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Fig 1. CVB3 infection reduces NFAT5 protein but not mRNA. SV40 human cardiomyocytes and HeLa cells were infected

with CVB3 at an MOI of 40 or 10, respectively, or sham-infected with PBS and harvested at the indicated time points pi. Cellular

proteins and RNAs were extracted for Western blot analysis of NFAT5 protein (A, C) and qPCR measurement of NFAT5 mRNA

(B, D), respectively. In qPCR assay, the result was shown as the relative level of each mRNA normalized to the level of GAPDH

mRNA in the sample. Three biological replicates were performed for each assay. (E) 4-week-old A/J mice were infected with

CVB3 at 105 pfu (plaque forming unit) or sham-infected with PBS. At 6 days pi, the mice were sacrificed and the heart tissue

NFAT5 cleavage by CVB3 2A promotes viral replication
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NFAT5 occurred in vivo, we infected 4-week-old A/J mice with 105 plaque-forming unit (pfu)

of CVB3 for six days and found that NFAT5 protein was decreased in the heart, the organ

most susceptible to CVB3 infection (Fig 1E). Together, these results suggest that CVB3 infec-

tion mainly affects NFAT5 at the protein level.

NFAT5 is cleaved by CVB3 proteases 2A and 3C

CVB3 infection promotes ubiquitin/proteasome-mediated protein degradation and induces

caspase-3 activation [23, 24]. Since no change of NFAT5 mRNA was observed in CVB3 infec-

tion, we speculated that the decrease of NFAT5 protein might be due to proteasome-mediated

degradation or caspase-3-mediated cleavage. To test this hypothesis, we used 10 μM MG-132,

a proteasome inhibitor, and 50 μM z-VAD-fmk, a pan-caspase inhibitor, to treat CVB3-in-

fected HeLa cells. To our surprise, neither MG-132 nor z-VAD-fmk was capable of blocking

the decrease of NFAT5 protein (Fig 2A and 2B). These results indicate that NFAT5 decrease is

not a result of proteasome-mediated degradation or caspase-3-mediated cleavage.

We then hypothesized that NFAT5 was possibly cleaved by CVB3 proteases 2A and/or 3C.

To verify this hypothesis, we first detected the cleavage products of NFAT5 by Western blot

analysis using an anti-NFAT5 N-terminal antibody and observed a ~70 kDa band appearing at

4 h pi, consistent with the reduction of 170 kDa FL NFAT5 (Fig 2C). However, a non-specific

weaker band at ~70 kDa also appeared in sham-infected control (Fig 2C, Lane 1). To confirm

the specificity of this cleavage, we constructed pEGFP-myc-NFAT5, a plasmid expressing

NFAT5 tagged with a 6-myc peptide at its N-terminus, and transfected this plasmid into HeLa

cells followed by infection with CVB3. By immunoblotting using an anti-myc antibody, we

observed a ~76 kDa band at 4 h pi (Fig 2D), suggesting that the 70 kDa band was truly the N-

terminal cleavage product of NFAT5 (p70-NFAT5) since the total molecular weight of the

6-myc tag is ~6 kDa. Then we attempted to determine which viral protease cleaved NFAT5

during CVB3 infection. For this aim, we transfected HeLa cells expressing myc-NFAT5 with

plasmid pIRES-2A or pIRES-3C which expressed 2A or 3C, respectively. At 36 h post transfec-

tion (pt), by immunoblotting using a myc antibody, we observed that FL myc-NFAT5

decreased in both 2A- and 3C-transfected cells, but myc-p70-NFAT5 appeared only in 2A-

transfected cells, which was similar to that in CVB3-infected cells, while 3C-transfected cells

showed two weak bands of ~120 kDa and ~150 kDa (Fig 2E). To further confirm that such

cleavage is not specific in human cancer cells such as HeLa cells, we performed the in vitro
cleavage assay on mouse heart homogenate using recombinant 2A and 3C. We found that

after the protease treatment for 8 h, mouse cardiac NFAT5 was cleaved by 2A but not 3C, as

assessed by Western blot using the NFAT5 antibody mentioned above (Fig 2F), indicating that

2A-mediated cleavage of NFAT5 also occurred in mouse cardiac NFAT5. These results dem-

onstrate that both 2A and 3C cleave NFAT5 but only 2A cleavage produces the p70-NFAT5

fragment.

CVB3 protease 2A cleaves NFAT5 at G503

According to the structural domains of NFAT5 protein, p70-NFAT5 contains most of the

functional domains of NFAT5 (S1 Fig), including all domains necessary for nucleus-cytoplasm

shuttling [25]. Interestingly, amino acid (aa) 175–471 within the N-terminal fragment of

NFAT5 has been proven to function as a dominant negative mutant of NFAT5 [26, 27],

was homogenized for Western blot analysis of NFAT5 protein. β-actin was used as a loading control. Quantitation of NFAT5

protein was conducted by densitometry analysis using the NIH ImageJ program (right panel). Three biological replicates were

performed and the result was subjected to statistical analysis.

https://doi.org/10.1371/journal.ppat.1006744.g001
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Fig 2. NFAT5 is cleaved by viral proteases 2A and 3C. HeLa cells were treated with 10 μM MG132 (A) or 25 μM z-

VAD-fmk (B) and then infected with CVB3 at an MOI of 10. At indicated time points pi, the cellular proteins were

subjected to Western blot analysis of NFAT5 and other proteins using the indicated antibodies. β-actin was used as a

loading control. (C) HeLa cells were infected by CVB3 at an MOI of 10 for 4 and 6 h and then subjected to Western blot

analysis using an antibody against the N-terminal epitope of NFAT5. (D) HeLa cells transfected with a plasmid

expressing the 6*myc-NFAT5 fusion protein (upper panel) were infected with CVB3 or sham-infected as described

above and subjected to Western blot analysis using an antibody against myc tag (lower panel). (E) HeLa cells

NFAT5 cleavage by CVB3 2A promotes viral replication
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implying the potential influence of p70-NFAT5 on overall NFAT5 activity. Therefore, we

focused our study on p70-NFAT5, the 2A cleavage product. We utilized the program NetPi-

coRNA 1.0 [28] to analyze the whole aa sequence of NFAT5 and predicted the peptide bond

just before G503 as the top candidate site of 2A cleavage (Fig 3A). Interestingly, the predicted

2A recognition motif on NFAT5 is conserved among different species including mice (Fig 3B),

suggesting that both human and mouse NFAT5 could be cleaved by 2A. To verify the predic-

tion, we mutated G503 of myc-NFAT5 to alanine (A) and constructed the expression plasmid

pEGFP-myc-NFAT5G503A. We also made a second mutant plasmid pEGFP-myc-NFAT5G650A

as a control. We transfected the two mutants as well as wild-type (WT) NFAT5 into HeLa cells

separately, and then infected the transfected cells with CVB3. Immunoblotting using an anti-

myc antibody showed no myc-p70-NFAT5 band in NFAT5G503A transfected cells, but instead

a similar 3C cleavage pattern as WT NFAT5 (Fig 3C, arrows) as seen in Fig 2E, indicating that

upon G503 mutation, 2A can no longer cleave NFAT5. As for the NFAT5G650A control, we

observed the same myc-p70-NFAT5 band as seen in WT NFAT5 cells after CVB infection (Fig

3C), suggesting that the mutagenesis procedure exerted no influence on NFAT5 cleavage. This

result was further confirmed by 2A plasmid transfection, which showed no cleavage of FL

myc-NFAT5G503A upon 2A expression (Fig 3D). These data suggest that G503 is the only

CVB3 protease 2A cleavage site on NFAT5.

NFAT5 inhibits CVB3 replication

Having confirmed the cleavage of NFAT5 by CVB3 protease 2A, our next focus was to study

the effect of NFAT5 and NFAT5 cleavage on CVB3 replication. First, we knocked down

NFAT5 expression using specific siRNAs in HeLa cells and then infected the cells with CVB3.

At 4 and 6 h pi, we measured the level of VP1 to evaluate the viral replication in the cells.

Immunoblotting results showed a 15-fold increase of VP1 in NFAT5-knockdown cells com-

pared to control cells treated with scrambled siRNAs at 4 h pi. At 6 h pi, there was a statistically

significant 20% increase in VP1 when NFAT5 was knocked down (Fig 4A). These results

imply a potential anti-CVB3 activity of NFAT5. To further verify this speculation, we detected

the level of VP1 in CVB3-infected cells overexpressing WT NFAT5, and observed a>50%

decrease of VP1 in NFAT5-overexpressing cells compared to vector-transfected control cells

(Fig 4B, Lanes 2–3 vs. Lanes 5–6). More interestingly, in the cells overexpressing the non-

cleavable NFAT5G503A, VP1 was decreased further (by ~80%) compared to vector-transfected

control cells (Fig 4B, Lanes 2–3 vs. Lanes 8–9). This result may be explained by the speculation

that FL NFAT5 plays a role in suppression of CVB3 replication and cleavage product

p70-NFAT5 may play a dominant negative effect on NFAT5 activity. To verify this conjecture,

we constructed a FLAG-tagged p70-NFAT5 plasmid to overexpress p70-NFAT5 in HeLa cells

infected with CVB3. As expected, a ~4-fold increase of VP1 was observed in p70-NFAT5-over-

expressing cells compared to vector-transfected control cells (Fig 4C). In addition to VP1 level,

we also detected changes in CVB3 RNA and viral progeny release when FL NFAT5,

NFAT5G503A mutant or p70-NFAT5 were overexpressed. The qPCR results using primers

flanking the coding region of CVB3 2A showed that FL NFAT5 decreased viral RNA level and

that NFAT5G503A further decreased it while p70-NFAT5 increased it (Fig 4D), which

expressing myc-NFAT5 were transfected with pIRES-2A (2A), pIRES-3C (3C) or vector only (V). At 36 h pt, the cells

were subjected to Western blot analysis using an antibody against myc tag. The cells infected with CVB3 or sham-

infected with PBS were used as controls. Arrows indicate the 3C cleavage bands. (F) Tissue homogenate from mouse

heart was incubated with recombinant 2A or 3C for 8 h. Then the mouse NFAT5 (mNFAT5) N-terminal epitope was

detected by Western blot using a specific antibody.

https://doi.org/10.1371/journal.ppat.1006744.g002
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Fig 3. NFAT5 is cleaved by viral protease 2A at G503. (A) The potential 2A cleavage sites predicted by using the NetPicoRNA 1.0

program showing the cleavage position (Pos), cleavage score (Clv) and surface score (Surf). The arrow indicates the exact cleavage

locus. (B) Alignment of the sequences around G503 of NFAT5 from different species. (C) HeLa cells were transfected with a plasmid

expressing myc-NFAT5, myc-NFAT5G503A or myc-NFAT5G650A and then infected with CVB3 at an MOI of 10 for 6 h. Then the cell

lysates were subjected to Western blot analysis using an anti-myc antibody. Arrows indicate the 3C cleavage bands. (D) HeLa cells

were co-transfected with pIRES-2A and a plasmid expressing WT or mutant NFAT5G503A. At 36 h pt, the cell lysates were subjected to

Western blot analysis using an anti-myc antibody.

https://doi.org/10.1371/journal.ppat.1006744.g003
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Fig 4. NFAT5 inhibits CVB3 replication while the N-terminal cleavage product p70-NFAT5 promotes CVB3

replication. (A) HeLa cells were transfected with NFAT5 siRNAs or scrambled control siRNAs (Ctr siRNA) and

then infected with CVB3. At 4 and 6 h pi, the cell lysates were subjected to Western blot analysis of NFAT5 and

VP1. Quantitation of VP1 was conducted by densitometry scan using the NIH ImageJ program and normalized

against β-actin control (right panel). (B) HeLa cells were transfected with plasmids expressing WT myc-NFAT5 or

myc-NFAT5G503A, infected with CVB3 and then harvested for VP1 detection and quantification as described

NFAT5 cleavage by CVB3 2A promotes viral replication
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correlated well with the levels of VP1 shown in Fig 4C. For viral particle formation, plaque

assay showed that FL NFAT5 and and NFAT5G503A significantly decreased the viral particle

release into the extracellular medium, while p70-NFAT5 had no effect on viral progeny release

(Fig 4E). Taken together, these results suggest that FL NFAT5 inhibits viral replication, and

that the N-terminal cleavage product p70-NFAT5 is capable of promoting the synthesis of

viral protein and RNA.

The 2A cleavage product p70-NFAT5 shows a dominant negative effect

on NFAT5

It has been reported that the N-terminal DNA-binding domain (aa 175–471) of NFAT5

(NFAT5 DBD) has a dominant negative effect on NFAT5 activity [27]. In our study, we first

showed that the N-terminal cleavage product p70-NFAT5 demonstrated a positive effect on

CVB3 replication to counteract the FL NFAT5 activity. We therefore speculated that

p70-NFAT5 could be a dominant negative mutant of NFAT5. To verify this, we first deter-

mined the effect of p70-NFAT5 on the nuclear translocation of endogenous NFAT5, a key step

of NFAT5 activation [29]. In cells transfected with pEGFP-myc-NFAT5, we observed a trans-

location of myc-NFAT5 from the cytoplasm to the nucleus (Fig 5A, left panel). This redistri-

bution of FL NFAT5 after CVB3 infection was also supported by experiments using cells

expressing myc-NFAT5G503A, the non-cleavable mutant of NFAT5, which showed similar

translocation after CVB3 infection (S2 Fig). However, when p70-NFAT5 was expressed con-

currently with myc-NFAT5, the redistribution of myc-NFAT5 was significantly decreased (Fig

5A, right panel). To further confirm the change of NFAT5 activity upon p70-NFAT5 overex-

pression, we cotransfected pGL-TonE-luciferase and the control luciferase plasmid pRL-polIII

with plasmids expressing FL NFAT5, p70-NFAT5 or NFAT5 DBD into HeLa cells and then

assayed for luciferase activity. The plasmid pGL-TonE-luciferase expressed firefly luciferase

(Fluc) regulated by TonE, while the control plasmid pRL-polIII expressed Renilla luciferase

(Rluc) regulated by a constitutively activated promoter, serving as an internal control. Thus,

the ratio Fluc/Rluc indicated the activity of TonE. We found that FL NFAT5 enhanced lucifer-

ase expression, and therefore TonE activation, by more than 100% while p70-NFAT5 reduced

it by ~25% and that the dominant negative effect of p70-NFAT5 was similar to that of NFAT5

DBD (Fig 5B). To further confirm NFAT5 activity on downstream genes upon p70-NFAT5

overexpression with or without CVB3 infection, we detected the mRNA levels of taurine trans-

porter (TauT) [30] and sodium/myo-inositol transporter (SMIT), two genes directly regulated

by NFAT5 [31, 32]. In sham-infected cells, we observed a ~60% increase of TauT mRNA when

FL NFAT5 was overexpressed and a ~40% decrease when p70-NFAT5 was overexpressed (Fig

5C). As for SMIT mRNA, we observed a ~40% increase and a ~20% decrease when FL NFAT5

and p70-NFAT5 were overexpressed, respectively (Fig 5D). In CVB3-infected cells, we also

observed the same trend of altered mRNA expression but the levels of differential expression

were much lower than those in sham-infected cells (Fig 5C and 5D), probably due to the gen-

eration of p70-NFAT5 by 2A cleavage during infection. These results suggest the dominant

negative effect of p70-NFAT5 on NFAT5 in both sham-infected and CVB3-infected cells.

above (right panel). (C) HeLa cells were transfected with plasmids expressing p70-NFAT5 tagged with FLAG and

then infected with CVB3 for VP1 detection and quantification (right panel) at 6 h pi. (D-E) HeLa cells were

transfected with plasmids expressing FL-NFAT5, NFAT5G503A (NFAT5-G503A) or p70-NFAT5 and then infected

with CVB3. At 6 h pi, the cellular RNAs were extracted for qPCR measurement of CVB3 genomic RNA level

(normalized to GAPDH as described in Fig 1) (D) and the medium was collected for plaque assay to measure viral

titre (E). Three biological replicates were performed for each assay and the result was subjected to statistical

analysis.

https://doi.org/10.1371/journal.ppat.1006744.g004
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Fig 5. p70-NFAT5 acts as a dominant negative fragment of NFAT5. (A) HeLa cells were co-transfected with pEGFP-myc-NFAT5

and pcDNA3.1(-)-p70-NFAT5 or pcDNA3.1(-) empty vector. Then the cells were infected with CVB3. At 4 and 6 h pi, the cells were

fixed and immunostained using a specific antibody against the myc tag and observed by confocal microscopy. (B) HeLa cells were

co-transfected with the luciferase reporter constructs pGL-TonE-luciferase or pRL-polIII and the plasmids expressing FL NFAT5,

p70-NFAT5, NFAT5 DBD or pEGFP empty vector. At 48 h pt, the cell lysates were subjected to dual luciferase assay detecting the

activity of the firefly luciferase (Fluc) and the renilla luciferase (Rluc). The relative activity (FLu/RLu) was determined after

normalization against the vector control. (C, D) HeLa cells were transfected with plasmids expressing FL NFAT5 or p70-NFAT5 and

then infected with CVB3. At 6 h pi, the cellular RNAs were extracted for qPCR measurement of mRNA level of TauT (C) and SMIT (D)
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NFAT5 inhibits CVB3 replication in HeLa cells by inducing expression of

iNOS

Having uncovered the anti-CVB3 activity of NFAT5, we next aimed to reveal the underlying

mechanism. Considering that NFAT5 is a transcription factor, we speculated that its anti-

CVB3 activity might be attributed to the downstream genes regulated by NFAT5. Among

these downstream genes of NFAT5, the molecular chaperone heat shock protein 70 (Hsp70)

and transcription factor NFκB are reported to be related to CVB3 infection [33, 34]. Our

results showed no significant changes (p>0.05) in Hsp70-2 expression or NFκB activity (indi-

cated by TNFα expression, a marker of NFκB activation [19]) upon expression of FL NFAT5

or p70-NFAT5 in either sham-infected or CVB3-infected cells (Fig 6A and 6B). Nevertheless,

the mRNA level of iNOS as assessed by qPCR, showed a ~40% increase upon FL NFAT5 over-

expression and a ~50% decrease when p70-NFAT5 was overexpressed in both sham- and

CVB3-infected cells (Fig 6C). It has been reported that nitric oxide generated by the catalysis

of iNOS inactivates the Coxsackievirus protease 2A and 3C via S-nitrosylating the cysteine res-

idue at the active site and thus interrupts the viral life cycle [22, 35]. Therefore, we speculated

that NFAT5 inhibits CVB3 replication by inducing the expression of iNOS. To verify this spec-

ulation, we treated the NFAT5-overexpressing cells with 4 mM 1400W, a specific inhibitor of

iNOS [36], and found that 1400W counteracted the effect of NFAT5 overexpression and

restored the VP1 to a level even greater than that of the control (Fig 6D, Lane 9 vs. 7). These

data indicate that iNOS induction is essential for the anti-CVB3 effect of NFAT5.

Hypertonic treatment inhibits CVB3 replication in HeLa cells and

promotes cell survival

The above experiments showed that a high level of NFAT5 is capable of inhibiting CVB3 repli-

cation. As a hypertonic responsive protein, NFAT5 can be induced by hypertonic stimulation,

such as high concentration of sodium chloride (NaCl), which in turn may exert an anti-CVB3

effect. We therefore tested the effect of hypertonic NaCl solution on CVB3 replication. At 24 h

before infection, we replaced the growth medium with Dulbecco’s modified Eagle’s medium

(DMEM) containing an additional 100 mM NaCl, a concentration reported to be high enough

to induce NFAT5 expression but that is not cytotoxic [37], and then infected the HeLa cells

with CVB3. The hypertonic treatment resulted in an increase of NFAT5 expression (S3 Fig

Panel A, Lane 1 vs. 4). At 4 and 6 h pi, a dramatic decrease of VP1 was observed in cells

treated by HSS compared to the sham-treated control (S3 Fig Panel A, Lanes 2–3 vs. Lanes 5-

6), suggesting that CVB3 replication is impaired by HSS treatment. The anti-CVB3 effect of

HSS was further verified using cell viability assays. By using either imaging to assess cell mor-

phology (S3 Fig Panel B) or an MTS cell viability assay (S3 Fig Panel C), we observed a signifi-

cant increase in cell viability by ~30% at 6 h pi compared to the infected isotonic control.

Considering that Na+ and Cl- ions can pass the cell membrane via facilitated diffusion [38],

which may exert unexpected effects on signaling pathways other than NFAT5, we employed

mannitol, a non-permeable hyperosmotic agent [39], to validate the HSS experiments. Using

different concentrations (0, 100 and 200 mM) of mannitol, we found that NFAT5 was

increased and VP1 was decreased in a concentration-dependent manner and that the alter-

ations of NFAT5 and VP1 expression were more significant (Fig 7A) with mannitol than with

HSS treatment (S3 Fig Panel A). Furthermore, similar to HSS, hypertonic treatment with

(normalized to GAPDH as described in Fig 1). Vector-transfected cells were used as a control. Three biological replicates were

performed for each assay and the results was subjected to statistical analysis.

https://doi.org/10.1371/journal.ppat.1006744.g005
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mannitol solutions of 100 or 200 mM also elevated the cell viability during CVB3 infection

(Fig 7B and 7C). Altogether, our results suggest that hypertonic conditions inhibit CVB3 repli-

cation via NFAT5 expression.

NFAT5 inhibits CVB3 replication in cardiomyocytes via iNOS

As CVB3 is a cardiotropic virus and a predominant pathogenic cause of myocarditis, it is

important to understand the role of NFAT5 in CVB3-infected cardiomyocytes. To this aim,

we overexpressed NFAT5 and NFAT5G503A by plasmid transfection or knocked down NFAT5

Fig 6. iNOS is essential for the anti-CVB3 effect of NFAT5. HeLa cells were transfected with plasmids expressing FL NFAT5 or

p70-NFAT5 and then infected with CVB3. At 6 h pi, the cellular RNAs were extracted for qPCR measurement of mRNA levels of

Hsp70-2 (A), TNFα (B) and iNOS (C) (normalized to GAPDH as described in Fig 1). (D) HeLa cells transfected with pEGFP empty

vector (V) or pEGFP-myc-NFAT5 were treated with 4 mM 1400W or DMSO control and then infected with CVB3 for VP1 detection

and quantification (lower panel) as described in Fig 4A. Three biological replicates were performed for each assay and the result was

subjected to statistical analysis.

https://doi.org/10.1371/journal.ppat.1006744.g006
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Fig 7. Hypertonic mannitol solutions inhibit CVB3 replication and promote cell survival during CVB3

infection. HeLa cells were treated with 100 mM, 200 mM mannitol solution or PBS and then subjected to

CVB3 infection or sham-infection. At 4 and 6 h pi, cells were subjected to Western blot analysis of VP1 (A),

phase contrast microscopy imaging (B) and MTS cell viability assay (C). The cell viability was determined by

converting to the percentage of cell survival of the sham-infection control, which was set as 100%. Three

biological replicates were performed for each assay and the result was subjected to statistical analysis.

https://doi.org/10.1371/journal.ppat.1006744.g007
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using specific siRNAs in HCMs and then infected the cells with CVB3 at an MOI of 40. At 8

and 10 h pi, total protein was extracted from the cells and subjected to Western blot analysis of

VP1. The overexpression of NFAT5 reduced the VP1 level at 8 h pi compared to vector-trans-

fected cells and this reduction was more pronounced in NFAT5G503A-expressing cells (S4 Fig

Panel A). On the other hand, NFAT5 knockdown enhanced VP1 expression compared to con-

trol siRNA-treated HCM (S4 Fig Panel B), which is similar to the results obtained using HeLa

cells. Additionally, we treated sham- or CVB3-infected HCMs with 200 mM mannitol to

induce NFAT5 expression and confirmed an increase of NFAT5 upon treatment (Fig 8A Lane

1 vs. 2, Lane 5 vs. 6). Simultaneously, iNOS level was significantly increased in cells treated

with mannitol (Lane 1 vs. 2, Lane 5 vs. 6) and VP1 level was reduced by mannitol treatment

(Lane 5 vs. 6). However, upon knockdown of NFAT5 by specific siRNAs, we observed a much

weaker induction of iNOS expression (Lane 2 vs. 4, Lane 6 vs. 8) and impaired inhibition of

VP1 in the mannitol treatment (Lane 7 vs. 8). These data indicate that hypertonic agents

inhibit CVB3 replication in cardiomyocytes by inducing NFAT5. To further confirm that

iNOS was involved in this pathway, we knocked down iNOS using specific siRNAs in NFA-

T5-overexpressing HCMs. We observed that VP1 level was dramatically increased upon iNOS

knockdown (Fig 8B Lane 5 vs. 6, Lane 7 vs. 8) and that knockdown of iNOS did not affect

NFAT5 level but rescued the inhibition of VP1 caused by NFAT5 overexpression (Lanes 5 & 7

vs. 6 & 8). These results confirmed that like in HeLa cells, in cardiomyocytes NFAT5 inhibits

CVB3 replication via iNOS.

Hypertonic saline lowers cardiac viral load and relieves tissue damage in

mice

To test whether the anti-CVB3 effect of HSS treatment occurs in vivo, 30 A/J mice were

divided equally into three groups and intraperitoneally (IP) injected with 0.9% normal saline

solution (NSS), and 5% and 7.5% HSS (10 mL/kg daily) for 6 consecutive days, respectively,

and then the mice were challenged with CVB3 at 105 pfu each. At 6 d pi, 3 of the 10 NSS-

treated mice died and all HSS-treated mice survived. All remaining live mice were euthanized

and heart tissue was collected for viral detection and histological analysis. Using immunoblot-

ting and viral plaque assay of heart tissue, we found that the HSS-treated mice showed higher

levels of NFAT5 and iNOS but lower levels of VP1 (Fig 9A) as well as decreased viral titre (Fig

9B) compared to the NSS-treated control mice, indicating that the viral load was reduced by

HSS treatment. H&E staining of the myocardial tissue showed fewer lesions (the arrow in Fig

9C) with immune infiltration upon 5% HSS treatment compared to NSS treatment (Fig 9C).

Note that since both 5% and 7.5% HSS showed a similar effect, both alleviating tissue injury,

we only show the H&E staining for the 5% HSS treatment. The cardiac tissue damage of each

mouse was further quantified by a blinded observer using the myocarditis scoring system

reported previously [40] and the number of mice (frequency) with each myocarditis score was

displayed as a histogram (Fig 9D). The histogram showed lower frequency of high myocarditis

scores in HSS-treated groups compared to the NSS-treated group, and with a χ2 test, we

showed a significant difference between HSS and NSS treatments, indicating less severe car-

diac damage in HSS-treated groups, which further supports the imaging results. These data

indicate that HSS is capable of relieving tissue damage during CVB3 infection by induction of

NFAT5 expression.

Discussion

Viral protease mediated cleavage of host proteins plays a critical role in viral replication and

virus-induced tissue damage in picornavirus infections [41–45]. Therefore, identifying cleaved
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Fig 8. iNOS-mediated NFAT5 inhibition of CVB3 replication in HCM. (A) HCMs were transfected with

NFAT5 siRNA or control (Ctr) siRNA. At 36 h pt, the cells were treated with 200 mM mannitol solution or PBS

and then infected with CVB3 at an MOI of 40 or sham-infected with PBS. At 10 h pi, cells were subjected to

Western blot analysis of NFAT5, iNOS and VP1. (B) HCMs were cotransfected with plasmids expressing

myc-NFAT5 or empty vector pEGFP and iNOS siRNA or Ctr siRNA. At 36 h pt, the cells were infected with

CVB3 at an MOI of 40 or sham-infected with PBS. At 10 h pi, cells were subjected to Western blot analysis of
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host proteins is a rational first step to discover potential drug targets in the development of

anti-picornavirus therapeutics. NFAT5 is a transcription factor that is activated in hypertonic

stress conditions. Thus, its activity can be modulated by changing the osmotic pressure of the

extracellular fluid. However hypertonic stress occurs rarely in organs other than the kidney,

thus few studies have linked NFAT5 to non-kidney diseases despite its ubiquitous expression

throughout the body [14, 15]. Even though there is a lack of direct evidence, several previous

reports provided clues as to NFAT5’s role in maintaining heart function. For instance, degra-

dation of NFAT5 protein has a key role in doxorubicin-induced cytotoxicity in cardiac myo-

cytes [16], NFAT5 is highly expressed in developing heart tissues [15] and it is critical for heart

development in children and young adults [46]. However, the role of NFAT5 in infectious and

inflammatory heart diseases has never been delineated. Thus, in this study, we used the myo-

carditis models of CVB3 infection of both a cardiomyocyte cell line and A/J mice to elucidate

NFAT5’s role in CVB3 replication and CVB3-induced myocarditis.

First, we detected whether CVB3 infection would change NFAT5 level. It has been reported

that NFAT5 expression is stimulated by p38 MAPK activation in response to hypertonic stress

[47]. Considering that CVB3 infection activates p38 MAPK via phosphorylation [48], we were

expecting to see NFAT5 upregulation and activation during CVB3 infection. Indeed, we

observed a significant increase in NFAT5 protein level at early time points (~2 h pi) in HeLa

cells infected with CVB3 (S5 Fig), but to our surprise, it decreased rapidly and was undetect-

able 4 h after infection. However, no NFAT5 mRNA decrease was observed during CVB3

infection, indicating that the reduction in NFAT5 protein level was not due to transcriptional

arrest or mRNA degradation. We therefore switched our focus to the degradation and cleavage

of NFAT5 protein during CVB3 infection. By using the inhibitors MG132 and z-VAD-fmk,

we excluded the possibility of proteasome-mediated degradation and caspase-mediated cleav-

age of NFAT5, which are common causes of protein decrease during CVB3 infection [23, 49].

The most plausible reason remaining for NFAT5 reduction was cleavage mediated by viral

protease 2A and/or 3C. Using an antibody against the N-terminal of NFAT5, we observed a

~70 kDa fragment (p70-NFAT5) after CVB3 infection. By using exogenous expression of 2A

or 3C individually, we confirmed that both 2A and 3C were capable of cleaving NFAT5, but

only 2A cleavage generated the 70 kDa N-terminal fragment p70-NFAT5, while 3C protease

further cleaved the C-terminal fragment downstream of the 2A cleavage site. The NFAT5 func-

tional domains are clustered in the N-terminal of NFAT5 (S1 Fig), including the nuclear

export/localization signals (NES/NLS), auxiliary export domain (AED), DNA binding domain

(RHD), etc. [25], and thus p70-NFAT5 is capable of translocating across the nuclear envelope

and DNA binding. However, we found that the N-terminal fragment itself could not activate

the expression of downstream genes, probably due to the lack of the C-terminal portion which

harbors the transactivation domains of NFAT5 [27]. However, the N-terminal fragment com-

petes with the intact NFAT5 for DNA binding, and can act as a dominant negative mutant of

NFAT5 [27]. Although the 2A cleavage product p70-NFAT5 (aa 1–502) is different from the

previously reported dominant negative mutant (aa 175–471), our results show that

p70-NFAT5 can still inhibit the activity of endogenous NFAT5.

The next issue we addressed was the mechanism underlying the anti-CVB3 effect of

NFAT5. It is known that CVB3 RNA transcription relies on its RNA-dependent RNA poly-

merase and its translation employs an IRES-driven mechanism. Apparently, the transcription

factor NFAT5 does not directly affect CVB3 multiplication; instead, it may indirectly promote

myc-NFAT5, iNOS and VP1. Quantification of iNOS and VP1 was performed as described in Fig 4A (lower

panels). Three biological replicates were conducted for each assay and subjected to statistical analysis.

https://doi.org/10.1371/journal.ppat.1006744.g008
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Fig 9. Hypertonic saline solution inhibits CVB3 replication and relieves mice heart tissue damage. Thirty

4-week-old A/J mice were randomly allocated equally into six groups and infected with CVB3 of 105 pfu. NaCl

solution at 0.9%, 5% and 7.5% concentration was IP injected into the mice daily during the infection, each

concentration was administrated to two groups of mice (10 mice). At 6 d pi, the mice were euthanized and the

heart tissues were harvested. Part of the heart tissue was homogenized for Western blot analysis of VP1 (A) and

plaque assay to determine viral particle formation (B). (C) The remaining heart tissues from these mice were
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expression of downstream target genes involved in the antiviral signal cascade. The direct

downstream genes regulated by NFAT5 include organic osmolyte-related genes [30–32, 50,

51], molecular chaperone genes [37], and iNOS genes [52]. The expression of the transcription

factor NFκB is not regulated by NFAT5, but NFAT5 binding modulates NFκB activity [19],

thus, NFκB can also be considered a downstream effector of NFAT5. Among these down-

stream proteins, the organic osmolyte-related genes, such as TauT and SMIT, are mainly

involved in osmotic regulation, and no antiviral effects or cardiac functions of these genes

have been reported. In a previous study, we showed that the chaperone protein Hsp70 pro-

motes CVB3 replication by stabilizing the CVB3 genomic RNA [33], but in this current study,

NFAT5 overexpression did not significantly change Hsp70-2 expression, an Hsp70 gene regu-

lated by NFAT5 [37]. Similar to Hsp70-2 expression, no significant change in NFκB activity

was observed when NFAT5 was overexpressed, even though NFκB was reported to be acti-

vated during CVB3 infection [21]. However, iNOS expression was upregulated by the overex-

pression of FL NFAT5 and downregulated by the overexpression of p70-NFAT5 in either

sham- or CVB3-infected cells. These data suggested that iNOS was a potential candidate for a

mechanistic link between NFAT5 and CVB3 replication. The expression of iNOS is induced

by a toll-like receptor (TLR), which requires NFAT5 activity [52]. CVB3 infection activates

TLR expression [53], but high level of iNOS catalyzes production of nitric oxide, which impairs

CVB3 replication via inhibition of viral proteases [22, 35]. Thus, we hypothesized that CVB3

might cleave and inactivate NFAT5 to block the induction of iNOS. This hypothesis was sup-

ported by our experiment showing that treatment of cells with iNOS inhibitor 1400W or iNOS

siRNA restored CVB3 replication that was blocked by the overexpression of NFAT5 (Fig 6D).

The anti-CVB3 activity of NFAT5 makes it a potential drug target during CVB3 infection.

As a hypertonicity-responsive protein, NFAT5 can easily be induced by hypertonic solutions.

HSS, which contains a high concentration of NaCl, is a good choice for induction of NFAT5

due to its easy accessibility. In our experiments, HSS treatment significantly reduced viral rep-

lication and enhanced cell viability in CVB3-infected cells. In our in vivo test, A/J mice treated

with HSS showed a lower viral load in heart tissue compared to NSS-treated controls. Further-

more, histological evaluation showed a lower level of heart tissue damage and immune infiltra-

tion in HSS-treated mice, indicating that HSS treatment reduced the severity of

CVB3-induced myocarditis. Although HSS can effectively induce NFAT5, NaCl is an ionic

osmolyte capable of entering cells and increasing intracellular ion concentration [38]. Excess

intracellular ions may lead to increased reactive oxygen species formation, cytoskeletal rear-

rangements, increased mitochondrial depolarization, and decreased DNA replication and

DNA repair [54, 55]. To exclude these potential side effects of HSS, we repeated these experi-

ments inducing NFAT5 expression with mannitol, a non-permeable organic hyperosmolyte,

and determined its effect on CVB3 replication in vitro. Interestingly, mannitol showed a simi-

lar anti-CVB3 effect to HSS, decreasing viral replication and enhancing cell survival during

CVB3 infection.

In summary, our study uncovers a novel function of the transcription factor NFAT5 in car-

diac protection during CVB3 infection. CVB3 multiplication depends on the appropriate pro-

cessing of its polyprotein by viral proteases 2A and 3C to complete its life cycle [7, 8].

However, the activity of viral proteases is inhibited by NFAT5 via enhanced expression of its

fixed, sectioned and H&E stained to evaluate the tissue damage. The arrows indicated the inflammatory lesions

with immune infiltration. Sham-infected /mock-treated mice were the additional controls. (D) The frequency of

each myocarditis score in every treatment was shown in the histogram. The results were compared by χ2 test

and p < 0.01 was considered as a significant difference.

https://doi.org/10.1371/journal.ppat.1006744.g009
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downstream target protein iNOS, which catalyzes production of the viral protease inhibitor

NO. Since FL NFAT5 protein level is decreased due to cleavage of the protein by viral protease

during infection, upregulating NFAT5 expression is a rational strategy to counteract CVB3

infection. Our discovery of the anti-CVB3 activity of the two hypertonic agents HSS and man-

nitol may be the first exploratory step in the development of low-cost and easily accessible

compounds to treat infectious heart disease. Although exciting, this study on the therapeutic

potential of hypertonic agents is quite preliminary and far from clinical trial. Potential adverse

side effects are a major concern for the clinical application of HSS. Thus search for other

hypertonic agents to induce upregulation of NFAT5 may be a strategy for the development of

effective therapy against viral myocarditis.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide to the

Care and Use of Experimental Animals—Canadian Council on Animal Care. All mouse exper-

iments were performed according to the animal experiment protocols approved by the Animal

Care Committee of Faculty of Medicine, University of British Columbia (protocol number:

A16-0093). Mice were infected by IP injection with 105 pfu of CVB3 or sham-infected with

PBS. During the infection period, the mice were treated by IP injection with 0.9%, 5% or 7.5%

NaCl solution in a dose of 10 mL/kg daily. Heart tissues were collected at day 6 pi after eutha-

nasia in CO2, fixed in 10% buffered formalin, embedded in paraffin and subjected to H&E

staining.

Cell culture, animals, viral infection and treatment

HeLa cells (ATCC) were cultured in DMEM supplemented with 100 μg/ml penicillin-strepto-

mycin, 2 mM L-glutamine and 10% fetal bovine serum (FBS) (Sigma). SV40 immortalized

HCM were purchased from Applied Biological Materials (ABM, Richmond, BC, Canada) and

cultured in Prigrow I medium (ABM) with 100 μg/ml penicillin-streptomycin (Thermo

Fisher), 2 mM glutamine (Thermo Fisher) and 10% fetal FBS. Hypertonic medium was made

by adding NaCl or mannitol directly to DMEM to make the final concentrations indicated in

the experiments.

CVB3 (CG) strain was a kind gift from Dr. Charles Gauntt (University of Texas Health Sci-

ence Center) and propagated in HeLa cells. Virus stock was prepared from the cells by three

freeze-thaw cycles followed by centrifugation to remove cell debris and stored at -80˚C. The

titer of virus stock was determined by plaque assay as described below. Cell cultures were

infected with CVB3 at an MOI of 10 for 1 h (HeLa) or at an MOI of 40 for 1.5 h (SV40 cardio-

myocytes) in a serum-free medium, washed with PBS (Thermo Fisher), and then replenished

with fresh medium containing FBS. Male A/J mice (4-week old) were purchased from the Jack-

son Laboratory. Mice were infected by IP injection with 105 pfu of CVB3 or sham-infected

with PBS. During the infection period, the mice were treated by IP injection with 0.9%, 5% or

7.5% NaCl solution in a dose of 10 mL/kg daily. Heart tissues were collected at day 6 pi after

euthanasia in CO2, fixed in 10% buffered formalin, embedded in paraffin and subjected to

H&E staining as described previously [56].

Constructs, molecular cloning and mutagenesis

pEGFP-myc-NFAT5 and pEGFP-myc-NFAT5-DBD were kind gifts from Dr. Anjana Rao

(Addgene plasmid #13627 and #14112) [57]. The FLAG-p70-NFAT5 fragment was amplified
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by PCR using universe hot start high-fidelity DNA polymerase per manufacturer’s instructions

and pEGFP-myc-NFAT5 as the template (Bimake). The primers (NFAT5 F/Xho I and NFAT5

G503 R/Bam HI) used in this PCR are listed in S1 Table. The PCR product was digested with

Xho I and Bam HI and then inserted into pcDNA3.1(-) to generate the expression plasmid of

p70-NFAT5, pcDNA3.1(-)-p70-NFAT5.

The plasmid pEGFP-myc-NFAT5 was mutated at G503 or G650 by PCR-mediated site-

directed mutagenesis using corresponding primers (S1 Table) to generate pEGFP-myc-

NFAT5G503A and pEGFP-myc-NFAT5G650A, respectively. Briefly, PCR reactions using muta-

genesis primers and pEGFP-myc-NFAT5 template were conducted using the same DNA poly-

merase kit as described above, and then the PCR-producted mutant plasmid was transformed

into DH5α competent E. coli cells. The transformed cells were plated onto Luria broth (LB)

plates containing 50 μg/mL kanamycin and incubated overnight at 37˚C. The following day,

individual bacterial colonies were picked and plasmid was extracted using High-Speed Plasmid

Mini Kit (Froggabio). The mutation sites were verified by DNA sequencing using primers

NFAT5 G503 Seq and NFAT5 G650 Seq (S1 Table).

Transfection of plasmids and siRNAs

All of the siRNAs were purchased from Santa Cruz Biotechnology and transfected into cells

using Oligofectamine (Life Technologies) according to the manufacturer’s instructions.

Briefly, 2 × 105 HeLa cells or HCM were grown at 37˚C overnight to 30–40% confluence in

6-well plates, washed with PBS and overlaid for 6 h with transfection complex containing siR-

NAs and Oligofectamine. The transfection medium was then replaced with DMEM containing

10% FBS and the incubation was continued for 48 h for HeLa cells and 36 h for HCM. The

plasmids were transfected using the same procedures as those described for siRNAs except

that Lipofectamine 2000 (Life Technologies) was used as transfection reagent and the initial

cell confluence was 80–90%. The following analyses were performed at 24 h or 36 h pt.

RNA extraction and quantitative real-time PCR

Total cellular RNA was extracted using RNeasy mini kit (Qiagen) according to the manufac-

turer’s instructions. cDNAs were then synthesized by reverse transcription using SuperScript

III First-Strand Synthesis System (Invitrogen) and detected by qPCR using QuantiTect SYBR

Green PCR kit (Qiagen). The mRNA level of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) was detected and used as the endogenous control to normalize the data. All qPCR

experiments were performed in triplicates with no template as a negative control. The primers

for the qPCR are showed in S1 Table.

Western blot analysis

Cells were washed with cold PBS before the addition of an appropriate volume of RIPA lysis

buffer (Santa Cruz). After incubation for 20 min on ice, the cell lysates were centrifuged at

13,000 × g for 15 min at 4˚C, and protein-containing supernatant was collected. The isolated

proteins were separated by 10% SDS-PAGE and transferred onto nitrocellulose membranes.

Membranes were blocked with 5% skim milk in Tris-buffered saline with 0.5% Tween 20

(TBST) and incubated overnight with one of the following primary antibodies: monoclonal

rabbit anti-VP1, monoclonal rabbit anti-FLAG and monoclonal rabbit anti-myc (Thermo

Fisher); monoclonal mouse anti-β-actin and polyclonal rabbit anti-NFAT5 (Santa Cruz). After

several washes with TBST, each blot was further incubated with an appropriate secondary anti-

body (goat anti-mouse or donkey anti-rabbit IgG) conjugated to horseradish peroxidase

(Thermo Fisher). Detection was carried out by enhanced chemiluminescence (Amersham) as
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per the manufacturer’s instructions. β-actin was detected as a loading control. Signal intensi-

ties were quantified by using the ImageJ (NIH) program and normalized to the control sam-

ples (set as 1.00).

Cell viability assay

Cellular morphology was observed and photographed at room temperature under a phase con-

trast microscope (TMS-F, Nikon) connected with a camera (Coolpix 8400, Nikon). Cell viabil-

ity was further quantified using a 3-(4-5-dimethylthiazol-2-yl)-5- (-3-carboxymethoxyphenyl)-

2H-tetrazolium salt (MTS) assay kit following the manufacturer’s instructions (Promega).

Briefly, cells were incubated with MTS solution for 2 h. Absorbency of formazan was measured

at 492 nm using enzyme-linked immunosorbent assay (ELISA) plate reader.

Viral plaque assay

Samples of cells and medium from plates receiving the various treatments were freeze-thawed

and then centrifuged (4,000 × g) to collect the supernatant containing virus. HeLa cells were

seeded onto 6-well plates (8 × 105 cells/well) and incubated at 37˚C for 20 h to reach a conflu-

ence of approximately 90% and then washed with PBS and overlaid with 800 μl of virus-con-

taining samples serially diluted in cell culture medium. After a viral adsorption period of 60

min at 37˚C, the supernatant was removed and the cells overlaid with 2 ml of sterilized soft

Bacto-agar-minimal essential medium, cultured at 37˚C for 72 h, fixed with Carnoy’s fixative

for 30 min, and stained with 1% crystal violet. The plaques were counted and viral pfu per ml

was calculated.

Reporter construction and dual luciferase assay

The NFAT5 reporter plasmid pGL-TonE-luciferase and the control Renilla reporter plasmid

pRL-PolIII were kind gifts from Dr. Anjana Rao (Addgene plasmid # 14110) [57] and Dr. Nor-

bert Perrimon (Addgene plasmid # 37380) [58], respectively. In the pGL-TonE-luciferase plas-

mid, the sequence containing TonE from the promoter region of the human aldose reductase

gene, a typical downstream gene of NFAT5 [50], is inserted upstream of the firefly luciferase

coding region, and thus the expression of firefly luciferase is regulated by NFAT5 activity [57].

We cotransfected pGL-TonE-luciferase with FL NFAT5 or p70-NFAT5 into HeLa cells. At 48

h pt, the cell lysates were used for luciferase assay on a Tecan GENios fluorescence reader to

determine the relative luciferase activity (Firefly/Renilla) by using the Dual-Luciferase

Reporter Assay System (Promega) as per the manufacturer’s instructions. Each treatment was

done in three biological replicates.

Immunofluorescence and confocal microscopy

Cells cultured on glass cover slips (Thermo Fisher) were washed with PBS, fixed with 4% para-

formaldehyde, and permeabilized with methanol/acetone (1:1) for 20 min at −20˚C. Cells were

then washed with TBS (25 mM Tris, 0.15M NaCl, pH 7.2 to 7.5) twice and blocked with 2.5%

BSA in TBS for 1 h at room temperature followed by incubation overnight at 4˚C with poly-

clonal rabbit anti-NFAT5 antibody (Santa Cruz) diluted in blocking buffer. Cells were then

washed with TBS five times at room temperature. Slides were stained with goat anti-rabbit IgG

(H + L) labeled with Alexa Fluor 488 and then incubated for 1 h at room temperature. After a

final wash, the slides were stained with DAPI (DAKO) and mounted with nail polish. Images

were captured using a Leica AOBS SP2 confocal microscope (Leica, Allendale, NJ) as described

previously [33].
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Scoring of myocarditis

Scoring of myocarditis in the cardiac tissue of mice was conducted using a 0–4 scoring system

[40]. Briefly, on the H&E stained sections, normal muscle cells were stained pink, while nuclei

and other basophilic structures were stained blue-purple. Inflammatory lesions with immune

infiltration were seen as a clustering of nucleated cells with an associated necrosis. The severity

of myocarditis was evaluated by the following scoring system: Score 0 indicated lack of myo-

carditis; Score 1 indicated very limited focal distribution of myocardial lesions; Score 2

described multiple lesions; Score 3 described multiple lesions with some confluent and exten-

sive necrosis; and Score 4 described the presence of coalescent and pervasive lesions spreading

throughout most of the observed tissue. The frequency of each myocarditis score was displayed

as a histogram and subjected to χ2 test. We did not observe Score 4 myocarditis in our experi-

ments, thus we did not include Score 4 in our histogram.

In vitro cleavage assay

Cleavage reactions were performed in 20 mM Hepes (pH 7.4), 150 mM potassium acetate and

1 mM DTT buffer. Purified recombinant CVB3 2A and 3C proteases were kind gifts from Dr.

Eric Jan of the University of British Columbia [59]. Mouse heart homogenate was mixed with

2Apro at 5 ng/μl or 3Cpro at 100 ng/μl. Reaction mixtures were incubated at 37˚C for 8 h and

then the reaction was stopped by the addition of SDS-PAGE sample buffer. Cleavage activity

was assessed by Western blot analysis.

Statistical analysis

The Student’s t test was employed to analyze the data. The results are expressed as

means ± standard deviations (SD) of at least three independent experiments. A p value less

than 0.05 was considered statistically significant.

Supporting information

S1 Fig. Protease 2A cleavage site in the NFAT5 protein. REL-homology domain (RHD) con-

tains the DNA-binding domain of NFAT5. The region upstream of RHD contains a canonical

nuclear export signal (NES), a consensus bipartite nuclear localization signal (NLS) and an

auxiliary export domain (AED). The large arrow indicates the 2A cleavage site at amino acid

G503. Protease cleavage produced a ~70 kDa N-terminal fragment, p70-NFAT5.

(TIFF)

S2 Fig. NFAT5G503A was translocated from the cytoplasm to the nucleus during CVB3

infection. HeLa cells were transfected with pEGFP-myc-NFAT5G503A and then infected with

CVB3 at an MOI of 10. At 4 and 6 h pi, the cells were fixed and immunostained using a specific

antibody against the myc tag and observed by confocal microscopy.

(TIFF)

S3 Fig. Hypertonic saline solution inhibits CVB3 replication and promotes cell survival

during CVB3 infection. HeLa cells were pre-treated with additional 100 mM NaCl or isotonic

medium for 4 h and then infected with CVB3. At 4 and 6 h pi, the cells were subjected to West-

ern blot analysis of VP1 protein (A), phase contrast morphological imaging (B) and MTS cell

viability assay (C). Cell viability was determined by converting to the percentage of cell survival

of the sham-treatment control, which was set as 100%.

(TIFF)
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S4 Fig. NFAT5 negatively regulates CVB3 replication in SV40 human cardiomyoctes.

HCMs were transfected with plasmids expressing myc-NFAT5 or myc-NFAT5G503A mutant.

At 24 h pt, the cells were infected with CVB3 at an MOI of 40 or sham-infected with PBS. At

10 h pi, the cells were subjected to Western blot analysis of myc-NFAT5 and VP1 (A) and pla-

que assay detecting viral progeny release (B). Another batch of HCMs were transfected with

NFAT5 siRNA or control siRNA. At 36 h pt, the cells were infected with CVB3 and subjected

to Wstern blot (C) and plaque assay (D) as described above.

(TIFF)

S5 Fig. NFAT5 is upregulated at early stages of CVB3 infection. HeLa cells were infected

with CVB3 at an MOI of 10 or sham-infected with PBS. At the indicated time points post

infection, cell lysates were used for Western blot analysis of NFAT5 protein using an antibody

against the N-terminal epitope of NFAT5. β-actin was used as a loading control.

(TIFF)

S1 Table. Primers used in the study.

(PDF)
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