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Deep learning, or artificial neural networks, is a type of machine learning algorithm that can
decipher underlying relationships from large volumes of data and has been successfully
applied to solve structural biology questions, such as RNA structure. RNA can fold into
complex RNA structures by forming hydrogen bonds, thereby playing an essential role in
biological processes. While experimental effort has enabled resolving RNA structure at the
genome-wide scale, deep learning has been more recently introduced for studying RNA
structure and its functionality. Here, we discuss successful applications of deep learning to
solve RNA problems, including predictions of RNA structures, non-canonical
G-quadruplex, RNA-protein interactions and RNA switches. Following these cases, we
give a general guide to deep learning for solving RNA structure problems.

Keywords: deep learning, RNA secondary structure, RNA tertiary structure, RNA structure prediction, RNA
G-quadruplex, RNA-protein interaction

INTRODUCTION

As a data-driven algorithm, deep learning has shown promise with successful applications in biology,
healthcare, and drug discovery (Schmidhuber, 2015; Angermueller et al., 2016; Goh et al., 2017;
Ching et al., 2018). One of the most recent deep learning breakthroughs has been to predict protein
structure. In past decades, researchers needed to spend months or even years solving a complex
protein structure using experimental methods like nuclear magnetic resonance (NMR) or cryo-
electron microscopy (Cryo-EM). Based on this hard-earned data, deep learning models such as
Alphafold2 and RoseTTAFold can predict protein structures from amino acid sequences that are
remarkably close to those determined experimentally (Baek et al., 2021; Jumper et al., 2021).
Currently, the protein structure database based on AlphaFold2 predictions has provided nearly one
million protein structure models, far exceeding the experimentally determined structures in previous
decades (Varadi et al., 2022). These advances in deep learning methods for predicting protein
structures infer their applicability for studying RNA structure.

As a key in the central dogma, RNA is essential for gene expression. RNAs fold into RNA
secondary structures by base pairing, which can fold further to form RNA tertiary structures. This
RNA folding is extremely important for achieving RNA’s diverse and complex biological functions
(Mathews and Turner, 2006; Mortimer et al., 2014; Zhang and Ding, 2021). For instance, transfer
RNAs usually have a cloverleaf secondary structure with an L-shaped tertiary structure which can fit
into ribosomal P and A sites for the translation (Holley et al., 1965; Kim et al., 1974). While long
noncoding RNAs (lncRNAs) regulate genomic functions through their specific RNA structures
(Qian et al., 2019). Research into the exploits of individual RNA structures and their functional
importance is ongoing, with more recent experimental efforts in probing RNA structures over tens of
thousands of RNAs in one single experiment transforming the scale for such study. A dramatic
increase in RNA structure data resources has laid the foundation for the application of deep learning
algorithms in deciphering general features for predicting RNA structure and its functions.
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In this review, we have compiled examples from previous
research whereby deep learning methods were adopted to solve
RNA structure-related problems. Firstly, we introduce the brief
process of deep learning modelling through a G-quadruplex
classification question. Secondly, we propose that the availability
of high-throughput sequencing data has facilitated deep learning
modelling of RNA structure-related problems. Next, the experience
of deep learning architecture design is presented through the
examples of RNA-protein binding prediction and toehold-switch
prediction models. Subsequently, we introduce classification and
regression in supervised learning through RNA secondary structure
prediction and RNA tertiary structure scoring. Lastly, we present
several solutions for the interpretation of deep learning models as
mentioned in studies. Our review provides an overview of deep
learning modelling approaches from the perspective of RNA
structure-related research, before providing suggestions for future
efforts to address more questions in RNA structure by deep learning.

THE BASIS OF DEEP LEARNING
MODELLING

Deep learning is a machine learning technique, capable of learning
abstract features from high-dimensional data through multiple
processing layers (LeCun et al., 2015). Imagine that we propose
to build amodel to determine whether a guanine-rich (G-rich) DNA
or RNA sequence has the potential to fold into a G-quadruplex
structure (GQS, a tertiary structure motif that is folded via
Hoogsteen hydrogen-bonded guanines) (Bochman et al., 2012;

Kwok et al., 2016a). In traditional modelling, the most important
step is called “feature extraction”. For example, to build this GQS
classification or scoring model, certain features need to be extracted
based on previous knowledge, such as the number of adjacent
guanines (“GG” or “GGG”), the length of the loops, the presence
of bulge (like “GGAG”), whether the loop contains cytosine and the
probability for the competition of adjacent canonical DNA or RNA
secondary structure. However, if there are still features or non-linear
combinations of features that are not considered, the model may
struggle to achieve highly accurate predictions.

For deep learning, it is possible for modeling without feature
extraction (Figure 1A). This particular question can be considered a
bi-classification problem, i.e., classifying G-rich sequences into GQS
or non-GQS classes. Instead of feature extraction, we can simply
input the entire G-rich sequences into the model. We first need to
prepare a large number of GQS or non-GQS sequences with clear
classification labels, for example, GQS as “1” and non-GQS as “0”.
After designing a deep learning model, the training process begins.
The GQS and non-GQS sequences are fed into the model as inputs
and their model-estimated classifications as outputs. Ideally, the
classification estimated by the model should be as close to the true
class as possible, but usually not in the initial training. Therefore, we
need to set an “objective function” (also known as the “loss
function”) for evaluating the error of the estimated classification
from the true classification (Figure 1C). The model then updates its
trainable parameters to reduce the error. Typically, deep learning
models may have millions of trainable parameters, called weights.
The model will calculate a gradient for each weight and determine
the adjustment direction to reduce the error (known as “gradient

FIGURE 1 | Schematic overview of deep learning workflow. (A) Data processing. Supervised learning requires explicit labelling of the data, including class numbers
in classification questions and values in regression questions. (B) Model design. Multilayer perceptron (MLP), convolutional neural network (CNN) and recurrent neural
network (RNN) are the three main families of deep learning architecture. Typically, deep learning models assemble different architectures based on data structures. (C)
Model training. The total training data is first divided into the training set, the validation set and the test set. Then the input data is passed into the model to obtain the
predicted values. The loss function is applied to evaluate the difference between the predicted and the true values, whereby the model weights are updated. (D)Model
interpretation. Features’ importance can be obtained by in silicomutations. For the CNNmodel, the features can also be evaluated by extracting the weight matrix of the
filter.
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descent”). Through continuous iterations corresponding to the
constant updating of the weights, the classification predicted by
the model progressively approaches the true classification
(Figure 1C). Ultimately, a powerful deep learning model is
derived for predicting the foldability of the G-rich sequence.

Several deep learning models are available for GQS
classification prediction (Table 1). G4NN was trained using
the MLP model on 149 experimentally identified RNA GQSs
and 179 non-RNA GQSs from the G4RNA database, and the
performance outperformed the scoring matrix-based RG4
prediction model (Garant et al., 2015, 2017). “PENGUINN”,
adopted a sequence as input and a prediction classification
score as output (Klimentova et al., 2020). In addition, it has a
higher area under the precision-recall curve value (AUC) than
methods based on regular expressions and scoring matrices
(Klimentova et al., 2020). The “G4detector” introduces RNA

structure information to improve GQS prediction (Barshai
et al., 2021) and the “DeepG4” was trained on in vivo G4 data
(G4 ChIP-seq) and identified key DNA motifs associated with
GQS region activity (Rocher et al., 2021). “PENGUINN”,
“G4detector” and “DeepG4” have been applied to DNA GQS
structure prediction at the genome-wide level, further deep
learning models based on rG4-seq and SHALiPE-Seq datasets
for RNA GQS prediction at the transcriptome-wide level can be
expected to emerge in the future as well.

DATA FIRST

In addition to improvements in computer power and high capacity
models, the success of deep learning is largely attributable to the
availability of large-scale annotated data (Sun et al., 2017).

TABLE 1 | Deep learning-based models in RNA structure.

Function Name Model Method highlights Link

RNA secondary structure
prediction

SPOT-RNA Singh et al.
(2019)

ResNet, LSTM Themodel was first trained with a large volume of RNA
secondary structures, then trained again using a
transfer learning strategy on a small number of
validated RNA structures

https://github.com/
jaswindersingh2/SPOT-RNA/

CDPfold Zhang et al.
(2019)

CNN, MLP Predicts the pairing probability matrix of RNA
structures and applies dynamic programming
methods to generate RNA structures

https://github.com/zhangch994/
CDPfold

DMfold Wang et al.
(2019)

Bi-LSTM Predicts the pairing probability matrix of RNA
structures and applies IBPMP methods to generate
RNA structures

https://github.com/linyuwangPHD/
RNA-Secondary-Structure-
Database

Calonaci et al. (2020) CNN, MLP Integrates RNA thermodynamic method, chemical
probing data and co-evolutionary information into the
model

https://github.com/bussilab/shape-
dca-data

Willmott et al. (2020) Bi-LSTM Generates synthetic SHAPE data for RNA structure
prediction

https://github.com/dwillmott/rna-
state-inf

MXfold2 (Sato et al.,
2021)

CNN, Bi-LSTM Four types of the folding score were calculated for
each nucleotide pair

https://github.com/keio-
bioinformatics/mxfold2

Ufold (Fu et al., 2022) FCN The input is instead of RNA sequences but a matrix of
16 possible pairings and pairing features for each
base pair

https://github.com/uci-cbcl/UFold

RNA tertiary structure scoring ARES Townshend et al.
(2021)

MLP The model first generated many potential RNA
structures by sampling and predicting their different
score from the true structure, thus overcoming the
problem of insufficient RNA tertiary structures

http://drorlab.stanford.edu/ares.
html

G-quadruplexes structure
prediction

G4NN Garant et al.
(2017)

MLP The model is trained on experimentally validated RNA
GQSs and provides a stability score for RNA GQSs

http://scottgroup.med.
usherbrooke.ca/G4RNA_screener/

PENGUINN Klimentova
et al. (2020)

CNN Robustness to unbalanced data sets and easy-to-use
web interface

https://ml-bioinfo-ceitec.github.io/
penguinn/

G4detector Barshai
et al. (2021)

CNN Introduces RNA secondary structure information into
the model to improve G4 prediction

https://github.com/OrensteinLab/
G4detector

DeepG4 Rocher et al.
(2021)

CNN, MLP The model is trained on in vivo G4 data (G4 ChIP-seq) https://github.com/morphos30/
DeepG4

RNA structure-mediated
protein interactions prediction

iDeepS Pan et al. (2018) CNN, Bi-LSTM Combines RNA sequence and RNA structure as input
during model training

https://github.com/xypan1232/
iDeepS

PrismNet Sun et al.
(2021)

CNN, ResNet,
SE network

Integrates experimental in vivo RNA structure data
during model training

https://github.com/kuixu/PrismNet

RNA structure-mediated
regulatory elements prediction

Angenent-Mari et al.
(2020)

MLP Comparably, this outperforming model was achieved
by using RNA sequences directly as input data, rather
than extracted features

https://github.com/lrsoenksen/CL_
RNA_SynthBio
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Fortunately, evolving technologies have provided researchers with a
wealth of novel tools, especially high-throughput sequencing (HTS),
allowing for an explosion of biological data (Mahmud et al., 2021).
For example, several HTS methods were applied to detect GQS at
bothDNAandRNA levels (G4-seq andG4ChIP-seq forDNA, rG4-
seq and SHALiPE-seq for RNA), and thus induced the creation of
deep learning models such as “PENGUINN”, “G4detector”, and
“DeepG4” (Chambers et al., 2015; Kwok et al., 2016b; Hänsel-
Hertsch et al., 2016; Klimentova et al., 2020; Yang et al., 2020;
Barshai et al., 2021; Rocher et al., 2021).

In RNA structure detection, recent high-throughput in vitro and in
vivo RNA structure chemical probing methods can achieve
nucleotide-resolution RNA structure information over tens of
thousands of RNAs (RNA structure information of over 50
million nucleotides) in one single experiment, transforming the
scale of RNA structure study to an unprecedented level (Ding
et al., 2014; Rouskin et al., 2014; Spitale et al., 2015; Yu et al.,
2020). These methods utilise chemicals such as dimethyl sulfate
(DMS) and SHAPE (Selective 2′-Hydroxyl Acylation analysed by
Primer Extension) that determine the single-strandedness of RNA
nucleotides. These large volumes of high-throughput sequencing data
provide the potential for improving the accuracy of RNA structure
prediction. Calonaci et al. established a compound deep learning
model to combine multiple channels of RNA sequence information,
chemical probing data (single-strandedness information) alongside
direct coupling information (derived from co-evolutionary data) to
build the thermodynamic prediction method (Calonaci et al., 2020).
Further penalties derived from known RNA structures from the
Protein Data Bank (PDB) database were applied as perturbations to
the thermodynamic prediction (Calonaci et al., 2020).

RNA-protein interactions are integral to core biological
processes, ranging from transcriptional and post-transcriptional
regulation (Castello et al., 2012). With the increase of high
throughput data on RNA binding protein binding sites, like
CLIP-Seq, deep learning methods were developed as a
consequence to better predict RNA-protein interactions
(Table 1). Notably, RNA-binding proteins (RBP) recognise
specific RNA sequences and specific RNA structure features
(Mortimer et al., 2014; Lewis et al., 2017; Zhang and Ding, 2021).
For example, PrismNet (Protein-RNA Interaction by Structure
informed Modeling using deep neural NETwork) was constructed
by integrating RNA sequence, RBP binding sites, and in vivo RNA
structure information to predict the impact on RNA-protein
interaction by one single-nucleotide variant (SNV) that disrupts
RNA structures (Sun et al., 2021). This trained model can also
predict the dynamics of the interaction between RNA structural
mutations and RNA binding protein from a huge volume of disease-
associatedmutations; such large-scale assessments are impossible for
experimental methods (Sun et al., 2021).

DESIGN OF DEEP LEARNING
ARCHITECTURES

The deep learning model is not trained to fit existing data.
Instead, it is required to predict independent, unknown data,
i.e., generalisation. If the model only has a good fitting on the

training set, it is called “overfitting”, that is, the model may have a
large bias in predicting non-training set data. For this purpose,
the input data is first normalised and thoroughly shuffled to
ensure that the samples have the same distribution. Then, the data
set is usually randomly divided into three parts: training set,
validation set and test set (Figure 1C) (Goodfellow et al., 2016).
The training set is utilised to fit the model and the validation set
for unbiased evaluation of an optimal model. Furthermore, a set
of independent, unused samples is required for testing
generalisability, and this is the test set. Typically, the ratio of
the training set is maximised during model training. By way of
illustration, for the ratio of training, validation and test sets in the
prediction of RNA secondary structure, SPOT-RNA and E2Efold
were established with the ratio of 8:1:1, while CDPfold adopted
the ratio of 7:2:1 (Singh et al., 2019; Zhang et al., 2019; Chen et al.,
2020). In addition, it is feasible to divide the data into k parts and
use 1 of these parts as the test set and the remaining k-1 parts as
the training set respectively to obtain the average performance of
the model on this data set (also known as the “k-fold cross-
validation”) (Goodfellow et al., 2016).

The next step is to consider the design of deep learning
architectures. There are mainly three families of deep learning
architectures: feed-forward neurons network, convolutional
neurons network (CNN) and recurrent neurons network
(RNN) (Zou et al., 2019) (Figure 1B). The feed-forward
network is the basic architecture and is also known as a
multilayer perceptron (MLP) when each layer is a fully
connected layer. CNN can receive input data in matrix form
and scan the matrix by introducing ‘filters’ to calculate a sum of
local weights so that local features can be captured (Krizhevsky
et al., 2012). RNN was originally designed for sequential and
time-series data and was enabled to “remember” the previous
state of the series data to influence the current input and output
(Zaremba et al., 2015).

Typically a deep learning model connects one or more
architectures like “building blocks”. Then the entire model
works like a pipeline, moving the input data ‘through’ the
different architectures, layer by layer, to obtain the predicted
values (Figure 1C). For example, iDeepS, a deep learning-based
method, combined a CNN and a bidirectional LSTM (Bi-LSTM,
is a special kind of RNN) to predict RNA-protein binding
preferences. The CNNs were first applied to determine the
abstract features of both RNA sequence and in silico predicted
RNA structure. The close relationship between RNA sequence
and structure was then captured by Bi-LSTM for an estimate of
possible long-range dependencies (Pan et al., 2018). The deep-
learned weighted representations were then fed into a
classification layer for predicting RNA binding protein (RBP)
sites (Pan et al., 2018). Prediction values derived from iDeepS
were verified by CLIP-seq by combining UV cross-linking with
immunoprecipitation for analysing protein interactions with
RNAs (Pan et al., 2018). This method outperforms the
sequence-only prediction methods, indicating the importance
of RNA structure features in RNA-protein binding.

In research on toehold switch prediction by deep learning,
Angenent-Mari et al. adopted different deep learning models and
performed a comparison. The toehold switch is the type of RNA

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8696014

Yu et al. Deep Learning in RNA Structure

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


switch that controls downstream translation by its hairpin
structure and programmable trans-RNA sequence (Green
et al., 2014). Much effort in RNA synthetic biology has
attempted to improve the prediction of toehold switch
functionality based on thermodynamic modelling and limited
datasets. Angenent-Mari et al. expanded toehold switch datasets
from <1,000 to the 105 level by high-throughput DNA synthesis
and sequencing pipeline and then presented different
architectures for deep learning models to extract the desired
sequence features (Angenent-Mari et al., 2020). The three-layer
deep learning MLP model based on these datasets has a ten-fold
improvement on the linear regression model. Then, the model
with only RNA sequences as input and the model with 30 rational
thermodynamic features as input were compared. Based on the
results, the sequence-only model doubled the performance of the
feature-extraction model, presumably as the 30 features were not
fully inclusive of all the information hidden in the sequences
(Angenent-Mari et al., 2020). Notably, the model with inputs of
both thermodynamic features and RNA sequences did not
significantly outperform the sequence-only model (Angenent-
Mari et al., 2020). Interestingly, the more complex model
architectures, CNN and LSTM, were also utilised for training
the same toehold-switch datasets but did not outperform the
MLP model (Angenent-Mari et al., 2020).

SUPERVISED LEARNING IN RNA
STRUCTURE PREDICTION

The most common form of deep learning is the supervised
learning (LeCun et al., 2015). In supervised learning, the goal
of the model is to enable the predictions to be as close as possible
to the labels, both discontinuous labels (classification) and
continuous labels (regression). The model mentioned above
for predicting whether a G-rich sequence can form a GQS is a
typical classification question. Also, RNA secondary structure
prediction can be achieved by classifying each base pair’s status
(pair or not) (Table 1).

For example, Singh et al. developed an RNA secondary
structure prediction model, SPOT-RNA, with RNA sequence
as input and the pairing classification status of each potential
base pair as output (an L × L matrix, L is the length of RNA
sequence) (Singh et al., 2019). SPOT-RNA was developed to train
an ensemble of ultra-deep hybrid networks of Residual Neural
Network (ResNet) and LSTM with 13,419 RNA structures in the
bpRNA database (Danaee et al., 2018; Singh et al., 2019). This
large model was then trained on a small dataset of 217 validated
high-resolution RNA structures. This transfer learning strategy
was shown to improve prediction performance by 13% over the
next-best model in direct RNA secondary structure prediction.
Another software, E2Efold, adopts a deep learning approach to
obtain the bi-classification scoring matrix of base pairs from the
input RNA sequences, and then constrains the output space by an
unrolled algorithm-based Post-Processing Network to achieve an
end-to-end RNA structure prediction model (Chen et al., 2020).
In addition to bi-classification, CDPfold adopted a CNNmodel to
predict RNA pairing probability matrices of three labels ("(", ")"

and ".") and further combined a dynamic programming algorithm
to generate optimal RNA structures (Zhang et al., 2019). DMfold
supports the prediction of seven RNA secondary structure dot-
bracket symbols for each base, thus incorporating knowledge of
the prediction of RNA pseudoknot structure (Wang et al., 2019).
Non-classification deep learning algorithms have also been
applied to RNA secondary structure prediction models.
MXfold2 was trained with thermodynamic regularisation to
ensure the predicted four types (helix stacking, helix opening,
helix closing and unpaired region) of folding scores are close to
the calculated free energy (Sato et al., 2021). Instead of inputting
the RNA sequence directly, another model, Ufold, inputs an
‘image’ of the RNA sequence, a matrix of all possible base pairings
(canonical and non-canonical base pairing) and pairing features
(Fu et al., 2022). By employing the Fully Convolutional Networks
(FCNs), Ufold transformed this RNA sequence ‘image’ into base-
pairing probabilities for predicting RNA secondary structures (Fu
et al., 2022).

In supervised learning, if the labels are continuous values, it
becomes a regression question. Recently, the model for scoring
RNA tertiary structures, ARES, is an example of a deep
learning regression model developed with a small amount
of training data (Table 1). In comparison with the ~100,000
unique protein structures, there are only 3,335 non-redundant
RNA 3D structures (from “the Representative Sets of RNA 3D
Structures database”, version 3.225), whereby most RNA
tertiary structures are RNA fragments under 100bp (Leontis
and Zirbel, 2012). This was mainly due to limitations of
experimental methods to resolve RNA structures that are
largely unstable, very dynamic, and have high plasticity.
Unlike protein structure predictions using Alphafold2 and
RoseTTAFold based on extensive data resources, only
limited known RNA tertiary structures were available for
RNA structure prediction. Townshend et al. trained a novel
RNA tertiary structure scoring model, the Atomic Rotationally
Equivariant Scorer (ARES), by 18 known RNA tertiary
structures published between 1994 and 2006 (Das and
Baker, 2007; Townshend et al., 2021). Unlike a direct
prediction of RNA tertiary structure (sequence as input and
tertiary structure as output), researchers first generated 1000
RNA tertiary structural models using the Rosetta FARFAR2
sampling method. Each derived RNA structural model was
then assessed for the differences between each of its atom’s
positions and the corresponding atom of the known RNA
structures, that is, the true root mean square deviation (RMSD)
(Townshend et al., 2021). Next, the deep learning model was
released, with the input being the atoms’ features and the
output being the RMSD for each generated RNA tertiary
structure model. The ARES model is a sequential model
containing an atomic embedding layer, a self-interaction
layer, an equivariant convolution layer, and Multilayer
Perceptron (MLP) with exponential linear units (Hinton
and Salakhutdinov, 2006; Clevert et al., 2016; Thomas et al.,
2018). As an RNA tertiary structure scoring model, ARES
significantly outperforms the other scoring functions and
models despite using a limited number of known RNA
structures (Townshend et al., 2021).
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INTERPRETING DEEP LEARNING MODELS

A deep learning model is typically thought of as a “black box”
containing millions of weights that predict input data as output
values. But for researchers in biology, the biological features that
the model learns and the biological questions it can explain are
more important than just predictions. Contrary to standard
statistical models and machine learning methods based on
features extraction, deep learning models are challenging to
interpret (Zou et al., 2019).

The most straightforward interpretation means is to
perform an in silico mutations by algorithm (Figure 1D)
(Zou et al., 2019). This approach requires large-scale in
silico mutations of the input data followed by re-prediction
with the model to assess the impact of changes in the input on
the output. For example, for a bi-classification model for GQS
prediction, it is possible to simulate base-by-base mutations to
alter the input sequence and predict its classification, thus
evaluating which nucleotides affect GQS folding. During
translation, ribosomes are known to actively unwind the
RNA structure where a complex interaction between the
ribosome and RNA structure occurs. DeepDRU is a deep
learning model for predicting the unwinding state of RNA
structures in vivo (Yu et al., 2019). This research demonstrated
that ribosome occupancy has a greater impact on the
unwinding degree of RNA structure in vivo than the
sequence itself by simulating mutations of a feature while
the rest of the features are fixed (Yu et al., 2019).

For interpreting CNN models, the convolutional filters in
the model can be visualised as heat maps or position weight
matrices to extract the high-level patterns learned
(Figure 1D). In the model for RBP prediction, DeepBind
and iDeep adopted this approach to extract the parameter
matrix of the filters from the first-layer convolutional network
to identify the RBP binding motifs (Alipanahi et al., 2015; Pan
and Shen, 2017). Another RPB prediction model, PrismNet,
incorporates “SmoothGrad” to visualise enhanced saliency
maps for identifying the high attention regions of RNA
sequence leading to the extraction of RBP binding motifs
(Sun et al., 2021). Notably, the interpretation of the model is a
purely computational simulation based on a model with well-
generalised properties, and the proof of the relevant
conclusions may require subsequent experimental validation.

DISCUSSION

The emergence of data-driven deep learning approaches
integrates technological innovation, “Big Data” exploitation,
and huge computational power to significantly transform the
scale for studying RNA structures and their functions. We
introduce the basic concepts of deep learning, the importance
of data volumn, supervised learning, design of deep learning
architectures and model interpretation by reviewing recent deep
learning applications in deciphering different aspects of RNA
structure studies and highlighting those that demonstrate the best
potential for future development.

Although deep learning has shown promise for application in
the RNA structure field, there are still some issues that need to be
addressed. Firstly overfitting is presently the major risk to deep
learning models, especially when faced with limited data size.
Advances in technology have led to the development of multi-
layered, high-capacity models that can be applied to obtain features
for more complex data structures. However, simultaneously, the
risk of overfitting arises. In a recent study of RNA secondary
structure prediction, it was suggested that E2Efold may suffer from
overfitting and is therefore not suitable for predicting broader
datasets (Sato et al., 2021; Fu et al., 2022). Hence it is far more
important to develop highly available experimental datasets in the
future than to adopt models with higher levels of capacity. Another
challenge is to give a suitable biological interpretation to the purely
computationally generated models and the relevant patterns learnt
and how to apply deep learning models to complement human
experience for functional RNA structure design. With sufficient
data, more complex models always imply better performance, but
at the same time become difficult to interpret. Typically, the
complexity of a model is inversely proportional to the
interpretability. In contrast to deep learning, ‘non-deep’
algorithms, such as decision tree algorithms, can have good
interpretability by obtaining the weights of individual features.
Therefore, we need to make a trade-off between model complexity
and interpretability according to the specific objectives.

Encouragingly, with the dramatic increase of high
throughput RNA structure data generated from different
organisms under diverse conditions, deep learning will be
increasingly appreciated by RNA structure researchers and
be progressively used to deduce RNA structure information
and associated functionality. As the rise of available deep
learning models increases, it will become progressively
easier for researchers to apply deep learning in their routine
data analysis for studying RNA structures.
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