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Dynamic Courtship Signals and Mate
Preferences in Sepia plangon

Alejandra López Galán*, Wen-Sung Chung* and N. Justin Marshall

Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia

Communication in cuttlefish includes rapid changes in skin coloration and texture, body

posture and movements, and potentially polarized signals. The dynamic displays are

fundamental for mate choice and agonistic behavior. We analyzed the reproductive

behavior of the mourning cuttlefish Sepia plangon in the laboratory. Mate preference

was analyzed via choice assays (n = 33) under three sex ratios, 1 male (M): 1 female (F),

2M:1F, and 1M:2F. We evaluated the effect of modifying polarized light from the arms

stripes and ambient light with polarized and unpolarized barriers between the cuttlefish.

Additionally, to assess whether a particular trait was a determinant for mating, we used

3D printed cuttlefish dummies. The dummies had different sets of visual signals: two

sizes (60 or 90 mm mantle length), raised or dropped arms, high or low contrast body

coloration, and polarized or unpolarized filters to simulate the arms stripes. Frequency

and duration (s) of courtship displays, mating, and agonistic behaviors were analyzed

with GLM and ANOVAs. The behaviors, body patterns, and their components were

integrated into an ethogram to describe the reproductive behavior of S. plangon. We

identified 18 body patterns, 57 body patterns components, and three reproductive

behaviors (mating, courtship, and mate guarding). Only sex ratio had a significant effect

on courtship frequency, and the male courtship success rate was 80%. Five small (ML

< 80 mm) males showed the dual-lateral display to access mates while avoiding fights

with large males; this behavior is characteristic of male “sneaker” cuttlefish. Winner males

showed up to 17 body patterns and 33 components, whereas loser males only showed

12 patterns and 24 components. We identified 32 combinations of body patterns and

components that tended to occur in a specific order andwere relevant for mating success

in males. Cuttlefish were visually aware of the 3D-printed dummies; however, they did

not start mating or agonistic behavior toward the dummies. Our findings suggest that

in S. plangon, the dynamic courtship displays with specific sequences of visual signals,

and the sex ratio are critical for mate choice and mating success.

Keywords: cephalopods, reproductive behavior, female choice, ethogram, male competition, body pattern

1. INTRODUCTION

Animal communication is a complex mechanism to transfer information between signalers and
perceivers (Scott-Phillips, 2008). Communication involves a signaller using specializedmorphology
or behaviors to influence the current or future behaviors of another individual (Owren et al.,
2010). Animals communicate in response to different tasks, including alarm calls, allocation of
food, courtship, and mating (Searcy and Nowicki, 2010). Courtship signaling is essential for
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mate recognition and is frequently multimodal. Animals can use
chemical signals (pheromones), vocalizations, color patterns, and
movements during courtship displays (Mendelson and Shaw,
2012; Higham and Hebets, 2013). Courtship allows females and
males to ensure that they are mating with an animal of the
same species, and present information about their quality as a
potential mate (Breed and Moore, 2012). There is a growing
interest in studying mating signals with bright-colored patterns
and intricate courtship displays in both terrestrial and aquatic
organisms, such as those in peacock spiders (Girard et al., 2011,
2018; Taylor andMcGraw, 2013), birds of paradise (Scholes, 2008;
Scholes et al., 2017; Ligon et al., 2018), and siamese fighting
fish (Ma, 1995). Cephalopods are renowned for their dynamic
displays for courtship and agonistic competitions for potential
mates (Hall and Hanlon, 2002; Naud et al., 2004; Allen et al.,
2017; Lin et al., 2017; Lin and Chiao, 2018). The development
of these elaborate displays is often driven by intense sexual
selection, providing an excellent system to study behavior and
sexual selection in mating systems (Andersson, 1994).

Most coastal coleoid cephalopods (e.g., octopus, cuttlefish,
and squids) have a short life span of one or two years and
die shortly after spawning (Jereb and Roper, 2005, 2010; Jereb
et al., 2013; Lu and Chung, 2017). Cephalopods also have the
most complicated central nervous system of all invertebrates
at both anatomical and functional levels (Boycott, 1961; Nixon
and Young, 2003; Shigeno et al., 2018), and possess unique
colorblind camouflage, mimicry, and communication abilities
(Hanlon and Messenger, 2018). Cephalopod dynamic body
patterns are directly controlled by their brain and continuously
adapt to match the visual perception of the environment,
communicate with mates, and solve different tasks (Boycott,
1961; Darmaillacq et al., 2014; Liu and Chiao, 2017; Gonzalez-
Bellido et al., 2018; Hanlon and Messenger, 2018). These
dynamic body patterns are composed of multiple chromatic,
textural, locomotor, and postural components simultaneously
expressed (Packard and Hochberg, 1977). For example, the
Intense Zebra pattern of the mature male Sepia officinalis has
white and black zebra bands on the mantle, white and dark
fin spots, dilated pupils (chromatic components), smooth skin
(textural components), dropping arms and extended fourth
arm (postural components), and hovering display (locomotor
components). This pattern is displayed by mature males
cuttlefish, and it is used for sex recognition and agonistic behavior
(Hanlon and Messenger, 1988).

Coleoid cephalopods have evolved several reproductive
strategies in response to sexual selection. For instance, the
hectocotylus, ligula, and calamus in males are morphological
adaptations to transfer the sperm to the females (Voight, 1991,
2002; Thompson and Voight, 2003). Alternative mating tactics in
squids and cuttlefish enhance the mating opportunities of small
males by avoiding male competitions (Hanlon et al., 2002; Wada
et al., 2005; Zeidberg, 2009; Brown et al., 2012; Lin and Chiao,
2018; Marian et al., 2019). Male octopus mate “at a distance” to
escape and avoid sexual cannibalism (Hanlon and Forsythe, 2008;
Huffard and Bartick, 2015). Promiscuity, mating aggregations,
and sperm competition are also behavioral adaptations related
to sexual selection in cephalopods (Hall and Hanlon, 2002;

Jantzen and Havenhand, 2003; Naud et al., 2004; Morse and
Huffard, 2019). For instance, several investigations have shown
that multiple paternity occurs in some species, such as Octopus
minor (Bo et al., 2016), Octopus vulgaris (Quinteiro et al., 2011),
and the cuttlefish Sepiella japonica (Liu et al., 2019). Other
studies in squids have found a sequence of pattern-based signals
associated with determining dominance in reproductive battles
(Lin et al., 2017; Lin and Chiao, 2018).

Current knowledge of cuttlefish reproductive interactions and
visual signals is based primarily on four large-sized species
[Mantle length (ML) of mature individuals > 300 mm]: (1) Sepia
apama (Hall and Hanlon, 2002; Zylinski et al., 2011; Schnell
et al., 2015a,b, 2019), (2) Sepia latimanus (Roper and Hochberg,
1988; Adamo and Hanlon, 1996; How et al., 2017; Hanlon and
Messenger, 2018) (3) Sepia officinalis (Hanlon and Messenger,
1988; Adamo and Hanlon, 1996; Boal, 1997; Hanlon et al., 1999;
Chiao et al., 2005; Mäthger et al., 2009), and (4) Sepia pharaonis
(Lee et al., 2016; Nakajima and Ikeda, 2017). Over the past
30 years, additional pattern, textural, postural and locomotor
components have been documented in these species. Each has
species-specific body patterns, but they also share a high degree of
similarity in some courtship body patterns common across many
day-active shallow-water cephalopods. For example, the male
zebra pattern (white and dark zebra bands across the mantle,
arms and/or fins), and the passing cloud display characterized
by coordinated waves of expanded chromatophores flowing as
dark bands over the body (Hanlon and Messenger, 1988; How
et al., 2017). Another iconic cuttlefish species is the small (ML
< 110 mm) flamboyant cuttlefish, Metasepia pfefferi, which
possesses over 100 display components (Roper and Hochberg,
1988; Thomas and MacDonald, 2016). Metasepia pfefferi is
capable of showing elaborate body patterns, with three pairs of
large and flap-like papillae in the dorsal mantle, long papillae
over eyes, and passing clouds running in several directions
simultaneously (Roper and Hochberg, 1988; Jereb and Roper,
2005; Laan et al., 2014; Thomas andMacDonald, 2016). Although
many studies have demonstrated the complexity of cuttlefish
visual signaling, the temporal structure of the multiple behavioral
displays associated with reproduction is poorly-known. To
date, only one study has analyzed the temporal order of the
body pattern components expressed by the squid Sepioteuthis
lessoniana during reproductive interactions (Lin et al., 2017).

Here we selected a relatively small-sized cuttlefish, Sepia
plangon, which inhabits seagrass beds around Australian coastal
waters (living depth < 85 m) (Jereb and Roper, 2005). Brown
et al. (2012) reported the mating behavior of this species in the
wild and in captivity. Unlike other large cuttlefish species (Dunn,
1999; Hall and Hanlon, 2002; Naud et al., 2004), S. plangon
apparently does not form large aggregations for mating. As
Brown et al. (2012) reported, this species forms small groups on
the spawning grounds. Male-only assemblages (32.50%), male-
female pairs (1M:1F, 25.00%), and groups of two males with one
female (2M:1F, 12.50%) were themost frequent. Interestingly, five
small males (ML< 80.00mm) displayed a deceptive body pattern
in the presence of a female and a larger male. This dual-lateral
display consisted of two simultaneous body patterns, one on each
half of the mantle. Males showed the typical male coloration
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FIGURE 1 | Some of the body patterns of S. plangon. (A) Male with raised arms (ra), papillate skin (ps), sitting (st), and light mottle (LM). (B) Female. Hovering (ho),

raised I arms (ra), extended II and III arms (ea), dropped arm (ad), and uniform light (UL) pattern. (C) Female in tripod posture (t), dropped arms (ad), smooth skin (sk),

and dark mottle pattern. (D) Female and male in head-to-head mating position with splayed arms (sa), male grasping (grs), uniform darkening (UD), and deimatic

pattern (D). (E) Male cuttlefish. The white arrows refer to polarized arm stripes and polarized eye sclera. The blue-red scale bar represents the percentage of

polarization from 0 (blue) to 1 (white) through (red) which is typical for polarization in nature.

toward their counterparts but displayed the female appearance to
a larger male to avoid fighting (Brown et al., 2012). In addition to
the repertoire of visual signals, S. plangon spawns multiple times
(Beasley et al., 2017), making this species suitable for observation
of repeated mating behavior.

S. plangon has a single type of visual pigment (λmax 499
nm), suggesting that this species, like other cuttlefish species
(Marshall and Messenger, 1996), is unable to detect or respond
to colors through their retina (Chung and Marshall, 2016). Sepia
plangon does possess orthogonally-arranged photoreceptors
enabling sensitivity to polarized (PL) signals. This species may
discriminate 10 e-vector difference, the highest PL resolution in
animals with PL vision studied to date (Talbot and Marshall,
2010a,b; Temple et al., 2012). Additionally, S. plangon reflects
PL light via iridophores located under the skin, forming strong
PL signals on arms, the frontal area of the head, and around
eyes (Figure 1). These signals are similar to those of S. officinalis
(Shashar and Cronin, 1996; Shashar et al., 1996, 2002; Boal
et al., 2004; Chiou et al., 2007; Mäthger and Hanlon, 2007;
Mäthger et al., 2009; Cartron et al., 2013a,b,c). Several studies
have proposed that PL vision enables a covert communication
channel in cephalopods as many other animals are unable to
detect the PL signals (Moody and Parriss, 1961; Jander et al., 1963;
Tasaki and Karita, 1966; Saidel et al., 1983, 2005; Shashar and
Cronin, 1996; Shashar et al., 1996, 2000, 2002; Boal et al., 2004;
Talbot and Marshall, 2010b; Cartron et al., 2013a,b,c; Marshall
et al., 2019). However, despite decades of study, the evidence is
inconclusive and no behavioral function has been attributed to
these signals.

To understand whether ambient light conditions affect mate
choice, and which visual signals may influence the outcome of

mating competitions, we selected S. plangon which can be reared
in captivity and tested under different light conditions. First, we
investigated the courtship and mate choice under different sex
ratios. We evaluated whether the presence of polarized (POL)
vs. unpolarized (UNPOL) barriers would affect the reproductive
behavior of S. plangon, from courtship to mating. For example,
we tested whether S. plangon started courtship and attempted
to mate regardless of a barrier limiting physical contact between
them (UNPOL), and regardless of a polarized filter (POL). Then,
we used 3D resin-printed cuttlefish dummies with one static
component of specific body patterns (e.g., large vs. small body
size; PL vs. non-PL arm stripes, uniform light, dark uniform,
weak zebra, strong zebra). We aimed to test if each component
alone could trigger a response related to mating behavior, to
ultimately understand the effect of each separate component in
the complex courtship behavior of S. plangon.

2. METHODS

2.1. Animal Collection and Care
We collected 34 mature females and 32 males using seine nets
in Dunwich, North Stradbroke Island, Queensland, Australia,
between April-July 2016, August-October 2017, and Feb-May
2018. Our study was carried out following the permits by The
University of Queensland - Animal Ethics Committee (permit
number QBI/304/16), Queensland Government - Department
of National Parks, Sports and Racing (Moreton Bay Marine
Park Permit QS2018/CVL625), and Queensland Government
- Department of Primary Industries and Fisheries (General
Fisheries Permit 180731). Cuttlefish were placed individually
in housing tanks of (610 × 600 × 450 mm) with running
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seawater, which was monitored continuously using a filtered re-
circulating water system (water temperature 20–24oC, salinity
35–36 psu, light-dark cycle 12–12 h) at Moreton Bay Research
Station (MBRS). All tanks contained sand, rocks, and PVC tubes
as substrates, and the cuttlefish were fed daily with live prey (e.g.,
glass shrimps and purple shore crabs Hemigrapsus) ad libitum.
The animals were kept in housing tanks for at least a week before
starting the behavioral experiments.

2.2. Pre-copulatory, Mating, and
Postcopulatory Behavior
To analyze the effect of sex ratio in courtship behavior, a pair (a
female and a male 1M:1F), or three cuttlefish (two males and a
female 2M:1F, or one male and two females 1M:2F) were placed
in a tank with a black acrylic divider to limit the visual contact
for an hour prior to the start of each experiment (Figures 2A–C).
Next, we removed the dividers between the tanks and recorded
the cuttlefish interactions with four underwater cameras for
at least an hour, or until animals stop interacting (1.5 h
max) (Figures 2I–K).

Then using BORIS 7.7.4 R© Friard and Gamba (2016) to
analyse the videos, we created a catalog of reproductive
behaviors, agonistic fights, courtship, mating, mate guarding,
and body patterns of S. plangon. The textural (skin texture),
chromatic (body color), postural (body position), locomotor
(body movement), and polarization components of the body
patterns of S. plangon were also identified. We followed the body
pattern descriptions by Hanlon and Messenger (1988), Borrelli
et al. (2005), Schnell et al. (2015b), Thomas and MacDonald
(2016), How et al. (2017) and Nakajima and Ikeda (2017)
(Table 1). The body patterns were categorized into two groups:
(1) Acute pattern (body patterns displayed for less than 5
min); (2) Chronic patterns (those lasting over 5 min) (Table 1).
Furthermore, we classified the components of these body patterns
in two categories: (1) Point events with a duration of 5 s or
less, and (2) State events, which were visible for more than
5 s (Table 1).

2.3. Polarized vs. Non-polarized Barriers
Next, to study the effect of light conditions on the reproductive
behavior of S. plangon, we put polarized (POL) or unpolarized
(UNPOL) neutral density barriers between the cuttlefish and
recorded the behavioral interactions in the three sex ratios
mentioned above (1M:1F, 2M:1F, and 1M:2F, Figures 2D–H).
Due to the small number of males collected for our study, 2M:1F
- POL trials were not conducted, (see Supplementary Material

for more details). The polariser filter was a 42.00% Transmission
Neutral Gray Acrylic Laminated Linear Polarizer (AP27-024T,
American Polarizers Inc., USA). The filter was horizontally
aligned and attached to a frame made of PVC tubes. A
sheet of a white diffuser (PTFE sheet, Dotmar EPP Pty Ltd,
Australia) was attached to the light source (Arlec 2x20W LED
Work light, Arlec Australia Pty Ltd) placed above the tank.
A piece of 0.3 soft neutral density filters (Lee Filters, UK)
were glued to a float glass window on both sides to make
the unpolarized barrier. Using the same video analysis method,
we identified the chromatic, textural, postural, and locomotor

components of the body patterns that S. plangon used for
reproductive behavior under different light conditions. POL
filters modified the polarization signals from arm stripes and
body of S. plangon; therefore, a cuttlefish could barely see
the polarized signals from a mate placed at the other side of
the filter.

2.4. Statistical Analysis
We analyzed the frequency and duration (in seconds, sec) of the
courtship, mating, agonistic fights, and mate guarding. Due to a
large number of zeros from our frequency data (animals that did
not start courtship or mate), we used generalized linear models
(GLM) with negative binomial (NB) distribution. The duration
was analyzed with two-way factorial ANOVAs, using sex ratio as
one factor of 3 levels—1M:1F, 1M:2F, 2M:1F, and type of barrier as
the second factor of two levels—Polarized (POL) or Unpolarized
(UNPOL). Cuttlefish like other cephalopods use their body
patterns for communication; therefore, to demonstrate that a
specific sequence of signals is determinant for mate choice in S.
plangon, we transformed each body pattern and component to
alphabetic codes of one to five letters (Table 1). Consecutively,
we analyzed the data using text mining methods (Silge and
Robinson, 2016) to estimate the frequency and the association
of body patterns, such as radar charts and correlations with
Bonferroni correction for multiple comparisons. All the analyses
were conducted in (RStudio Team, 2015) v1.2.1335 R© (RStudio
Team, 2015) using the packages FactoMineR v1.42 (Lê et al.,
2008), tidyverse v1.2.1 (Wickham et al., 2019a), tidytext v0.2.2
(Silge and Robinson, 2016), dplyr v0.8.3 (Wickham et al., 2019b),
widyr v0.1.2 (Robinson, 2019), tokenizers v0.2.1 (Mullen et al.,
2018), quanteda v1.5.1 (Benoit et al., 2018) and igraph v1.2.4.1
(Csardi and Nepusz, 2006).

2.5. 3D Printed Cuttlefish Models
We selected five body pattern components from those observed
in successful mating (see the details in results, and Table 1) for
further tests using 3D printed resin cuttlefish. We downloaded
the 3D models from CGTrader (https://www.cgtrader.com, see
Appendix for more details). Then, we edited them using the
software Blender R© version 2.79. The models were printed using
Stereolithography to 0.1 mm layer thickness, using a Form2
(Formolabs R©) 3D printer at the Australian National Fabrication
Facility, Queensland Node (ANFF-Q), and The University of
Queensland Library 3D-printing facilities. Dummies (DUM)
of two sizes (60 or 90 mm ML) were compared to analyze
the effect of body size in mating choice. We measured the
importance of body posture using dummies with arms extended
or dropped. The models were painted with acrylic paints to
simulate four body patterns, such as uniform light (UL) and
dark mottle (DM) for females, or intense zebra (IZ) and weak
zebra (WZ) for males. We attached stripes of polaroid or
neutral-density filter to the arms of the dummies to simulate
polarized and unpolarized arm stripes, respectively. All dummies
were attached to a thin fishing line to place them into the
testing tank. For this experiment, we counted a successful
mate choice if a cuttlefish showed interest in the dummy,
either by initiating courtship or attempting to mate. Negative
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FIGURE 2 | Schematic representation of the experimental design for mate choice. ♀ = Females. ♂ = Males. (A) One pair and three cuttlefish (B,C) with black dividers

to limit visual contact before the start of the experiments. (D) Two cuttlefish with an unpolarized (UNPOL) barrier between them. (E,F) Three cuttlefish with unpolarized

barrier in the tank. (G) A male and a female with a polarized (POL) barrier between them. (H) Three cuttlefish with polarized barrier in the tank. (I–K) Two or three

cuttlefish in control (DIRECT) condition. (A,D,G,I) Sex ratio = 1M:1F. (B,E,H,J) = 1M:2F. (C,F,K) = 2M:1F.

results were assigned if cuttlefish ignored, showed aggressive
behavior, or remained distant from the dummies. We considered
agonistic behavior as a negative result because we used the
dummies to test whether the static body pattern could trigger
courtship and mating behavior, as all these trials were intersexual
experiments (male dummy for females, and female dummies
for males).

3. RESULTS

We collected 34 mature females and 32 males. Females were

larger than males, with mantle length (ML) (mean ± SD) =

74.92 ± 13.02 mm, and total length (TL) = 103.55 ± 21.23 mm.

Males ML was 65.62 ± 10.15 mm, and TL = 90.41 ± 13.66 mm.
We analyzed the behavior of S. plangon during 41h of video
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TABLE 1 | Body patterns and their components of S. plangon and the alphabetic code used in this study.

Components - Body patterns Code

REPRODUCTIVE BEHAVIORS (3)

Courtship display � C Mate Guarding � MG Mating 1 M

BODY PATTERNS (18)

Chromatic Pulse 5 CP Dark Mottle 5 DM Deimatic 5 D

Dual-Lateral Display 5 DLD Dynamic Polarization Signals5 DPS Flamboyant 5 F

Intense Zebra 5 IZ Lateral Display 5 LD Light Mottle 9 LM

Multidirectional Passing Wave Display 5 MDPWD Shovel Display 5 SHD Strong Disruptive 5 STD

Stipple 5 ST Uniform Blanching 5 UB Uniform Darkening 5 UD

Uniform Light 9 UL Weak Disruptive 9 WD Weak Zebra 9 WZ

CHROMATIC COMPONENTS (28)

Anterior Head Bar 1 ahb Anterior Mantle Bar 1 amb Anterior Transverse Mantle Line 1 atml

Dark Arms 1 da Dark Arm Stripes 1 das Dark Eye Ring 1 der

Dark Fin Spots 1 dfs Dark Zebra Bands 1 dzb Dilated Pupil 1 dp

Large White Mantle Spots 1 lwms Latero-Ventral Patches 1 lvp Mantle Margin Scalloping 1 mmsc

Mantle Margin Stripe 1 mmst Median Mantle Stripe 1 mms Paired of Mantle Spots 1 pms

Posterior Head Bar 1 phb Posterior Mantle Bar 1 pmb Posterior Transverse Mantle Line 1 ptml

White Arm Spots 1 was White Fin Spots 1 was White Head Bar 1 whb

White Major Lateral Papillae 1 whb White Mantle Band 1 wmb White Neck Spots 1 wns

White Posterior Triangle 1 wpt White Splotches 1 ws White Square 1 wsq

White Zebra Bands 1 wzb

POSTURAL COMPONENTS (14)

Arms Dropped 1 ad Bipod 1 bi Buried 1 b

Elongated body 1 eb Extended II, III Arms 1 ea Extended IV Arms 1 eaf

Flanged Fin 1 ff Flattened Body 1 fb Fully Extended I - IV Arms 1 fe

Raised I, II Arms 1 ra Raised Head 1 rh Sitting � st

Splayed Arms 1 sa Tripod � t

LOCOMOTOR COMPONENTS (12)

Ambling � a Flee 1 f Forward Rush 1 fr

Grappling � grp Grasping � grs Hiding � h

Hovering � ho Inking 1 i Swimming � sw

Turning toward a Mate 1 ttm Water Jetting 1 wj Waving arms � wa

IRIDISCENT COMPONENTS (6)

Iridescent Eye Sclera 1 is Iridescent Green/Blue Arm Stripes 1 igas Iridescent Green/Blue Mantle Margin Stripe 1 igmm

Iridescent Pink/Orange Arm Stripes 1 ipas Iridescent Pink/Orange Mantle Margin Stripe 1 ipmm Iridescent Ventral Mantle 1 ivm

TEXTURAL COMPONENTS (3)

Coarse Skin 1 cs Papillate Skin 1 ps Smooth Skin � sk

State component = �, Point component = 1, Acute pattern = 9, Chronic pattern = 5.

analysis. The data were collected from 17 control experiments
(no barrier between cuttlefish), four POL trials, four UNPOL
observations, and eight DUM experiments (n = 33). Nine males
were allocated to 1M:1F trials, ninemore to 1M:2F condition, and
14 males in 2M:1F tests. Twenty-one males initiated courtship
displays (65.63% from the total), and 17 males mated at least
once, representing 80.95% success rate of courtship displays. On
the other hand, nine females were tested in 1M:1F trials, 18
females in 1M:2F, and seven more in 2M:1F observations, but
only 16 females mated (47.06% from the total).

3.1. Body Patterns and Courtship Display
of Sepia plangon
We identified a total of 18 body patterns in S. plangon
(Table 1, Figures 1, 3). Males exhibited all 18 patterns, whereas

females only showed 12. Following the general classification
of cephalopods’ body patterns, we classified them into two
categories, Acute and Chronic (Table 1).

3.1.1. Acute Body Patterns
Eleven body patterns with a brief duration fell under this
category. Acute patterns had a duration from seconds (sec) to a
few minutes.

− 1. Chromatic pulse (CP, mean duration ± standard deviation
= 50.75 ± 34.36 sec) (How et al., 2017), also known
as “passing clouds” (Hanlon and Messenger, 1988), was a
dynamic expansion and contraction of chromatophores to
produce bands running in a single direction across the body.

− 2. Deimatic pattern (D, 28.48 ± 25.89 sec) (Hanlon
and Messenger, 1988) was characterized by paling
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FIGURE 3 | Signals and body patterns of Sepia plangon during courtship. The images were from the same pair during the same interaction. (A) Before courtship, a

male with raised arms (ra) and female with uniform light pattern (UL). (B) Male began the courtship with Intense Zebra pattern (IZ) and arms dropped (ad), whereas

female showed Dark Mottle pattern (DM). (C) Male transitioning to Weak Disruptive (WD) and dark eye ring (der). Female maintained rejection signal (Dark mottle) and

extended arms (ea). (D) Male with light mottle (LM). Female in tripod posture (t) and raised head (rh). (E) Male with elongated Body (eb), DM, and papillate skin (ps).

Female showed Uniform Darkening (UD), dilated pupils (dp) and ra. (F) Female switched to uniform blanching pattern (UB) while male with UD coloration rushed

forwards (fr) to touch the female’s head.

and flattening of the body, a pair mantle spots (pms),
dark eye rings (der), dilated pupils (dp), and smooth
skin (SK).

− 3. Dual-lateral display (DLD, 141.35 ± 252.70 sec) (Brown
et al., 2012) was characteristic of small males during
agonistic contests. This pattern incorporated two patterns
simultaneously. Males mimicked female coloration by
showing light or dark mottle pattern in one half of the mantle.
This strategy was used to avoid fighting with rivals. However,
in the other half of the mantle, “sneaker males” showed the
typical male coloration (intense or weak zebra) to the female.

− 4. Dynamic polarization signals (DPS, 191.10 ± 353.20
sec) (Supplementary Video 3): this hitherto undescribed
pattern involved dynamic expansion and contraction of
chromatophores only in areas where cuttlefish reflects
polarized light (e.g., around the eyes, and in the arm stripes),
producing bands running in a single direction in these regions.
This pattern was expressed exclusively during courtship
by males.

− 5. Flamboyant (F, 43.69± 43.68 sec) (Hanlon and Messenger,
1988) included papillate skin (ps), splayed arms (sa), dark
mottle (DM) coloration, and latero-ventral patches (lvp). Sepia
plangon displayed flamboyant primarily in the context of
defense, but the males also showed this pattern if the females
rejected any mating attempt by dropping the arms or moving
away from the male.

− 6. Intense zebra (IZ,930.14 ± 1144.17 sec) (Hanlon and
Messenger, 1988) was exclusive to males, and it included dark
and white zebra bands (dzb, wzb) on the mantle, dark eye
rings, smooth skin, and extended IV arms toward another
male (eaf).

− 7. Lateral display (LD, 36.26± 49.15 sec) (Schnell et al., 2015a)
was an agonistic signal from males characterized by light and
dark moving bands over the mantle (chromatic pulse in the
present study), with the body-oriented laterally to rivals and
dark arms or face.

− 8. Multidirectional passing wave display (MDPWD, 214.86±
221.81 sec) (How et al., 2017) was similar to chromatic pulse;
however, the bands moved in different directions across the
body. We observed that small males exhibited this coloration
when the females rejected them during courtship.

− 9. Shovel Display (SHD, 190.38 ± 290.26 sec) (Schnell
et al., 2015a) incorporated the mantle raised, and rigid
arms extended in a shovel-like shape. Large male S. plangon
produced this pattern as an aggressive signal at the beginning
of every male contest (See Supplementary Figure 1).

− 10. Uniform Blanching (UB, 59.16 ± 25.39 sec) (Hanlon and
Messenger, 1988) was characterized by a fast retraction of all
chromatophores creating a pale appearance.

− 11. Uniform Darkening (UD, 83.57± 20.89 sec) (Hanlon and
Messenger, 1988) was a quick expansion of all chromatophores
seen as an instant darkening of the body.
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3.1.2. Chronic Body Patterns
The duration of these displays extends to several minutes. This
category encompassed seven body patterns.

− 1. Strong Disruptive (STD, 231.00± 323.33 sec) (Hanlon and
Messenger, 1988) comprised bold transverse and longitudinal
components, both light and dark.

− 2. Weak Disruptive (WD, 578.76 ± 673.95 sec) (Hanlon
and Messenger, 1988) is similar to strong Disruptive, but the
contrast between dark and light components is less vivid. Both
STD and WD had a maximum duration of 846.49 sec.

− 3. Dark Mottle (DM, 953.54 ± 1068.44 sec) (Hanlon and
Messenger, 1988) had white and dark dots distributed in the
arms, head, and dorsal mantle.

− 4. Light Mottle (LM, 781.52 ± 765.29 sec) (Hanlon and
Messenger, 1988) made the overall body tone pale with some
of the dark chromatophores expressed as spots or splotches.

− 5. Uniform Light (UL, 263.18 ± 326.51 sec) (Hanlon and
Messenger, 1988) had a body coloration similar to white, as
the expansion of chromatophores was minimum.

− 6. Stipple (ST, 64.71 ± 61.15 sec) (Hanlon and Messenger,
1988) included light body coloration with small dark spots due
to the partial expansion of some chromatophores and papillate
skin.

− 7. Weak Zebra (WZ, 673.51 ± 710.70 sec) (Hanlon and
Messenger, 1988) was a low-contrast zebra patterning, with
white and black zebra bands covering the mantle. Males
showed this body color throughout courtship displays.

3.2. Courtship, Agonistic, and Mating
Behavior
Before courtship, cuttlefish often camouflaged with light mottle,
weak disruptive, or stipple patterns tomatchwith the background
of the testing tank. After 1–32 min, males turned toward one
female and initiated a courtship display (C) in 20 trials (60.61%).
Mating was observed at least once in 17 of 33 experiments
(courtship success = 85.00%). Sepia plangon had multiple
matings (Figure 4), and all the males that mated showed at least
one courtship display to the female. Mating was not observed
without prior courtship display.

The courtship started when a male showed quick changes of
body patterns to the female, and it lasted until both cuttlefish
adopted the mating position (head-to-head). Courtship excluded
agonistic encounters between males and mating. Courtship
latency was then the time before males showed any courtship
behavior, and it had a duration of 60.00 to 1923.50 sec. Males
initiated courtship displays with the repetitive sequence of seven
fast changes of body patterns (Figure 3). The courtship display
was formed with an orderly sequence of body patterns starting
with light mottle, followed by intense zebra, weak zebra, dark
mottle, uniform blanching, uniform darkening, and dark mottle
(Figure 3). Intense zebra was continuously observed in 2M:1F
trials, but males in 1M:1F and 1M:2F trials showed intense
zebra pattern only at the beginning of courtship display. The
components of the body patterns during courtship quickly
changed from smooth to papillate skin, elongated body (eb),
raised arms (ra), flattened body (fb), fully extended I - IV arms
(fe), and forward rush (fr) (Figures 3E,F).

Agonistic signals between males encompassed intense zebra
display with dark eye rings, extended IV arms to push
competitors away from the female, lateral display, raised head,
and shovel display. Escalation to agonistic fights was observed
only during one trial, (2M:1F with no barrier between cuttlefish)
where two males engaged in three aggressive fights. The ML
difference between males that showed only agonistic signals was
13.64±9.33mm.On the other hand,males that initiated agonistic
contests had a size difference in ML of 6.48 mm. The average size
of winner males was 64.13 ± 11.67 mm of ML, whereas, loser
males had 65.49± 9.09mm of ML.

Similar to other cuttlefish, S. plangon mated in head-to-head
position (Figure 1D). Eight females (23.53% from all females)
and eight males (25.00% from all males) coupled only once, five
females (14.71%) and seven males (21.88%) mated twice, one
female (2.94%) and a male (3.13%) had three copulations, and
two females (5.88%) and a male (3.13%) had four.

3.2.1. Sex Ratio
In 1M:2F experiments, the males first chose a female to court
but also approached and courted the other female if rejected by
the first mate. Rejection signals by the females consisted of dark
mottle coloration, dark eye rings, dropped arms, and moving
away from the male.

In 2M:1F observations, themales established dominance using
agonistic signals. Agonistic signals between males encompassed
intense zebra display with dark eye rings, extended IV arms
to push competitors away from the female, shovel, and lateral
display. Cuttlefish presented these agonistic signals only in
six control experiments (2M:1F), where cuttlefish had no
barrier between them. Escalation to physical fights included
animals grappling (grp) their opponent and inking (See
Supplementary Figure 1). We observed male-male fight only
in one trial; hence, male dominance was established primarily
by agonistic visual signals. The dominant male remained close
to the female and was the first to start the courtship display.
Furthermore, the dominant males were the first to mate with
the female. Five “sneaker” males (see Supplementary Figure 1)
avoided fights by simulating female coloration in five control
trails (2M:1F), and this strategy led to successful matings by four
males (80.00% success rate). Dominant males guarded the female
(Mating Guarding,MG) before, during, and after copulation.MG
consisted of males with Intense Zebra coloration, or dark mottle,
hovering close to the females while extending the IV arms toward
competitors. Small males also guarded the paired female, but only
in the absence of another competitor.

3.2.2. Polarized / Unpolarized Barriers
POL and UNPOL barriers did not prevent cuttlefish from
attempting to mate (See Supplementary Figure 1), as we
observed five females and males attempting to mate while they
were separated by the POL (n = 2) and UNPOL (n = 3)
barriers (See Supplementary Figure 1). Similar body patterns
and behaviors were observed in these trials to those seen in
experiments without a barrier, such as courtship display by males
(including forward rush trying to push the barrier), females
raising the first pair of arms, and both the female and male
adopting the head-to-head mating position with spread arms.
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FIGURE 4 | (A) Total frequency of courtship displays by males (B) Frequency of courtship displays. Large dots and bars represent the mean and standard deviation,

respectively. DIRECT, control (no barrier); POL, polarized barrier; UNPOL, unpolarized barrier. Sex ratio = 1M:1F in black, 1M:2F in yellow, 2M:1F in blue. (C) Mating

frequency in females and males. (D) Mean and standard deviation of mating frequency in both males and females. No courtships were observed in 2M:1F - UNPOL

experiments. In 1M:2F - POL trials (n = 2), only one male started courtship. No matings were observed in 1M:2F - POL and 2M:1F - UNPOL trials.

Mating duration in POL andUNPOL observations was measured
from the moment when both cuttlefish attempted to mate.
Cuttlefish spread their arms and moved toward each other to
adopt the head-to-head mating position despite of the barrier
between them. We considered the end of a mating attempt
when both cuttlefish moved apart. We observed males and
females pushing the barrier trying to reach each other during the
matting attempts.

3.3. Frequency of Courtship Displays, Male
Competitions, and Copulations
3.3.1. Frequency
Sepia plangonmalesmales had an average of 1.88±2.11 courtship
displays. The maximum number of courtship displays was eight
in a 1:1 - POL experiment. Males courted females in all 1M:1F
trials, five of nine 1M:2F experiments, and all 2M:1F trials
(Figure 4). Cuttlefish in 1:1 - POL condition showed more
courtship displays than cuttlefish in the other conditions tested
(4.50 ± 4.95). However, the negative binomial GLM suggested
that sex ratio was the only variable with a significant effect on
courtship frequency, as it was more likely that any male initiated
courtship in 2M:1F condition (b=−0.949, p=0.026) than 1M:2F

(b=−1.017, p=0.034). Four male cuttlefish started courtship
displays in 1M:1F, but they were unable to attract females for
successful mating. The courtship frequency of the four loser
males was 2.25±1.97, whereas in winnermales it was 2.94± 1.98.

The most frequent agonistic signal was dark eye ring with
a maximum of 73 counts (19.90 ± 19.91), followed by intense
zebra (max frequency= 16, 3.78± 4.27), extended IV arms (max
frequency = 32, 1.16 ± 5.66), raised head (max = 5, 0.56 ±

1.22), shovel display (max = 8, 0.38 ± 1.43), mate guarding
(max = 2, 0.16 ± 0.45), and lateral display (max = 2, 0.09 ±

0.39). Furthermore, winner males showed agonistic signals more
frequently than losers, particularly dark eye rings and intense
zebra pattern.

Overall, the mating frequency was 0.86± 1.11, but the highest
number of copulation attempts (due to the physical limitation
by a barrier) was observed in POL - 1:1 condition (2.50 ± 1.73)
(Figure 4D); however, GLM did not find any effect by Sex ratio
or POL condition on mating frequency (p > 0.05).

3.3.2. Duration
Courtship duration was highly variable as males exhibited
courtship displays between one to eight times (Figure 4A). The
shortest courtship was 11.75 sec, and the longest was 1867.35 sec,
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FIGURE 5 | (A) Courtship duration in second. (B) Mating duration (s). Large dots and bars represent the mean and standard deviation, respectively. DIRECT, Control

(no barrier); POL, Polarized Barrier; UNPOL, Unpolarized barrier. Sex ratio = 1M:1F in black, 1M:2F in yellow, 2M:1F in blue.

FIGURE 6 | Frequency of each agonistic signal by every male during male

competitions. Dark eye ring (der), extended arm IV (eaf), Intense Zebra pattern

(IZ), lateral display (LD), raised head (rh), and shovel display (SHD). Each bar

represents a male and the number of times each signal was observed.

Winners in yellow and losers in blue.

with a mean of 161.22 ± 106.82 sec. We analyzed courtship
duration with Factorial ANOVAs using transformed data (as the
relative percentage from total duration (%), and also z-scores);
however, the sex ratio and types of barriers did not have a
significant effect on courtship duration (p > 0.05) (Figure 5A).

We described the DPS as a new pattern (see
Supplementary Video 1), which was observed in three
1M:1F - control tests, one 1M:2F - control experiment, and
one 2M:1F - unpolarized test. The duration of DPS was
191.101 ± 353.20 sec. Males displaying DPS pattern had a high
success rate of mating, as four males mated using this particular
display (80.00%).

The agonistic signal with intense zebra coloration had a
duration of 930.14 ± 1144.17 sec. This pattern was present in
19 control experiments (57.58%), one POL (3.03%), and three
UNPOL observations (9.09% from all the trials). Cuttlefish

exhibited shovel displays only in six control trials and had
duration 190.38 ± 290.26 sec. Only two cuttlefish showed the
lateral display pattern, with a duration of 36.255 ± 49.15 sec in
two observations (2M:1F - control). Four cuttlefish showedmate-
guarding behavior with duration 289.07 ± 288.04 sec in 2M:1F
control experiments.

The cumulative mating duration was between 4.35 and
24.826 sec, with a mean of 10.31 ± 0.66 sec. Statistical analysis
did not reveal any significant differences in mating duration (p >

0.05) among the sex ratios and polarized conditions tested in our
study (Figure 5B).

3.4. Differences in Type and Sequence of
Body Patterns Between Successful and
Non-successful Courtships
Cuttlefish displayed up to 17 body patterns during courtship,
agonistic fights, mate guarding, and copulation. Males showed
a specific sequence of body patterns for courtship display
(Figure 3), including light mottle, intense zebra, weak zebra, dark
mottle, uniform blanching, uniform darkening, and dark mottle.
Rapid changes between smooth and papillate skin, elongated and
flattened body, extended arms, forward rush, dark eye rings,
and turning toward the female were also part of courtship
displays. Males that mated at least once displayed up to 17
body patterns and 33 body pattern components (Figures 6, 7B,
8B,C, 9A,C); whereas loser males exhibited a maximum of 12
body patterns, and 24 components (Figures 7C, 9B–D). The
most frequent signals amongst winner males were dark eye
ring, elongated body, forward rush, raised arms, and papillate
skin, dark mottle, light mottle, uniform blanching, and uniform
light (Figures 9A,C).

We identified 32 sequences of components and body patterns
that were relevant for successful mating. Males showed these
sequences for at least five times throughout courtship displays.
These sequences were made of combinations between one
textural component (ps), a locomotor component (fr), two
postures (eaf, ra), one chromatic component (der), and four
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FIGURE 7 | Ethogram of the body patterns and behaviors of two males and a female S. plangon showed for courtship and mating. The orange horizontal bars

represent duration of the chronic patterns. Gray bars denote state events. Black vertical lines correspond to point events and acute patterns. Blue vertical rectangles

encompass signals during courtship and mating. (A) In this observation, the female displayed 14 visual signals (Body patterns and components). (B) Winner male

displayed up to 24 signals, whereas the loser male (C) showed only nine. See Table 1 for the codes’ abbreviations.
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FIGURE 8 | Ethogram of the body patterns and reproductive behaviors of two males and a female S. plangon. In this experiment, the female (A) mated twice with

each male (B,C). The orange horizontal bars represent duration of the chronic patterns. Gray bars denote state events. Black vertical lines correspond to point events

and acute patterns. Blue rectangles encompass signals during courtship and mating. The numbers above the blue rectangles represent the mating events. Mating 3

and 4 occurred very near to each other. See Table 1 for the codes’ abbreviations.
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FIGURE 9 | Radar charts representing the number of body patterns and components that winner and loser males used for reproductive behavior. Each colored line

corresponds to a different individual. (A) Winner males (n = 17) showed a max of 17 body patterns. (B) Winner males showed 33 body pattern components.

(C) Loser males (n = 15) displayed a max of 12 body patterns, and 24 body pattern components (D). M, Mating; MG, Mate Guarding; C, Courtship. See Table 1 for

the codes’ abbreviations.
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FIGURE 10 | Radar charts representing the number of body patterns and components of females that chose to mate and females that did not. Each colored line

corresponds to a different individual. (A) Females that opted to mate (n = 16) showed up to eight body patterns and (B) 26 body pattern components. (C) Females

that refused to mate (n = 18) exhibited 11 body patterns, and 25 body patterns components (D). M, Mating. See Table 1 for the codes’ abbreviations.

patterns (DM, UB, UL, and LM) in an orderly fashion
(Figure 11A). Losers showed a similar sequence of body patterns
and components; however, the frequency of these signals was
much lower than those displayed by winner males (Figure 6). On
the other hand, females showed 43 visual signal sequences before

mating. One textural component (ps), one locomotor (a), three
postural (ad, ra, sa), two chromatic (der, lvp), and five patterns
(DM, LM, UB, WD, STD) encompassed the sequences in females
formating (Figures 10A,C, 11B). On the other hand, females that
refused to mate kept the arms dropped, dark eye rings, fled and
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FIGURE 11 | Radar charts representing the sequence of signals (body patterns and components) that S. plangon used for mating. Each colored lined represents a

cuttlefish. Each sequence was observed more than twice in all cuttlefish. (A) Winner males. A total of 32 sequences were observed in males that successfully mated.

Combinations of four body patterns (DM, LM, UB, and UL) and six components (der, eb, ps, fr, eaf, and ra) were observed in all sequences. (B) Females that were

inclined to mate exhibited up to 43 sequences; however, the frequency of these signals was lower than those in males. Five body patterns (DM, LM, UB, WD, and

STD), and seven components (a, ad, der, ps, ra, sa, lvp) were showed by the females for these sequences. See Table 1 for the codes’ abbreviations.
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FIGURE 12 | Heatmap with pairwise correlations between all the body patterns, components, and courtship (C), mating (M), mate guarding (MG) of S. plangon. Red

squares are positive correlations and blue are negative. Non significant p values are marked with NS. (A) Chromatic components. (B) Postural components. In this

case, the only component correlated to courtship was elongated body. Similarly, splayed arms was significantly correlated to mating, and extended IV arm to mate

guarding. (C) Locomotor components. Courtship was significantly correlated to forward rush and grasping. (D) Intense zebra, weak disruptive, and weak zebra were

significantly correlated to courtship. (E) All Skin texture components were non-significant. See Table 1 for all the codes’ abbreviations. Significant p-values were

marked with their corresponding coefficients of determination (r2) in black numbers.
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showed papillate skin as response to the courtship displays of the
males (Figures 10B,D).

We integrated the data from all subjects into a matrix with
the frequency of each behavior, body pattern, and component
to analyze the correlation between them (Figure 12). We found
that courtship was significantly correlated to forward rush
(r2=0.66, p < 0.01), grasping (r2=0.49, p < 0.01), elongated body
(r2=0.66, p < 0.01), Intense Zebra pattern (r2=0.51, p=0.01),
Weak Disruptive (r2=−0.183, p=0.042), and Weak Zebra pattern
(r2=0.69, p < 0.01). Mating was significantly correlated to
splayed arms only (r2=0.57, p < 0.01); while extended IV arms
(r2=0.62, p < 0.01) and Dual-Lateral Display (r2=0.56, p < 0.01)
were significantly correlated to mate guarding.

3.5. 3D Printed Cuttlefish
We analyzed the behavioral responses of the cuttlefish in the
presence of one or two dummies (number of experiments,
n = 8). However, cuttlefish did not attempt to mate with
the dummies. Sepia plangon displayed defense signals, such as
deimatic, dark mottle, strong disruptive, weak zebra, flee, hiding,
inking, dilated pupils, and papillate skin toward the dummies, or
remained away from them. No agonistic behavior was observed
in these experiments.

4. DISCUSSION

This study is the first to describe in detail the mating behavior
of S. plangon under different light conditions and sex ratios in
captivity. The intricate mating system of S. plangon comprises
male agonistic behavior and signaling, alternative reproductive
tactics, female mate choice, and multiple matings. Furthermore,
the temporal order of component and body pattern expression
is critical to winning mating competitions, similar to the
communication system in the reef squid (Lin et al., 2017).

In the spawning season, S. plangon showed strong sexual
dimorphism as mature females were larger than males. Similar
results were previously reported by Beasley et al. (2017). Larger
females are relatively common in other cephalopod species,
for example, in the squid Dosidicus gigas (Nigmatullin et al.,
2001), the octopus Eledone cirrhosa (Regueira et al., 2013), and
Haliphron atlanticus (Lu and Chung, 2017). On the other hand,
S. plangon male size might be a critical factor that lead to the
development of male alternative mating strategies similar to
those in squids (Wada et al., 2005; Lin and Chiao, 2018), and
octopus (Huffard et al., 2008). For instance, smaller males can
use different mating behavior (e.g., male-upturned and sneaking)
to avoid male competition and mate. In this study, we observed
small S. plangonmales using the dual-lateral display to avoidmale
competitions and mate with large females. Similar results were
previously reported by Brown et al. (2012).

In our study, we observed that males S. plangon were smaller
than females; therefore, it is likely that the body size does not
determine male dominance in this species while in others such
as S.apama it does (Hall and Hanlon, 2002). The number and
variety of displays potentially act as signals to communicate
male fitness, which could influence S. plangon female choice.
Other investigations have shown that larger females generally

have higher fecundity and produce larger offspring in mammals
(Kilanowski and Koprowski, 2016), insects, and arthropods
(Honěk, 1993; Fox and Czesak, 2000; Stillwell et al., 2010).
Additionally, intersexual selection may drive the evolution of
small male size in S. plangon, for example, small body size could
be beneficial to males that show dynamic or acrobatic courtship
(Székely et al., 2004).

4.1. Courtship Behavior, Agonistic Signals,
and Mating
Sexually selected signals fall into two categories, signals used in
inter-sexual displays (e.g., courtship), or signals used in intra-
sexual displays (agonistic signals) as proposed by Andersson
(1994). Courtship includes one or more sensory modalities
(visual, olfactory, auditory, tactile, and some others), and often
leads to the evolution of traits through sexual selection (Owren
et al., 2010). Precopulatory processes occur in both females
and males, such as male-male competitions, female and male
mate choice (Kuester and Paul, 1996; Johannesson et al., 2008;
Edward and Chapman, 2011; Hamel et al., 2015; Gwynne, 2016;
Roberts and Mendelson, 2017). Postcopulatory mechanisms are
sperm competition in males (Simmons, 2014), cryptic female
choice (CFC), and cryptic male choice (CMC). CFC occurs
when females use specific traits or mechanisms to influence
the probability that males fertilize their eggs, whereas CMC is
any male behavior that allows males to bias their investment in
matings toward certain females (Eberhard, 1996; Reinhold et al.,
2002; Arnqvist, 2014).

Previous literature has not found clear evidence of courtship
displays in some cephalopods species, such as S. apama (Hall
and Hanlon, 2002), S. officinalis (Boal, 1997; Adamo et al.,
2000), Idiosepius paradoxus (Kasugai, 2000; Sato et al., 2010), and
Euprymna scolopes (Hanlon et al., 1997). Nonetheless, intricate
courtship displays have been described in S. latimanus (Corner
and Moore, 1980; Hanlon and Messenger, 2018), and S. sepioidea
(Moynihan and Rodaniche, 1982), and Loligo pealei (Hanlon,
1996). These patterns are characterized by quick changes in
patterns and bright colorations (Hanlon and Messenger, 2018). It
is notable in S. plangon that the chromatic changes described are
in fact largely a-chromatic, that is black and white andmost likely
signaling in contrast, not color.

Males S. plangon potentially established dominance through
the use of visual signals (Figure 6), such as intense zebra,
extended IV arms, uniform blanching, dark eye rings, lateral
display, uniform darkening, shovel display, and elongated body.
Escalation to physical fights was only observed in one control
experiment (2M:1F) and had a duration shorter than 6 s. Similar
results were observed in the giant cuttlefish S. apama (Hall and
Hanlon, 2002; Schnell et al., 2015b) and the squid Loligo plei
(DiMarco and Hanlon, 1997), as males contest duration and
frequency decreased by the presence of a female and whether
temporary pairing had occurred. By contrast, smaller S. plangon
males (ML < 80mm) showed the dual-lateral display (DLD) to
sneak in and mate with females without fighting with a dominant
male. Our results suggest that DLD is an efficient tactic that
small cephalopod S. plangon use to avert a fight with larger rivals
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and obtain opportunities to mate. Similar cases were reported
in S. plangon by Brown et al. (2012), the squid Sepioteuthis
sepioidea (Hanlon and Messenger, 2018), and S. apama (Hall
and Hanlon, 2002; Naud et al., 2004; Hanlon et al., 2005).
Males mimicking females are also commonly observed in birds,
lizards, and crustaceans. For instance, male pied flycatchers use
female mimicry as an advantage to choose when to initiate an
attack, thus increasing the chances of winning male contests
(Saetre and Slagsvold, 1996). Males Augrabies flat lizards often
mimic female coloration to avoid the injuries and energetic cost
associated with fighting other males; however, they still use male
pheromones as an honest signal of their gender for mating
(Whiting et al., 2009). Spider crabs (Laufer and Ahl, 1995), and
isopods (Shuster, 1989; Shuster and Wade, 1991) also use female
mimicry as an alternative mating tactic to access females and
avoid male competitions.

In our study, we observed four male cuttlefish mate-guarding
the females only in 2M:1F control experiments. The guarded
females were large, fully mature, carrying eggs, and had ML
between 73.00 and 90.00mm. We did not determinate the
number of eggs carried by the guarded females; however,
this strategy could represent a cryptic male choice, as males
could bias their mate-guarding efforts toward particular females
(Aumon and Shuker, 2018). The bobtail squid Sepiadarium
austrinum exhibited strategic male choice as their mating
efforts were more substantial toward egg-carrying females
(Wegener et al., 2013; Hooper et al., 2016). Similarly, large
male Abdopus aculeatus copulate frequently in mate-guarding
situations with large females Huffard et al. (2008). Several
studies have reported temporary mate guarding in several
species of cephalopods, such as S. apama (Hall and Hanlon,
2002; Naud et al., 2004), S. officinalis (Adamo and Hanlon,
1996; Hanlon and Messenger, 2018), and Loligo pealeii (Shashar
and Hanlon, 2013). Precopulatory mate guarding might allow
the male to monopolize the female until she is receptive,
and postcopulatory mate guarding could prevent females from
prematurely removing the sperm and ensure insemination.

We observed only one female mating with both males;
however, fifteen females had multiple matings (Figures 7A, 8A),
and nineteen females did not mate once. Possibly, potential pre
and postcopulatory CFC also occur in S. plangon, as some females
rejected mating attempts, but others had multiple matings with
several males. Potentially, females S. plangon could choose the
sperm that fertilizes their eggs. Previous investigations have
analyzed CFC in squids (Sato et al., 2013, 2014, 2016; Shashar
and Hanlon, 2013; Mather, 2016; Lin and Chiao, 2018; Iwata
et al., 2019), and octopus (Huffard et al., 2008; Morse et al., 2015;
Morse and Huffard, 2019); however, CFC studies in cuttlefish
are limited (Boal, 1997; Hall and Hanlon, 2002; Naud et al.,
2005). Boal (1997) found that females S. officinalis prefer to
mate with males that had copulated recently. According to Hall
and Hanlon (2002), S. apama might possess a mechanism for
postcopulatory CFC. Two sources of sperm were available to
the female to fertilize the eggs: (1) spermatangia from the most
recent matings around the buccal region, and (2) sperm stored
internally in receptacles located around the beak. Similar results
were reported by Naud et al. (2005) in S. apama using genetic
analysis. They found evidence supporting the biased use of sperm

from those sources mentioned above, which suggests a potential
postcopulatory CFC in this species. We collected animals from
the wild and did not control whether females had already mated,
which could reduce mating likelihood in our experiments. Future
studies should focus on both female and male cryptic choice,
comparing the probability of mating with virgin cuttlefish, and
analyze whether females choose the sperm to fertilize the eggs
from one male or another (Iwata et al., 2019).

The sex ratio was the only factor affecting courtship frequency
in S. plangon of the two factors tested in our experiments. On
the other hand, the intensity and frequency of male competitions
in S. plangon were not affected by sex ratio. Similar results were
reported in flies (Leftwich et al., 2012), and fish (de Jong et al.,
2009; Clark and Grant, 2010), as the sex ratio had a significant
effect on the courtship behavior and duration. Lobsters (Debuse
et al., 1999), fish (Mills and Reynolds, 2003), and arthropods
(Enders, 1993; Waiho et al., 2015) change the reproductive
behavior depending on the sex ratio. For instance, at high male
density (more than three males) large European bitterling males
ceased to be territorial and instead competed with groups of
smaller males (Mills and Reynolds, 2003). It is likely that our
test did not trigger frequent aggressive male fights because we
only placed two males with one female as the highest sex ratio
for males.

POL and UNPOL barriers did not have a significant effect on
the frequency and duration of courtship, agonistic encounters,
and mating. However, the POL barrier caused a large variation
in courtship and mating frequency (Figure 4). Likely, GLM
did not find any statistical significance because we have more
observations in control experiments than POL-UNPOL tests;
thus, statistical power could be a limitation in our study.
Although POL and UNPOL barriers limited the physical contact
between cuttlefish and modified the light conditions, males
started their repetitive courtship display. Several studies have
suggested that polarized light is used in cephalopods for
communication and navigation (Shashar and Cronin, 1996;
Shashar et al., 2000; Boal et al., 2004; Saidel et al., 2005; Chiou
et al., 2007; Talbot and Marshall, 2010b; Cartron et al., 2013a;
Marshall et al., 2019); however, to date, there is no conclusive
evidence that shows the function of polarization signals in
the reproductive context. This study showed that changes in
polarized light did not affect mating behavior in S. plangon, and
that the presentation and sequence of body patterns were decisive
for mate choice.

4.2. Visual Signaling and Communication
The body patterns of S. plangon are similar to those of
Sepia officinalis (Hanlon and Messenger, 1988), Sepia pharaonis
(Nakajima and Ikeda, 2017), and M. pfefferi (Roper and
Hochberg, 1988; Thomas and MacDonald, 2016). We identified
18 body patterns in mature male and female S. plangon,
whereas S. officinalis and S. pharaonis have only 13 (Hanlon
and Messenger, 1988; Nakajima and Ikeda, 2017). Our study
used mature individuals, whereas the descriptions of S.
officinalis, S. pharaonis, and M. pfefferi were based on juveniles.
Additionally, our study revealed signals and body patterns used
for reproductive behavior, such as multidirectional passing wave
display, shovel display, lateral display, and dynamic polarization
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signals which were not reported in the studies of Hanlon
and Messenger (1988), Thomas and MacDonald (2016), and
Nakajima and Ikeda (2017).

Two patterns in S. plangon are rare in other cephalopod
species: the dual lateral display (DLD), and the dynamic
polarization signals (DPL). DLD was previously described in
males S. plangon by Brown et al. (2012), andwe also identified this
pattern in five small males (ML < 80.00 mm) that were between
a larger rival and a female. DLD is a deceptive signal, and similar
to S. sepioidea (Hanlon and Messenger, 2018), and S. latimanus
(Corner andMoore, 1980), is often used as an alternative method
to avoid competitions and find females to mate. This behavior
is not particular to cephalopods; male cricket frogs change their
dominant calls in the presence of an opponent to mimic the
female calls (Wagner, 1992). Likewise, females dance fly can also
use deceptive signals to prey on males seeking for mates (Funk
and Tallamy, 2000). The evolutionary consequences of deceptive
displays are hard to interpret as they depend on the costs and
benefits of deception to both senders and receivers (Stuart-Fox,
2005). We reported 80.00% of mating success in males S. plangon
that used DLD to avoid male competitions; possibly, DLD is
a common and successful strategy in the mating system of S.
plangon (Brown et al., 2012).

We reported DPL as a new pattern in our study. This display
was exclusive to males and used during courtship, and involved
running bands across areas where cuttlefish reflected strong PL
signals; four of five males successfully mated after showing this
pattern. This pattern is similar to the Passing cloud display
of S. officinalis (Hanlon and Messenger, 1988). However, the
passing cloud was only reported in juveniles, and it is a defense
mechanism involving bands running across the entire body.
In contrast, DPS has dark bands running horizontally across
the arms stripes and around the eyes. It is possible that S.
plangon might control the intensity of PL signals for courtship
by controlling the expansion and retraction of chromatophores
as dark bands over the arms stripes. Although the evidence
supporting the direct control of PL signals for communication
in cuttlefish is not definitive yet (Shashar et al., 1996, 2002;
Mäthger et al., 2009; Marshall et al., 2019), Gonzalez-Bellido
et al. (2014) reported that the expression of iridescence in squids
was controlled by the brain but also changed in response to
environmental luminance. Thus, the iridophores in cuttlefish
reflect strong PL signals potentially controlled by the brain, and
these signals could be used for communication with conspecifics
(Shashar et al., 1996). In this study we did not find any effect
by POL and UNPOL barriers; however, the perspective of
the animal under natural conditions should be considered in
the future to investigate polarized vision and communication
(Marshall et al., 2019).

S. plangon body patterns differed between the winner and
loser males. Winners showed up to 17 body patterns and 33
components, whereas losers only showed 12 patterns and 24
components. Conversely, females that did not mate showed
more body patterns (18) than mating females (16) (Figure 10).
The dynamic and repetitive nature of the courtship displays
was similar between winners and losers; however, the number

of times that winner showed each pattern and component
of the courtship was higher than those in loser (Figure 4).
Highly repetitive signals may have provided more information
about mate quality by transmitting the same message (courtship
display) multiple times. Therefore, females could assess more
accurately one or more stimuli that are displayed repeatedly
before choosing a mate (Mowles and Ord, 2012). We identified
32 sequences of visual signals displayed by males S. plangon
that were crucial for successful mating. These sequences were
composed of combinations of four body patterns (DM, LM,
UB, and UL) and six components (der, eb, ps, fr, eaf, and ra)
in a specific order (Figure 11). Similarly, females showed up
to 43 sequences composed of five body patterns (DM, LM,
STD, UB, and WD) and seven components (a, ad, der, lvp,
ps, ra and sa). Therefore, it was not just the presentation of
these body patterns that led to mating, but the sequence of
specific body patterns. A similar study done by Lin et al. (2017)
analyzed the visual signals and body patterns of the squid S.
lessoniana for reproductive behavior. They reported that each
behavior was composed of multiple chromatic components, and
each component is often involved in multiple behaviors. Thus,
the dynamic body patterning and expression of unique sets of
components represents an efficient communication system in
squids. Our results suggest that S. plangon also use specific set
of signals (body pattern, chromatic, postural, locomotor, and
textural components) to communicate efficiently for successful
mating. In females, the most frequent postural components for
mating involved the arms (e.g., arms dropped, raised arms, and
splayed arms), which could be associated with the fact that male
cuttlefish deposit the sperm in the female’s buccal area (Hall and
Hanlon, 2002; Naud et al., 2004; Hanlon and Messenger, 2018).
Therefore, females exposing the buccal area to the male could be
interpreted as a positive cue for mating.

The dummies used in this study did not trigger behavioral
interactions with the cuttlefish, suggesting that a static body
pattern component is not a strong stimulus to start courtship
behavior. One suggestion for future studies would be to present
videos of real animals to the cuttlefish and see whether the
video of a real mate triggers courtship behavior. In fact,
Pignatelli et al. (2011) and Temple et al. (2012) have previously
shown that squids and cuttlefish react to computer-generated
polarized looming stimuli. However, these investigations did not
test the reaction to a PL video of a real cuttlefish displaying
courtship patterns.

This study was the first to report in detail the reproductive
behavior of S. plangon under different sex ratios and light
conditions. Sex ratio was the only factor that had a significant
effect on courtship frequency. Furthermore, we showed evidence
that the size or presentation of a specific body pattern and posture
is not sufficient to initiate courtship behavior in S. plangon, as 3D
models did not trigger any mating. We found that the number
and specific order of sequences of body patterns and components
are determinant for successful matings, presented as dynamic
courtship signals. We introduced S. plangon as an attractive
animal model and very convenient for laboratory behavioral
studies due to its small size.
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Supplementary Video 1 | The flickering effect in the video represent the areas

where Sepia plangon reflect polarized signals. The video was recorded with a

modified Sony©HVR-Z1P video-camera. The camera had a nematic switch-plate

polarizer attached. Alternate horizontal (H) and vertical (V) polarizing were fitted

every other frame.

Supplementary Video 2 | Video from a polarization camera. Left: intensity (black

and white image). Center: degree (%) polarization, scale 0–100%, blue to white

with deep-red at approximately 45%. Right: angle or e-vector direction, the

circular key shows orange/red as horizontal and cyan as vertical. Video from a

mature female Sepia plangon.

Supplementary Video 3 | Two cuttlefish Sepia plangon during courtship

behavior. Male (top) showing dynamic polarization signals (DPS) to the female

(bottom). This pattern appeared as moving bands and flashes over the arms

stripes and eye sclera, which are areas with strong polarized reflection (see

Supplementary Video 2).

Supplementary Figure 1 | Patterns and behaviors observed during courtship,

agonistic, and mating in S. plangon. (A) Two males and a female. To the right,

male showing shovel display (SHD) as agonistic signal to the other male. (B) Two

males fighting for the female. Males showed Intense Zebra, or Dark Mottle

coloration, dark eye rings, and extended Arms to push the competitor. Meanwhile,

the female hold a dark mottle coloration. (C) A large male with intense zebra

pattern pushing a small male away from the female. The small male showed light

mottle pattern. (D) Close view of a male showing DLD, two patterns

simultaneously (intense zebra and dark mottle). (E) “Sneaker” male showing dark

mottle pattern to the other male, and intense zebra to the female. (F) A male and a

female adopting the mating position in a experiment with a polarized barrier

between cuttlefish. The barrier was attached to PVC pipes.

Supplementary Figure 2 | (A) Mantle length (ML) and (B) Total length (TL) of

mature females (gray boxplot, n = 34) and males (yellow boxplot,

n = 32) S. plangon.
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APPENDIX

Material Methods
Sample Size

TABLE A1 | Sample size (n = number of experiments) for each condition tested in

this study.

1M:1F-

DIRECT

1M:1F-

POL

1M:1F-

UNPOL

1M:2F-

DIRECT

1M:2F-

POL

1M:2F-

UNPOL

2M:1F-

DIRECT

2M:1F-

UNPOL

n 6 2 1 5 2 2 6 1

3D Printed Cuttlefish Models
• CGTrader model 1: https://www.cgtrader.com/3d-

models/animals/fish/cuttlefish-e0177629-4eba-4166-b54c-
a2b06c9e011c

• CGTrader model 2: https://www.cgtrader.com/3d-models/
animals/fish/low-poly-cuttle-fish-animated-game-ready

• CGTrader model 3: https://www.cgtrader.com/3d-
models/animals/fish/cuttlefish-19d89111-3607-4770-8303-
59f5a98c2dde.
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