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Abstract. A relatively small number of especially susceptible nerve cell types within multiple neurotransmitter systems
of the human central, peripheral, and enteric nervous systems (CNS, PNS, ENS) become involved in the degenerative
process underlying sporadic Parkinson’s disease (sPD). The six-stage model we proposed for brain pathology related to sPD
(Neurobiol Aging 2003) was a retrospective study of incidental and clinically diagnosed cases performed on unconventionally
thick tissue sections (100 �m) from a large number of brain regions.The staging model emphasized what we perceived to be a
sequential development of increasing degrees of Lewy pathology in anatomically interconnected regions together with the loss
of aminergic projection neurons in, but not limited to, the locus coeruleus and substantia nigra. The same weight was assigned
to axonal and somatodendritic Lewy pathology, and the olfactory bulb was included for the first time in a sPD staging system.
After years of research, it now appears that the earliest lesions could develop at nonnigral (dopamine agonist nonresponsive)
sites, where the surrounding environment is potentially hostile: the olfactory bulb and, possibly, the ENS. The current lack of
knowledge regarding the development of Lewy pathology within the peripheral autonomic nervous system, however, means
that alternative extra-CNS sites of origin cannot be disregarded as possible candidates. The PD staging system not only
caused controversy but contributed a framework for (1) assessing pathology in the spinal cord, ENS, and PNS in relationship
to that evolving in the brain, (2) defining prodromal disease and cohorts of at-risk individuals, (3) developing potential
prognostic biomarkers for very early disease, (4) testing novel hypotheses and experimental models of �-synuclein propagation
and disease progression, and (5) finding causally-oriented therapies that intervene before the substantia nigra becomes
involved. The identification of new disease mechanisms at the molecular and cellular levels indicates that physical contacts
(transsynaptic) and transneuronal transmission between vulnerable nerve cells are somehow crucial to the pathogenesis of sPD.

Keywords: �-synuclein, autonomic nervous system, cell-to-cell transfer, central nervous system, dorsal motor nucleus of
the vagal nerve, enteric nervous system, Lewy body disease, locus coeruleus, Parkinson’s disease, olfactory bulb, peripheral
nervous system, prion-like, protein aggregation, protein misfolding, spinal cord, substantia nigra

“It therefore is worthwhile to examine the Lewy
bodies, find out what they are composed of, and
what molecular events precede and accompany
their formation. Once we know that, will we be
able to prevent Lewy bodies from forming? And
if Lewy bodies do not form, will we then have no
substantia nigra degeneration and no Parkinson’s
disease? Perhaps that is too much to expect from
Lewy’s peculiar cellular inclusions.” L.S. Forno
[1].

Fredrick Lewy’s descriptions of the pathology
associated with paralysis agitans were not confined
to the substantia nigra [2], and these were expanded
upon by later investigators, who recognized that
Parkinson’s disease is a multisystem and autonomic
system disorder, during the course of which circum-
scribed subcortical nuclei, cortical areas, spinal cord
structures, and portions of the peripheral and enteric
nervous system become involved [3–10]. In 1997,
the presynaptic protein �-synuclein was discovered
to be a major component of Lewy bodies and neu-
rites in the substantia nigra of sPD and dementia with
Lewy bodies (DLB) [11]. Reports of �-synuclein in
pale bodies, axons [12, 13], dot-like structures [14],
and in punctate cytoplasmic inclusions [15] rapidly
followed.

In Frankfurt, our group had been studying sPD
since the early 1990’s with a focus on the lesions
in the amygdala and other extranigral regions of
the human brain [16–18]. Gradually, three questions

emerged: (1) Does sPD begin in the substantia nigra
or elsewhere [17, 19]? (2) Do vulnerable regions in
all divisions of the human nervous system become
involved at the same time? (3) Does the distribution
of Lewy pathology in susceptible nonnigral regions
follow a recognizable pattern or sequence [20]?

These questions can be answered only when
biomarkers of the underlying degenerative process
[21, 22], electrophysiological testing, and imaging
modalities make it possible to assess and reassess
one and the same individual at ongoing time points in
life [23–26]. Neuropathologists necessarily perform
cross-sectional studies that (ideally) include not only
clinically diagnosed sPD but also prodromal sPD and
incidental cases [27–29] to gain knowledge about the
regional distribution and severity of the pathology,
its progression and possible spreading, neurodegen-
eration, and nerve cell loss. The same limitations
inherent in cross-sectional studies also apply to the
procedures proposed for the neuropathological diag-
nosis and staging of Lewy body disease [20, 30–35].

Reactions to the six-stage grading model have
been essentially encouraging [36–40], although the
following anecdote is illustrative of the climate in
which some of the earlier differences of opinion
took place. In August 2009, we received an email
from an American colleague of a newly published
experimental study: “In the discussions with the
authors and editors, it was suggested to take out the
references to your work so that our paper could be
published . . . . I am not sure why your findings are
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so controversial and bring up such strong emotions.”
Controversies surrounding the staging publication
[20] crystalized chiefly around the following points:

1. Inasmuch as DLB belongs to the spectrum of
Lewy body diseases, the staging should have been
performed not only on sPD but also on DLB cases.
The staging of sPD does not ‘fit’ DLB.

We ventured to postulate that DLB cases might
overlap with sPD stages 5 and 6 [41; see also 42]
and that a phase of mild cognitive impairment could
precede overt dementia in sPD [41, 43, 44], which
can be accompanied by the presence of severe
Alzheimer’s-related pathology. Nevertheless, the
sPD staging concept was never intended for DLB
[45, 46], and during the peer review process, we
were explicitly requested to include the following
caveats for the reader: “... the study sample does
not include cases clinically diagnosed as diffuse
Lewy body disease... It remains to be seen whether
deviations from the proposed staging scheme exist in
cases of advanced AD with Lewy bodies or in cases
of clinically assessed diffuse Lewy body disease”
[20].

2. PD staging does not apply to ‘amygdala-
predominant’ cases.

Within the context of approximately 43–60% of
late-stage AD cases, Lewy pathology can be mainly
or even solely confined to the amygdala [47–50],
especially in the ‘corticomedial’ regions of the amyg-
dala, including the central and cortical subnuclei [47].
The basolateral subnuclei (which become involved
during stage 3 after the central subnucleus in sPD;
see [20]) were also evaluated, but the degree of the
involvement there was not further specified [47].
Later, it could be seen that, in 17/66 AD cases with
NFT stages V-VI and amygdala-predominant Lewy
pathology, anterior olfactory structures, including
the olfactory bulb, were �-synuclein-immunoreactive
[51–53]. Inasmuch as it is unlikely that such
amygdala-predominant cases represent prodromal
sPD [54] and probably constitute a neuropathologi-
cally distinct synucleinopathy [47], it is not surprising
that they are not stageable – nor, in retrospect, were
cases of amygdala-predominant pathology included
in our sPD staging study sample [20].

3. Clinical symptoms and the clinical course of
disease do not correspond to the proposed neu-
ropathological stages and it is unlikely that older
persons with incidental Lewy pathology would have
gone on to be diagnosed with PD.

Most individuals in our sample with Lewy pathol-
ogy corresponding to stages 1–3 were older than
60 years of age and, thus, on average older than
those representing sPD stages 4–6, where neurolog-
ical impairment was present or would be expected
[20, 38]. The assumption, however, that at least some
of those at stages 1–3 who were between 54 and 71
years of age [20] would have developed sPD had
they survived longer is in line with the results and
demographics from several other cross-sectional or
prospective hospital- and university-based cohorts
[55–59] as well as a study of 139 longitudinally fol-
lowed elderly controls [60] (Fig. 1a-d). For the first
time, the olfactory bulb was included as a diagnos-
tic region for staging sPD [20], and in more recent
studies of at-risk or prodromal persons, e.g., with
olfactory lesions and hyposmia compared to con-
trols, as well as of individuals with Lewy pathology
in gastrointestinal biopsies and/or constipation (i.e.,
autonomic dysregulation), some not only were older
than 60 but subsequently converted to sPD [61–65;
see also 66, 67].

Gibb and Lees [68] pointed out that some of the
most influential neuropathological studies on sPD
provided too little, if any, clinical data, and this
also applied to Lewy’s own studies. For staging
purposes, we had access to neuropathological and
clinical datasets, including the cause of death, for
the majority of cases with clinically diagnosed sPD,
whereas for a few cases with incidental Lewy pathol-
ogy this information was unavailable [20]. Because
sPD as a cause of death may be underreported [69],
it cannot be ruled out that some of these ‘incidental’
cases were at or beyond the threshold to early but yet
undiagnosed sPD with subtle motor symptoms.

We emphasized that a biological continuum exists
from the preclinical (silent) through the prodromal to
the clinical phase [20, 45, 70, 71]. Do the sPD neu-
ropathological stages we proposed have any bearing
on the clinical symptoms and disease courses seen by
neurologists in their patients? Our impression is yes,
and we see the staging model as a useful framework
for longitudinal autopsy-controlled correlation stud-
ies [72–74], for models of possible propagation and
routes of spreading (see below), for the development
of possible biomarkers during the preclinical and
prodromal phases [61, 75–77], and for potential ther-
apeutic strategies of symptoms consistent with early
pathology and with even earlier changes within the
protein �-synuclein [38, 75, 78–82]. As new research
results continue to emerge, other groups inevitably
will winnow out and discard what is incorrect or



S74 H. Braak and K. Del Tredici / Neuropathological Staging of Sporadic Parkinson’s disease

Fig. 1. (a-f) Lewy pathology in the olfactory bulb and gastric Auerbach plexus visualized in �-synuclein immunohistochemistry (100 �m
polyethylene glycol sections). a. Olfactory bulb and anterior olfactory nucleus (aon) (50-year-old male, stage 2). The dorsal motor nucleus of
the vagal nerve and intermediate reticular zone in the medulla also contained Lewy neurites and Lewy bodies. Presumably, this non-demented
individual would have gone on to develop PD had he lived longer. b. Olfactory bulb and aon (63-year-old female, stage 2). Much less severe
pathology was also present in the dorsal motor nucleus of the vagal nerve, intermediate reticular zone, nucleus raphes magnus, and locus
coeruleus. c. Tangential section from the gastric cardia showing Lewy neurites (arrowheads, same case as in b). Again, it is presumed that,
had she lived longer, this cognitively intact individual would have been diagnosed with PD. d. Intramural Lewy pathology in a section
cut tangentially to the surface of the gastric cardia. Also visible (in background) is a large, branching blood vessel lined by thread-like
immunoreactive sympathetic nerve fibers. In addition to the occurrence of Lewy neurites and Lewy bodies in the dorsal motor nucleus of
the vagal nerve, intermediate reticular zone, nucleus raphes magnus, locus coeruleus, and substantia nigra, some nigral cell loss was also
evident in the pars compacta (65-year-old male, stage 3). e. Detail of Lewy neurites in PD penetrating the muscularis mucosa and reaching
upwards into the lamina propria (mucosa) where they extend between the gastric glands (g) in a perpendicularly cut section (69-year-old
female, stage 4). f. Tangential section from the gastric cardia of a PD patient with disease duration of 11 years (78-year-old female, stage 5).
Scale bars: a is valid for b; c also applies to d. Stages in parentheses refer to neuropathological stages 1–6 of sporadic PD. Micrographs e, f
reproduced with permission from [70].

obsolete while keeping the relevant and valid aspects
of the staging system.

4. Staging based on the presence of Lewy pathol-
ogy (e.g., pale bodies, Lewy bodies, Lewy neurites)
rather than on neuronal loss or other evidence of
neurodegenerative change is not admissible. The
presence and distribution patterns of Lewy pathology
in nondopaminergic neurons during sPD could be

attributable to localized, regional vulnerabilities and
the Lewy pathology might be neuroprotective rather
than deleterious.

Inasmuch as the prodromal symptoms and vulner-
able neuronal types in sPD and DLB are remarkably
similar, i.e., Lewy pathology in limbic and neocor-
tical regions correlate equally well with dementia
in sPD and in DLB [12, 83, 84], it is odd that the
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pathological status of Lewy pathology is questioned
within the context of sPD but not DLB. Similarly,
why do clinical symptoms in DLB (but not those in
sPD-related dementia) reportedly parallel the num-
bers of Lewy bodies rather than nerve cell loss in
the limbic system and, above all, in the neocortex
[85, 86]?

That the protein �-synuclein is pathogenic in sPD
is shown by the fact that duplication or triplication of
the wild-type �-synuclein gene also causes a famil-
ial form of PD, in which increased levels of even the
normal protein are sufficient to trigger disease accom-
panied by Lewy body formation [87, 88]. Postmitotic
cells may produce somatic Lewy bodies as an adap-
tive measure [89]. If so, however, this presumably is
not because the nerve cells with such inclusions fail
to recognize them as abnormal (and, thus, destined
for elimination) but because the physiological cellu-
lar systems responsible for clearing soluble defective
proteins and fibrillar aggregates probably become
dysfunctional during sPD [90–95]. Multiple Lewy
bodies that nearly fill a single cell soma are unlikely,
in the long term, to be ‘protective’. Moreover, deple-
tion of cytoplasmic tyrosine hydroxylase or of choline
acetyltransferase and their sequestration within Lewy
bodies [96] make these enzymes unavailable for the
neuromodulation of essential brain functions [97, 98].
Too little is currently known about the stages at which
neurotransmitter deficits develop or when they man-
ifest themselves clinically [99]. Postural instability
and gait problems in sPD, for example, appear to be
related to cholinergic and glutaminergic rather than
dopaminergic nerve cell and neurotransmitter loss
[100, 101].

The presence of �-synuclein aggregates in the
somatodendritic compartment represents an abnor-
mal localization of a protein that physiologically
occurs in presynaptic terminals [102, 103] follow-
ing its production in the neuronal soma [81, 104].
Lewy neurites in the axoplasm may interfere with
cellular homeostasis [105, 106] and, although it is
unknown to what extent animal models of Lewy-like
neurodegeneration accurately reflect mechanisms of
the sPD disease process within the human nervous
system [107–113], it has been shown that synthetic
�-synuclein fibrils as well as Lewy pathology extracts
derived from human brains contribute to punctate
changes in wild-type mice and in rhesus monkeys
without the genetic overexpression of �-synuclein
[114, 115].

That Lewy pathology (particularly Lewy neurites)
are closely associated with neurodegeneration in sPD

is evident in that nonnigral regions with susceptible
nerve cell types are subject to premature neuronal loss
[20, 71]: These include the dorsal motor nucleus of
the vagal nerve, with its preganglionic neurons that
supply dense parasympathetic innervation of the dis-
tal esophagus and stomach [116], the locus coeruleus
[6, 20, 117–121], the pedunculopontine nucleus [118,
121, 122], and Meynert’s nucleus in the basal fore-
brain [6, 123]. Attenuated sPD staging protocols are
practical and perhaps unavoidable for routine diag-
nostic use on thin tissue sections (6–10 �m) but they
can make it possible to underestimate Lewy pathol-
ogy severity and the degree of nerve cell loss within
distinct regions (e.g., the interstitial nucleus of the
diagonal band) at different stages [20].

We ascribed the same weight to axonopathy and
nerve cell dysfunction (presumably attributable, but
not limited, to the presence of Lewy pathology) as
to neuronal death [20, 46] because the development
of pathology together with neurotransmitter loss [96,
121, 124–132], axonal, and somatodendritic dysfunc-
tion in multiple neuronal populations could prove to
be more stressful for involved neurons over time than
premature cell death within a select neuronal popu-
lation [46, 71, 133]. Viewed from this perspective,
the thick network of Lewy neurites that gradually
forms during sPD in the CA2/CA3 sectors of the
Ammon’s horn [20, 71, 134] and the severe Lewy
pathology seen in the lower and upper raphe sys-
tems, magnocellular nuclei of the basal forebrain,
the hypothalamic tuberomamillary nucleus, and the
intralaminar nuclei of the thalamus are not negligible
lesions [71]. Staging based on the presence and dis-
tribution of Lewy pathology rather than on nerve cell
loss also makes sense for another reason: Effective
longterm neuron-to-neuron spreading of �-synuclein
[135–137] presupposes the existence of sufficient
numbers of at least minimally intact nerve cells and
intact circuitries [138, 139].

One of the most controversial aspects of the staging
classification is the concept of a caudorostral trajec-
tory of pathology in the brain [20, 38, 70] – although,
upon somewhat closer inspection, our concept and
that of McKeith et al. [32] can be seen to rest on the
same basic assumption as Kosaka’s tripartite model
[30]: namely, that Lewy pathology progresses sys-
tematically and topographically in a generally caudal
to rostral trajectory [33]. An important difference
between our staging model and that proposed for
DLB, however, is that we included the presence of
cortical Lewy neurites and not only cortical Lewy
bodies [20]. Although the staging concept cannot
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answer the important question whether dopaminer-
gic and susceptible nonnigral neurons are all subject
to the same pathogenic mechanisms in sPD [38,
140–142], we believe that the study of regional vul-
nerabilites is meaningful only within the context of
neuronal networks (connectivities) and not in isola-
tion. Were it to become possible one day to ‘rescue’
somehow dopaminergic neurons, the neuronal dys-
function and nerve cell loss within other involved
susceptible long-axoned nonnigral projection cells
would remain, presumably, unabated [71, 143].

Once the disease process begins, it may not proceed
as a sweeping ‘wave’ to end-stage sPD [144, 145] but
with a degree of inter-individual variability that par-
tially depends on the rate at which seeding of very
small �-synuclein aggregates and, above all, the rate
at which regional spread of Lewy pathology occurs
within the nervous system of each individual. After �-
synuclein seeding, the neuropathology that emerges
probably develops over a much longer time period,
thereby implying a timelag or threshold between the
development of Lewy pathology in a given nucleus or
neuronal population and the emergence of detectable
functional deficits [75, 146]. Thus, nonunitary (non-
linear) rates of progression do not necessarily imply
a nonunitary pathogenesis of sPD [147].

In the same year that our group’s staging arti-
cle appeared, we speculated in a second publication
that a neurotropic pathogen, possibly a virus, with
access to the olfactory bulb and gastrointestinal
tract, might trigger abnormal changes in the protein
�-synuclein: “Such a pathogen could possess uncon-
ventional prion-like properties and might consist of
misfolded �-synuclein molecular fragments [148].”
At that time, the idea was so speculative we thought
it might never be published.

Neuron-to-neuron transfer of pathogenic �-
synuclein aggregates was demonstrated for the first
time in humans when fetal neuronal grafts developed
Lewy pathology more than a decade after surgery
[135–137; see also 149] and when experimental
models made it possible to detect seeding mech-
anisms of �-synuclein aggregates [109, 150–152].
The current and disputed hypothesis of a ‘prion-
like’ dissemination of �-synuclein being explored by
many PD research groups [153] is that a pathogenic
(i.e., aggregation-prone) form of the protein can
self-assemble into oligomers and fibrils, transfer
into another nerve cell, recruit the endogenous
�-synuclein there, and instigate the gradual but
virtually indefinite self-propagation of new insol-
uble �-synuclein aggregates [146, 154–162]. The

existence of different conformers or ‘strains’ lends
additional credence to the prion-like properties of �-
synuclein [163, 164; but see 165]. It remains to be
seen whether different strains also differ with respect
to their pathogenicity, spreading propensities, and
accumulation patterns.

Such neuron-to-neuron propagation of �-
synuclein during aging may partially explain the
predictable topographical distribution pattern of
Lewy pathology and the neurodegeneration we
described in different, but anatomically (axonally)
interconnected, populations of susceptible projection
neurons in the human brain [20, 166; see also 167].
The earliest sPD-related lesions within the nervous
system appear to develop in the olfactory bulb,
dorsal motor nucleus of the vagal nerve, and possibly
also the ENS [19, 20, 56, 127, 133, 148, 168]. At
two of these sites, the surrounding environment is
potentially hostile to projection neurons with long
unmyelinated axons [133, 148, 169–171, 171a]
because both the olfactory bulb as well as the
intramucosal nerve fibers of the gastrointestinal tract
are easily accessible conduits for neurotropic viruses
[172–174] that could cause the initial conformational
change in a-synuclein.

We reasoned that, after entering vulnerable
local projection neurons of the intramural plexuses
(Fig. 1e, f), �-synuclein aggregates might reach
unmyelinated axons of the vagal nerve and, from
there, via retrograde axonal transport the pregan-
glionic visceromotor neurons of the dorsal motor
nucleus [148, 169, 170, 175]. In experiments with
intraduodenal, intragastric, and peripheral vagal
nerve inoculations [176–178], some of the results
reported are consistent not only with regional spread-
ing within the nervous system. Vagotomy, on the
other hand, halted the progression [179]. Similarly,
vagotomy severely reduced the innervation of the
ENS in a study of normative and abnormal patterns of
�-synuclein expression in specific subsets of enteric
neurons and vagal efferents of the rat proximal myen-
teric plexus [180; see also 181, 182].

The results derived from experimental models have
received support from epidemiologic evaluations of
vagotomies, which formerly were performed to treat
peptic ulcers [183]. Full vagotomy, with resection of
both vagal trunks, differs from selective vagotomy,
which involves resection of only terminal branches of
the vagal nerve that supply the fundus and corpus of
the stomach [183; see also 184–186]. This illustrates
that the risk of having developed sPD at follow-
up more than ten years after surgical intervention
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was significantly reduced in individuals who had
undergone full truncal vagotomy but remained nearly
similar to the risk of the general population in persons
with selective vagotomy [183].

Additional routes of Lewy pathology transmission
from the intramural plexus of the ENS to the cen-
tral nervous system are conceivable, including via
retrograde axonal transport to postanglionic sympa-
thetic projection neurons in the prevertebral celiac
ganglion and from there to preganglionic sympathetic
neurons in layer 7 (intermediolateral nucleus) and
nociceptive neurons in layer 1 of the spinal cord dor-
sal horn [187; see also 9, 56, 176, 188]. Alternatively,
�-synuclein aggregates originating in the ENS could
be transmitted via the celiac ganglion and layer 7 to
the level-setting nuclei of the lower brainstem and
from there anterogradely to noradrenergic neurons
within the dorsal vagal area (A1 group) and within
the intermediate reticular zone (A2 group) [14, 71].

Whether the pathogenic process in incidental and
prodromal cases proceeds in a retrograde direction
(ENS > central nervous system), in an anterograde
direction (CNS > ENS), or reciprocally, still has
to be proved [188]. Presumably, however, inasmuch
as seeding can take place in both retrograde and
anterograde directions [109, 115, 189], anterograde
prion-like propagation of Lewy pathology along pre-
ganglionic projection neurons of the dorsal motor
nucleus of the vagal nerve via cholinergic vagal effer-
ents to the intramural plexus of the gastrointestinal
tract is anatomically conceivable [189a]. Until now,
only a single study showing intraneuronal changes –
first in the dorsal motor nucleus of the vagal nerve,
followed by chiefly varicose neuritic changes in the
myenteric plexus of the stomach and duodenum –
exists [190]. Once again, however, vagotomy inter-
rupted the anterograde spread of �-synuclein in this
animal model [190].

Some of the earliest detectable Lewy pathology in
stage 1 cases occurs in the olfactory bulb [20], and the
finding that brain involvement can be confined to the
olfactory bulb [34] or to anterior olfactory structures
only (glomerula, olfactory mucosa) [168] prompted
new hypotheses to test possible spreading routes
in sPD. For instance, a recent axonal tracing study
delineated the existence of an anterograde pathway
between the substantia nigra and the olfactory bulb
in rats [191]. In another scenario, retrograde transport
and transsynaptic transmission of Lewy pathology
could take place early in the disease course from
anterior olfactory structures to the amygdala or to
the level-setting nuclei, including the locus coeruleus

[192–194], possibly before pathology originating in
the ENS could reach the dorsal motor nucleus of
the vagal nerve. In stage 4 of our staging model,
amgydala Lewy pathology is followed by the initial
appearance of cortical lesions in the transentorhinal
region [20], which is lacking in non-primates. This
may account for why routes beyond the amygdala
[169] taken by viruses or by �-synuclein inoculates
in an animal model [195] are not directly compara-
ble to the routes accessible in humans. Alternatively,
a latent neurotropic virus in the locus coeruleus or
amygdala might become reactivated there but use
either site only as a ‘transit center’ with the initial
development of Lewy pathology taking place else-
where, i.e., in anterior olfactory structures [194, 196].
The theory of a neurotropic virus that utilizes a ‘key-
lock’ mechanism to invade unprotected nerve cell
fibers could explain why – among a multitude of
vertebrates – only the human species develops sPD.
The pathogen would need to deactivate endogenous
chaperones and cause �-synuclein to undergo a stable
(albeit pathological) conformation [197, 198] prior to
prion-like propagation.

Knowledge about the distribution and development
of Lewy pathology in the peripheral autonomic ner-
vous system during sPD is still remarkably limited.
Previous observers, however, reported in inciden-
tal sPD cases a differential distribution and density
of �-synuclein aggregates in sympathetic (cardiac
and vesicoprostatic) versus parasympathetic neurons
or networks [10, 23, 56, 126, 127 129, 199, 200].
Thus, as further potential extra-CNS sites of disease
origin, the cardiac sympathetic nerves and the post-
ganglionic neurons of the paravertebral sympathetic
ganglia, with possible subsequent prion-like spread-
ing of �-synuclein to the spinal cord [201], require
further investigation. Within the spinal cord, the
Lewy pathology that develops in the preganglionic
intermediolateral nucleus and the sacral parasympa-
thetic nucleus of layer 7, beginning in PD stage 2,
could also originate in neurons of the supraspinal
level-setting nuclei, including the locus coeruleus,
and terminate in the visceromotor autonomic cen-
ters of layer 7 via anterograde axonal transport
[56, 188, 202].

In closing, we still have many unanswered ques-
tions and we see that many issues remain disputed.
Nevertheless, there has also been progress, not the
least owing to morphological and neuropathological
studies, with implications and practical consequences
for diagnostics and therapies of prodromal sPD symp-
toms. The more we understand about the mechanisms
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underlying the conformational change and aggre-
gation of the protein �-synuclein and about the
anatomically interconnected regions with their sus-
ceptible nerve cells at all levels, the greater is our
hope that a causal therapy (or therapies) for sPD can
be found. Because experimental cell models approx-
imate the milieu found in the human nervous system,
where Lewy pathology develops in projection neu-
rons with a long life expectancy, we wonder if a
human ENS cell model might yield valuable insights
into the mechanisms of �-synuclein aggregation and
transmission [133]. Resected tissue culled from surgi-
cal interventions on the human gastrointestinal tract,
for example, contains functional groups of suscepti-
ble post-mitotic myenteric plexus nerve cells [203;
see also 204]. We also are interested to learn what
results might be yielded by experiments and animal
models involving human-derived �-synuclein and
Lewy pathology from nonnigral sites. Do the seeding
and spreading behaviors resemble or differ from those
observed when using nigral extracts or inoculates?
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[19] Del Tredici K, Rüb U, de Vos RA, Bohl JR, & Braak H
(2002) Where does Parkinson disease pathology begin in
the brain? J Neuropathol Exp Neurol, 61, 413-426.

[20] Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur
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[148] Braak H, Rüb U, Gai WP, & Del Tredici K (2003) Idio-
pathic Parkinson’s disease: Possible routes by which
vulnerable neuronal types may be subject to neuroin-
vasion by an unknown pathogen. J Neural Transm, 110,
517-536.

[149] Angot E, Steiner JA, Lema Tomé CM, Ekström P, Matts-
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