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The regulation of gene expression is a key factor in the development andmain-
tenance of life in all organisms. Even so, little is known at whole genome scale
for most genes and contexts. We propose a method, Tool for Weighted Epige-
nomic Networks inDrosophila melanogaster (Fly T-WEoN), to generate context-
specific gene regulatory networks starting from a reference network that con-
tains all known gene regulations in the fly. Unlikely regulations are removed
by applying a series of knowledge-based filters. Each of these filters is
implemented as an independent module that considers a type of experimental
evidence, includingDNAmethylation, chromatin accessibility, histonemodifi-
cations and gene expression. Fly T-WEoN is based onheuristic rules that reflect
current knowledge on gene regulation inD. melanogaster obtained from the lit-
erature. Experimental data files can be generated with several standard
procedures and used solely when and if available. Fly T-WEoN is available
as a Cytoscape application that permits integration with other tools and facili-
tates downstream network analysis. In this work, we first demonstrate the
reliability of our method to then provide a relevant application case of our
tool: early development of D. melanogaster. Fly T-WEoN together with its
step-by-step guide is available at https://weon.readthedocs.io.
1. Introduction
The regulation of gene expression is indispensable for adaptation to ever chan-
ging contexts and every aspect involved in sustaining life. Gene regulation is
mainly carried out by highly specialized proteins, among which transcription
factors (TFs) are generally accepted as the key actors [1]. Canonically speaking,
the regulation of gene expression works through the binding of TFs to certain
sites in the chromatin, TF binding sites (TFBSs), and TFs recognize specific
DNA patterns called TF binding motifs. These sites are usually specific for
each TF, and they are commonly located around the promoter of TF-target
genes upstream of their transcription start site. Whereas proximal upstream
locations of TFBSs are easily related to the regulation of specific genes [2,3],
to determine which genes are controlled by each TF binding to enhancer
regions has shown a greater difficulty [4–6]. Moreover, gene expression can
be defined as the process by which the final products encoded by genes are

http://crossmark.crossref.org/dialog/?doi=10.1098/rsfs.2020.0076&domain=pdf&date_stamp=2021-06-11
mailto:alberto.martin@umayor.cl
https://doi.org/10.6084/m9.figshare.c.5428736
https://doi.org/10.6084/m9.figshare.c.5428736
http://orcid.org/
http://orcid.org/0000-0002-6147-3325
https://weon.readthedocs.io
https://weon.readthedocs.io
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


GRN TF-target

experimental data

GRN miRNA-target

DNA methylation

chromatin accessibility

histone marks filter

expression filter

scoring module

expression filter

context-specific
GRN

Figure 1. Flowchart describing Fly T-WEoN. The TF–gene reference network
is filtered by DNA methylation, then by chromatin accessibility of regulatory
sites and third by histone marks. TF–gene and miRNA–gene networks are
then filtered according to RNA-seq expression of the regulators and edges
in the resulting networks are then scored according to the number of filters
passed and provided as edge weights in the context-specific GRN.
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generated, and thus their regulation can also include control
of translation and RNA degradation. In this way, several
other non-TF regulatory elements are involved in the regu-
lation of gene expression. For example, miRNAs and other
ncRNAs are known to act during translation by binding to
other RNAs [7,8], while histone modifiers attach or remove
post-translational modifications to control the positions of
the chromatin that are available to be occupied by TFs.

Several epigenetic marks, including histone modifications
[9] and DNA methylation [10], have been related to active
and inactive states of chromatin [11,12], therefore influencing
the ability of TFs to regulate gene expression. In this way,
combinations of epigenetic marks have been related to a
specific effect on TF binding and gene expression, coining
an epigenetic code that is still not properly understood
[9,13]. Even so, there are some generally accepted facts on
the relationship between TF binding and epigenetic marks
that have made it possible to grasp a general tendency [14].
Nonetheless, chromatin structure and epigenetic marks
change dynamically in a context-specific manner, and those
changes have been subject to both static and dynamic
modelling to predict gene expression [15].

Despite the relationship between epigeneticmarks andgene
regulation, the determination of the chromatin state for each
TFBS remains experimentally difficult and expensive, while
computational inference from limited experimental evidence
is common in the literature. For instance, CENTIPEDE [16] is
probablyone of the first computationalmethods aiming to deci-
pher which TFBS are actually bound at certain experimental
condition instead of just defining TFBS from databases such as
JASPAR [17]. CENTIPEDE makes use of DNase-seq data in an
unsupervised learning algorithm to infer which TFBS are in
anopen active state and can compare its resultswith experimen-
tal data. Currently, computational analysis has at its disposal
several tools to process experimental data related to gene regu-
lation from which choosing is not an easy task. Nonetheless,
some collaborative projects employ reliable pipelines, e.g. the
TCGAworkflow [18] or the ENCODEdata processing pipelines
(https://github.com/ENCODE-DCC). Often, those compu-
tational tools do not provide an intuitive interface, relying
entirely on command-line instructions and/or do not report
figures to interpret results from such data. For example, CENTI-
PEDE is a Rpackage and, therefore, requires aminimumcoding
expertise. Moreover, there are other tools such as Anchor, a
Python package [19], Mocap, a Python and R hybrid package
[20], and TEPIC, a C++ program [21]. All these methods aim
to determine DNA occupancy by TFs, but require expertise
from users in compiling, installing dependencies, coding and
the use of the command-line interfaces.

To overcome these difficulties, we created an efficient and
easy to use method, Tool Weighted EpigenOmic Network (Fly
T-WEoN), that is able to generate Drosophila melanogaster
context-specific gene regulatory networks (GRNs). This
method employs a series of filters, that once applied to a refer-
ence network, remove TF–gene regulations that are unlikely
taking place according to current knowledge on the relation-
ship between epigenetic and TFBS activation. Specificity
on resulting networks is provided by the time and context
for which the omic data employed by each filter were
generated. Our tool is available as a Cytoscape application
that provides a user-friendly and intuitive interface where
researchers easily introduce their data processed with
standard protocols to generate context-specific GRNs.
2. Methods
2.1. Construction of a reference gene regulatory

network
A reference GRN is a network that contains all known regulatory
interactions between gene products and genes, regardless of
developmental stage, environment or cell type in an organism.
To create a reference network for D. melanogaster, we combined
TFBS information from the ENCODE data repository [22] and Fly-
Base [23] to then infer regulatory relationships based on distance
of TFBSs to the transcription start site (TSS) of each gene in the
genome of the fruit fly version 6.32 (see electronic supplementary
material, NetsInfo for details). To determine whether a TF regu-
lates a gene, we chose distance thresholds between TFBSs and
the TSS of each gene, so if the TFBS falls within this distance,
we assumed it regulates the respective gene. We created three
reference networks with different distance thresholds, 1500,
2000 and 5000 nucleotides inspired by other approaches [24]. In
the case of miRNA, genetic relationships based on experimentally
determined targets from miRecords [25] and miRTarBase [26]
were also retrieved and incorporated into the reference networks.

2.2. Filtering the reference network
In order to determine which regulatory relationships are taking
place in any experimental context of interest, we defined several
filters, each relying on a different type of experimental data as
input. The filtering process was implemented in PERL and is
the backend software of the Cytoscape [27] application devel-
oped to provide a tool with a user-friendly interface. The
filtering procedure generates a time- and tissue-specific GRN
depending on the experimental condition in which experimental
data used were generated.

Our method considers experimental information following
this order for each TFBS: chromatin accessibility (DNase-seq),
methylation of the DNA, histone modifications around the
TFBS, the expression of each TF with known TFBSs in the refer-
ence network and miRNA quantification (figure 1). First, if there
is a positive signal in the TFBSs for DNA methylation, Fly
T-WEoN assumes that TF cannot bind its TFBS and the filter
removes the regulation accordingly. Second, if chromatin
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Table 1. Histone modifications considered in Fly T-WEoN and their default
effect. Effect of the histone marks on the binding of TFs to chromatin. ‘+’
symbols indicate marks that allow TF binding and ‘−’ indicate non-active
TFBSs.

modification effect references

H3K27me3 − [28,29]

H3K36me2 + [9]

H3K36me3 + [9,12,28,30]

H3K4me1 + [9]

H3K4me2 + [9,28]

H3K4me3 + [9,12,28]

H3K79me2 + [32]

H3K9ac + [28,29]

H3K9me2 − [12,31,33],

H3K9me3 − [29,33]

H3S10ph + [28]

H4K16ac + [9]

H4K20me3 − [9]
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accessibility data, e.g. DNase-seq, show a positive signal within
the chosen distance threshold used to assign a TF to the regu-
lation of a gene, this indicates that a TF can bind the
corresponding region and therefore the edge is not removed.
The next filter considers if the chromatin is in open or closed
state based on histone marks experimentally associated with
this process. For example, trimethylation of the Histone H3
Lys27 [28,29] or trimethylation of the Histone H4 Lys20
[9,30,31] are marks associated with inactive chromatin. The
effects of the histone marks considered by default in the histone
marks filter are described in table 1, and sequencing reports in
BED format were used as provided in ENCODE and FlyBase
(see electronic supplementary material, Data processing for a
brief explanation of the protocols followed). Each of these filters
takes in consideration if the epigenetic mark can be associated
with one of the TFBS of each TF associated with the regulation
of each gene. Finally, the last filter considers if the gene coding
a regulator (TF or miRNA) is expressed; regulations emerging
from that node are kept in the final network.
2.2.1. Scoring edges
Fly T-WEoN assigns weights to edges in the resulting network.
The weight of each edge is calculated by adding a score of one
for each filter that the edge passes. By default, edges have no
weight, so a weight of one means the edge passed only the
expression filter, a weight of two means it passed an additional
filter such as a histone mark, and a weight of three indicates
that the edge passed the expression filter, and for example, two
different histone modifications indicated its binding site was
active.
2.3. Validation
To assess the reliability of GRNs generated with Fly T-WEoN, we
used as gold standard a network created with all TF ChIP-seq
experiments available in the ENCODE repository for the third
instar larval stage or L3 of D. melanogaster. We chose this stage
because there are experimental ChIP-seq data for 32 different
TF (all already included in the list of ChIP-seq experiments
employed to generate the reference networks) and for 10 histone
marks as well as RNA-seq data. All experiments considered were
carried out in equivalent conditions (see electronic supplemen-
tary material, NetsInfo for the list and IDs of experiments
used). The gold-standard network was created by first removing
edges from the reference network arising from genes coding for
any regulator that is not among those 32 TFs, and second, by
removing those edges whose TFBS was not occupied by its
respective TF.

2.3.1. Network reliability: edges
We estimated the performance of Fly T-WEoN by considering
the presence/absence of edges in the final network as a binary
classification problem. In this set-up, a true positive (TP) is
defined as an edge present in the context-specific network gener-
ated after applying the filters and in the gold-standard network.
Similarly, a false negative (FN) edge is absent in the network gen-
erated by Fly T-WEoN but it is present in the gold standard,
while a false positive (FP) edge is present in the network and
absent in the gold standard. Importantly, true negatives (TNs)
indicate edges absent in both the gold standard and in the net-
work created by Fly T-WEoN. Finally, once all edges are
assigned to either of the three types TP, FP or FN, they were
used to calculate precision (P, equation (2.1)), recall (R, equation
(2.2)) and F1 (equation 2.3), metrics that serve as indicators of the
reliability of the context-specific networks. Each of these metrics
has a value in the [0,1] range, with greater values indicating a
better classification. To evaluate the effect of distance threshold,
we also calculated the performance metrics using the reference
networks generated using the three distance thresholds 1.5, 2
and 5 kb (see electronic supplementary material, NetsInfo).

P ¼ TP
TP

þ FP (2:1)

R ¼ TP
TP

þ FN (2:2)

and F1 ¼ 2PR
Pþ R

: (2:3)
2.3.2. Network reliability: local topology
GRNs are formed by combinations of graphlets, induced sub-
graphs that have been associated to specific functions [34].
Graphlets can be used to describe local topology of nodes in
GRNs, and the presence or the absence of the graphlets in
which a node participates indicate functional variation for that
gene in two realizations of the same network [35]. In addition,
the presence or absence of graphlets in two versions of the
same network can be considered as a binary classification pro-
blem, and thus the same metrics calculated for edges indicate
how similar is the local topology of each gene in the gold-stan-
dard network and in the predicted GRNs, or their overall
topological similarity. We employed LoTo [36] to calculate pre-
cision, recall and the F1 metrics calculated for the presence/
absence of graphlets in every pairwise network comparison. If
these metrics only consider graphlets in which the same gene
participates, they serve to indicate variations in the local top-
ology of that node. Whereas, if the metrics are calculated for
all graphlets in the networks, they serve to indicate global
topological similarity between the two networks.

2.4. Fruit fly early embryo development
To demonstrate the utility of Fly T-WEoN, we generated net-
works for six different stages of early embryo development in
fruit fly (D. melanogaster). We employed RNA-seq experiments
and histone marks data downloaded from different databases
such as modENCODE and modMine projects [22,37], and the
FlyBase database [23] (see electronic supplementary material,



Table 2. Description of the reference networks employed in Fly T-WEoN.
Reference networks were created by assigning TFs to the regulation of
specific genes based on a distance threshold between the TFBS and the
gene. All three networks described in the table include the same 350 TFs.

threshold (kb) genes edges

1.5 15 576 1 094 130

2 15 899 1 190 168

5 16 665 1 679 173

Table 3. Gold standard networks used to validate Fly T-WEoN. Networks
made with the 32 TFs at different distance thresholds between TFBSs and
the TSS of each gene. Number of different genes and edges present in
each of the networks made by assigning a TF to the regulation of a gene
if the TF is bound within the distance and the gene TSS. Percentages
indicate the ratio of edges and genes present in these networks compared
to the subnetworks made with all TFBS for the same 32 TFs.

threshold (kb) genes edges

1.5 10 096 (83.96%) 82 919 (80.30%)

2 10 620 (84.75%) 89 880 (80.56%)

5 12 822 (89.91%) 127 222 (82.19%)
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NetsInfo for a detailed description of the data used). We down-
loaded the annotation of the D. melanogaster reference genome
version 6.32 to process all sequencing experiments. Experiments
already mapped to a different version of the reference genome
were re-processed or converted using the FlyBase Sequence
Coordinates Converter [23]. We employed these data to create
context-specific networks for different time points of early devel-
opment of D. melanogaster. The default 1.5 kb reference network
that is included in Fly T-WEoN was used for this example.
This reference network comprises 15 576 genes (87% of the
total annotated genes of D. melanogaster). Six time-specific net-
works were created with Fly T-WEoN encompassing the fly
embryonic development (0–24 h) in time steps of 4 h (0–4 h, 4–
8 h, 8–12 h, 12–16 h, 16–20 h and 20–24 h), using the available
data of histone modifications and RNA-seq.

Next, we compared each of these networks with the network
created for the consecutive time interval using LoTo [36] to calcu-
late overall network similarity and to identify genes whose local
topology changed during embryo development according to the
F1 calculated for all graphlets in which they participate. For each
comparison, we separated nodes by their type (TFs, non-TF
protein coding genes and non-coding genes) into four F1 inter-
vals [0–0.5), [0.5–0.7), [0.7–0.9) and [0.9–1.0). For those coding
genes that are not TFs in each of these intervals we determined
the statistical over-representation of GO-Slim Molecular Process
terms with PANTHER using Fisher’s exact test with the
Bonferroni correction [38].

To further estimate the reliability of our tool, we looked at the
known regulatory cascade that controls dorsal–ventral pattern-
ing in the 0–4 h network. Dorsal (dl) is a gene that encodes a
TF controlling this cascade [39,40]. Dorsal translocates into the
nucleus on the embryo ventral surface, acting on cell nuclei to
specify the different regions of the embryo, activating or suppres-
sing the transcription of genes responsible for establishing
ventral and dorsal cell types [41]. To validate our method, we
use the regulatory events as reported in [39], but removing
those regulations categorized as hypothetical and originated by
non-TF coding genes, as well those when the TF does not have
known TFBS.
3. Results
3.1. Reference networks
The three reference networks provided as default in our tool
are described in table 2.

As expected, increasing the cut-off employed to assign
TFs based on the distance TFBS–TSS, the number of genes
and edges in each reference GRN increases.

3.2. Method validation
We employed the L3 context-specific GRN described in the
Methods section to estimate the reliability of the networks
generated by our approach. The gold-standard network was
made with 32 different TFs and their binding sites deter-
mined by ChIP-seq experiments in equivalent experimental
conditions. The reference networks made at 1.5, 2 and 5 kb
thresholds are described in table 3.

Not surprisingly, larger distance thresholds include more
TF–gene interactions for genes to which we cannot assign
regulators otherwise, and thus networks built using greater
thresholds contain more nodes.

3.2.1. Network similarity: edges
Using the L3 example, the lowest score of edges in the pre-
dicted networks is two and the highest eleven. This is due
to the number of Fly T-WEoN filtering steps applied, so a
score of two implies that the TF from which an edge is origi-
nated is expressed and there is at least a single histone
modification supporting its existence. Scores of three, and
above, mean that there are at least two types of histone
modification indicating that the link exists.

As shown in table 4 for a threshold of 1.5 kb, Fly T-WEoN
generates networks with very high similarity to the gold-
standard network in our benchmarking. Starting with
edges of score two or greater, the network generated by Fly
T-WEoN contains 97.8% of the edges of the gold-standard
network (R = 0.978), decreasing the recall as the edges score
increases. Also, the F1 value follows the same trend: it dis-
plays its highest value using this score (F1 = 0.884) and
decreases as the minimum score for the edges increases.
Moreover, the precision follows a different tendency, with
its highest value with score ≥6 (P = 0.810). The worst per-
formance is obtained with a score of eleven, the maximum,
with which Fly T-WEoN recovers 0.1% of the edges of the
gold-standard network (R = 0.001, P = 0.646 and F1 = 0.001),
indicating low similarity between edges present in the
predicted networks and the gold standard.

3.2.2. Global topological similarity calculated with graphlets
The trend for graphlet based results is similar to that based
on single edges, shown in table 5.

Using a minimum score of two, Fly T-WEoN is able to
recover 95.7% of the graphlets found in the gold-standard
network (R = 0.957), but it tends to overpredict graphlets as
indicated by the much lower precision (P = 0.662). Also, the
F1 value had its greatest value with a score of at least two
(F1 = 0.782), indicating again high similarity between the pre-
dicted and gold-standard networks. The highest value of



Table 4. Reliability of L3 gene regulatory networks: single edges. Performance of Fly T-WEoN measured by its ability to recover edges present in the gold-
standard network for different scores. The table displays the number of true positive edges (TP), edges in the gold-standard network also present in the
predicted network; false positive edges (FP) or present in the predicted network but absent in the gold-standard network; and false negative edges, those
edges that are only present in the gold-standard network and are not present in the predicted network. TP, FP and FN edges were used to calculate precision
(P), recall (R) and F1 (italic numbers indicate their highest values).

score TP FP FN R P F1

2 81 094 19 475 1825 0.978 0.806 0.884

3 78 807 18 846 4112 0.950 0.807 0.873

4 76 017 17 998 6902 0.917 0.809 0.859

5 72 802 17 109 10 117 0.878 0.810 0.843

6 68 848 16 147 14 071 0.830 0.810 0.820

7 61 477 14 874 21 442 0.741 0.805 0.772

8 50 071 12 908 32 848 0.604 0.795 0.686

9 5666 2225 77 253 0.068 0.718 0.125

10 1512 664 81 407 0.018 0.695 0.036

11 62 34 82 857 0.001 0.646 0.001

Table 5. Reliability of L3 gene regulatory networks: graphlets. Performance of Fly T-WEoN measured by its ability to recover graphlets present in the gold-
standard network for different edge scores. The table displays the number of true positive graphlets (TP), graphlets present in the gold-standard network also
found in the predicted network; false positive graphlets (FP), present in the predicted network but absent in the gold-standard network; and false negative
graphlets, those that are only present in the gold-standard network and were not present in the predicted network. TP, FP and FN graphlets were used to
calculate precision (P), recall (R) and F1 (italic numbers indicate their highest values).

score TP FP FN R P F1

2 143 177 569 73 274 608 6 516 537 0.957 0.662 0.782

3 135 281 974 69 127 626 14 412 132 0.904 0.662 0.764

4 125 830 206 63 634 265 23 863 900 0.841 0.664 0.742

5 115 565 165 58 106 890 34 128 941 0.772 0.665 0.715

6 103 941 870 52 479 975 45 752 236 0.694 0.665 0.679

7 84 304 099 45 038 593 65 390 007 0.563 0.652 0.604

8 57 733 273 34 839 940 91 960 833 0.386 0.624 0.477

9 757 834 1 231 084 148 936 272 0.005 0.381 0.01

10 59 937 123 182 149 634 169 0 0.327 0

11 229 328 149 693 877 0 0.411 0
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precision was obtained using a minimum score of five (P =
0.665), which also supports that networks obtained by Fly
T-WEoN contain more graphlets than gold-standard net-
works, even at the maximum precision. The lowest values
for the performance metrics were obtained using weights
greater than or equal to 10, with predicted networks recover-
ing 0% of the graphlets present in the gold-standard network.
3.3. An example case: fruit fly early development
3.3.1. Network sizes
Six time-specific networks were created with Fly T-WEoN
encompassing the fly embryonic development (0–24 h) in
consecutive time ranges of 4 h (0–4 h, 4–8 h, 8–12 h, 12–16 h,
16–20 h and 20–24 h). These networks were made using avail-
able data of histone modifications and RNA-seq. These
networks have different numbers of edges, graphlets,
regulatory nodes (TFs) and total number of genes, as shown
in table 6.

The largest network belongs to the 16–20 h time range,
with the largest numbers for nodes, total connections and
regulatory nodes (10 993, 928 599 and 345, respectively). The
smallest network is the network for the 0–4 h time range,
which has the lowest number of total connections, and regu-
latory nodes (718 583 and 305, respectively), while the
network for time range 4–8 h has the lowest number of
nodes (7886).
3.3.2. Network comparisons
We compared each network with the network representing
the next time interval obtaining F1 values greater than 0.85
(table 7).

These results indicate that despite changes, most of the
regulatory network remains unaltered between time lapses.



Table 6. Characterization of embryo development networks. The table shows the number of edges and regulatory nodes for each of the networks created for
the six time intervals during early development of the fruit fly. Regulatory nodes indicate the number of TFs in each network and the total number of genes
and edges in the networks are also displayed. These networks were obtained by removing unlikely edges from a reference network were TFBSs located at most
at 1.5 kb upstream the TSS are used to assign the TFs that bind to that TFBS to the regulation of each gene.

node type 0–4 h 4–8 h 8–12 h 12–16 h 16–20 h 20–24 h

total edges 718 583 733 863 803 613 888 537 928 599 840 567

TF nodes 305 324 340 335 345 339

total nodes 8811 7886 8554 10 528 10 993 11 146

Table 7. Comparisons of embryo development networks using gaphlets. The table displays the number of true positive graphlets (TP), graphlets in the first
network (belonging to the earlier time interval) that are present in the later network; false positive graphlets (FP), those present in the later network but
absent in the earlier one; and false negative graphlets (FN), those that are only present in the earlier network and not in the later network. TP, FP and FN
graphlets were used to calculate precision (P), recall (R) and F1 metrics.

comparison TP FP FN R P F1

0–4 to 4–8 h 960 856 575 154 840 150 170 821 683 0.849 0.861 0.855

4–8 to 8–12 h 1 015 103 337 237 272 519 100 593 375 0.910 0.811 0.857

8–12 to 12–16 h 1 162 138 649 358 797 508 90 237 194 0.928 0.764 0.838

12–16 to 16–20 h 1 347 047 992 264 431 780 173 888 152 0.886 0.836 0.860

16–20 to 20–24 h 1 297 280 051 74 185 782 314 199 708 0.805 0.946 0.870

Table 8. Total number of genes by type and F1 interval in each of the comparisons of embryo development consecutive networks using graphlets. The table
displays the number of genes in each of the four F1 intervals [0.0, 0.5), [0.5, 0.7), [0.7, 0.9) and [0.9, 1.0] in each of the five comparisons performed between
GRNs depicting gene regulation at each time lapse. F1 values closer to 0 indicate larger local topological variation, while closer to 1 indicate fewer variations in
the graphlets in which a gene participates.

comparison 0–4 to 4–8 h 4–8 to 8–12 h 8–12 to 12–16 h 12–16 to 16–20 h 16–20 to 20–24 h

all genes [0.0, 0.5) 1459 1398 2595 2962 2511

[0.5, 0.7) 187 178 215 319 397

[0.7, 0.9) 3192 1732 2023 1766 1546

[0.9, 1.0] 4097 5445 5820 6857 7513

TFs [0.0, 0.5) 27 25 10 5 10

[0.5, 0.7) 7 9 12 7 4

[0.7, 0.9) 212 260 302 273 265

[0.9, 1.0] 70 47 16 53 66

coding genes [0.0, 0.5) 953 922 1787 2114 1802

[0.5, 0.7) 136 136 151 236 292

[0.7, 0.9) 2602 1242 1382 1126 973

[0.9, 1.0] 3598 4815 5077 5925 6527

non-coding genes [0.0, 0.5) 479 451 798 843 699

[0.5, 0.7) 42 33 52 76 101

[0.7, 0.9) 378 230 339 367 308

[0.9, 1.0] 429 583 727 879 920
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Thus, indicating that relatively small changes in the network
account for all stages of early embryo development.

We also analysed the F1 values by types of genes, TF and
non-TF coding and non-coding genes (table 8).
Without considering gene type (all genes), most of
them are in the F1 ranges with less topological variation
([0.7, 0.9) and [0.9, 1.0]), evidencing that, as happened with
global topology, the local topology of a majority of genes



Table 9. GO Slim Biological Process terms associated with genes with the largest topological variation. The table displays the GO Slim Biological Process
obtained with PANTHER for genes with F1 values in the range [0.0–0.5). The fold enrichment value indicates the rate between the percentage of genes with
the annotation and the percentage of genes with the same annotation in whole genome. If it is greater than 1, it indicates that the category is
overrepresented in the data. These results were filtered by a p-value threshold of 0.01.

comparison GO term GO ID fold enrichment p-value

0–4 to 4–8 h cell differentiation GO:0030154 2.29 1.14 × 10−4

developmental process GO:0032502 2.02 1.49 × 10−2

cellular developmental process GO:0048869 2.15 3.12 × 10−4

sulfur compound metabolic process GO:0006790 2.53 1.06 × 10−3

anatomical structure development GO:0048856 1.92 1.41 × 10−3

cellular modified amino acid metabolic process GO:0006575 2.94 1.85 × 10−3

glutathione metabolic process GO:0006749 3.52 2.40 × 10−3

cell fate commitment GO:0045165 4.82 3.54 × 10−3

neurogenesis GO:0022008 2.38 4.14 × 10−3

generation of neurons GO:0048699 2.38 5.81 × 10−3

multicellular organismal process GO:0032501 1.58 9.06 × 10−3

4–8 to 8–12 h developmental process GO:0032502 1.87 1.15 × 10−3

cell differentiation GO:0030154 2.04 2.07 × 10−3

chaperone-mediated protein folding GO:0061077 4.18 3.16 × 10−3

cellular developmental process GO:0048869 1.91 4.46 × 10−3

anatomical structure development GO:0048856 1.79 6.33 × 10−3

8–12 to 12–16 h cellular modified amino acid metabolic process GO:0006575 4.18 2.61 × 10−9

glutathione metabolic process GO:0006749 5.00 2.04 × 10−8

cofactor metabolic process GO:0051186 2.24 3.25 × 10−5

sulfur compound metabolic process GO:0006790 2.32 1.10 × 10−4

response to drug GO:0042493 2.92 1.39 × 10−3

organic acid metabolic process GO:0006082 1.66 2.81 × 10−3

small molecule metabolic process GO:0044281 1.46 3.85 × 10−3

transmembrane transport GO:0055085 1.55 6.24 × 10−3

carboxylic acid metabolic process GO:0019752 1.62 6.36 × 10−3

organic anion transport GO:0015711 2.05 6.50 × 10−3

oxoacid metabolic process GO:0043436 1.60 6.65 × 10−3

aminoglycan metabolic process GO:0006022 3.43 6.94 × 10−3

anion transport GO:0006820 1.84 8.37 × 10−3

defence response GO:0006952 3.25 8.89 × 10−3

12–16 to 16–20 h aminoglycan metabolic process GO:0006022 3.98 7.78 × 10−4

amino sugar catabolic process GO:0046348 3.62 2.28 × 10−3

chemical synaptic transmission GO:0007268 2.09 2.73 × 10−3

anterograde trans-synaptic signalling GO:0098916 2.09 2.73 × 10−3

response to drug GO:0042493 2.64 3.05 × 10−3

synaptic signalling GO:0099536 2.06 4.36 × 10−3

trans-synaptic signalling GO:0099537 2.06 4.36 × 10−3

multicellular organismal process GO:0032501 1.41 7.76 × 10−3

16–20 to 20–24 h aminoglycan metabolic process GO:0006022 4.25 7.65 × 10−4

amino sugar catabolic process GO:0046348 4.25 7.65 × 10−4

drug metabolic process GO:0017144 1.85 5.51 × 10−3
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remains unaltered between consecutive time lapses. The
same trend is displayed by the TF-coding genes, with most
of them in the range [0.7, 0.9). With respect to non-TF
coding genes, again most of them fall into F1 interval
ranges with less topological variation ([0.7, 0.9) and
[0.9, 1.0]). Notably, there are large proportions of ncRNA



TF absent in earlier network

TF absent in later network

TF present in both networks

noTF absent in earlier network

edge absent in earlier network

noTF absent in later network

edge absent in later network

noTF present in both networks

edge present in both networks

Figure 2. Comparison of subnetworks composed of all those genes showing larger local variation in the 0–4 h to 4–8 h comparison. The network shown is formed
by 594 nodes (44 TFs) and 3107 edges coloured according to their existence in the earlier network, in the later network or in both.
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coding genes in the range that displays larger topologi-
cal variations, hinting they play a relevant role in the
developmental stages depicted by the networks. Detailed
information on which genes show greater variation on their
local topology and the GRN for each time point can be
found in the electronic supplementary material (file
LoTo_Embryo and EmbryoNetworks, respectively).
3.3.3. Functional analysis of genes with altered local topology
After performing comparisons of networks representing con-
secutive developmental stages, we analysed the function of
genes with altered local topology. To do so, we employed
the statistical enrichment of GO-Slim Biological Process
terms with PANTHER [42] for genes in each of F1 ranges
previously defined.

Focusing on the analysis of genes with F1 in the range
[0–0.5), the enrichment test denoted several GO terms that are
known to be involved in embryonic development (table 9).
For example, we found enriched GO terms ‘developmen-
tal process’ and ‘anatomical structure development’ in genes
in the lowest F1 range in the comparisons spanning the first
12 h (0–4 to 4–8 h and 4–8 to 8–12 h). In the comparisons
spanning the last 12 h, we found enriched functional terms
related to metabolism and metabolite transport processes
such as ‘glutathione metabolic process’, ‘transmembrane
transport’ and ‘aminoglycan metabolic process’. Genes in
intervals with moderate topological variation (F1 range
[0.5–0.7); see electronic supplementary material, GO file)
showed enrichment in GO terms related to defence response,
metabolic, and developmental process. For the comparison of
4–8 h and 8–12 h networks, genes in this F1 range, enriched
terms were ‘animal organ development’, ‘cytoplasmic trans-
lation’, and ‘cell development’. In the case of the
comparison 8–12 to 12–16 h, enriched terms associated with
cell signalling, GO terms ‘signalling’ and ‘cell communi-
cation’. Finally, for the comparison of 12–16 to 16–20 h,
overrepresented terms were related with cell structure and



TF absent in earlier network

TF absent in later network

TF present in both networks

edge absent in earlier network
edge absent in later network
edge present in both networks

Figure 3. Comparison of subnetworks composed of TF coding genes showing larger local variation in the 0–4 h to 4–8 h comparison. The network shown is formed
by 44 TFs and 42 edges coloured according to their existence in the earlier network, in the later network or in both.
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cell cycle, GO Slim terms such as ‘establishment of spindle
orientation’ and ‘cell cycle’. In the case of the comparison
16–20 to 20–24 h no GO term was significantly enriched.

3.3.4. Subnetworks of nodes showing largest topological
variations at early stages

To further investigate the application of our approach to the
early embryo development example, we created subnetworks
made of only those nodes that have F1 in the [0.0,0.5) range
for each comparison. We then compared subnetworks depict-
ing consecutive stages using LoTo. As an example we show
the comparison of the two earlier stages (0–4 to 4–8 h) in
figures 2 and 3, the results of the comparison showing only
TFs. All these subnetworks can be found as a Cytoscape
session in the electronic supplementary material.

3.3.5. Dorsal–ventral patterning in the 0–4 h network
We first looked in the three reference networks for the cas-
cade governed by dorsal, finding that 42 of its 61 known
edges were present in all three reference networks, and that
three edges were only present in the 5 kb network (figure
4a). When analysing the 16 absent regulations, we saw that
there are three causes: missing TFBS or in other words in
the set of experimentally determined TFBSs there are no
sites near certain genes as happened with brk→ tld and
mad→ tsg; TFBS that are further away than the distance cut-
offs we employed to assign TF to the regulation of genes
but yet can be found at 8–20 kb from the gene TSS, as hap-
pened for regulations brk→ zen, brk→ pnr, ind→msh, med→
shn, sna→ sim, sna→ ths, tin→ eve and zen→ tup; and TFBS
that are close to the TSS but downstream, as happened
with dorsal→ twi, sna→ vnd, sna→ vn, sna→ ind, sna→ sog
and twi→ sim. Next, we determined if this subnetwork was
present in the filtered networks, identifying 37 of the 45 regu-
lations that would be happening in the 0–4 h period in the
5 kb network (37 out of 42 for the 1.5 and 2 kb networks;
figure 4b). After examination of available epigenomic data,
we saw that missing edges were not related to any epigentic
mark indicating active TFBS or were solely linked to a single
peak belonging to mark related to inactive TFBS.
4. Discussion
Inference of gene regulation relationships from genomic data is
a particularly hard and costly task. This is due to the use of
high quality antibodies to determine the bound state of TFs
to the open chromatin. Even with aid of computational tools,
the determination of gene regulations is an open problem con-
tributed by a gap knowledge of how TFs and other regulators
of gene expression work, and by a general lack of genomic data



(a)

(b)

Figure 4. Dorsal–ventral patterning in the 0–4 h network. (a) shows the conservation of the dorsal cascade in the reference networks, while (b) displays the same
subnetwork in the 0–4 h time interval using the 5 kb distance threshold. TFs are shown in orange, non-TF nodes are depicted in blue, dark green edges indicate
gene regulations present in all three reference networks, light green edges are regulations present only in the reference network of 5 kb, and red edges are gene
regulations that were not detected by the procedure employed to generate all reference networks (a) or did not pass all filters in the 0–4 h network.
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suitable for the prediction of such regulations. The inexpensive
RNA-seq and chromatin accessibility through footprint sequen-
cing are commonly used to infer condition-specific networks,
but these still require corroboration that again, is usually
made with comparisons to ChIP-seq experiments of each TF.
However, TF ChIP-seq experiments are unavailable for most
conditions of model organisms, including even those that
have been deeply studied. Importantly, the numbers of ChIP-
seq used to determine histone modifications are increasing in
data repositories, and given the relationship between histone
marks and TF binding in chromatin [9,13,14], we created Fly
T-WEoN to generate context-specific GRNs in D. melanogaster.

With the proposed methodology, we first built reference
networks based on three distance thresholds of 1.5, 2 and
5 kb between TFBSs and TSS of genes (described in table 2).
These networks were then used as the starting point to
build condition-specific GRNs for the L3 developmental
stage and used them to validate our methodology based on
the concatenation of simple filters. We employed ChIP-seq
for ten different histone marks and 32 different TFs to build
gold-standard networks to then compare them with Fly
T-WEoN networks. Each of the filters in our tool uses current
knowledge on the known relationship that exists between
epigenetic marks and TF activity. We observed that even if
the filtering approach may seem to be too simple it still
recovers correctly most of the edges found in the gold-
standard network we made for that stage. Furthermore, Fly
T-WEoN applies a weight system on edges, increasing these
weights according to how many filters did each edge pass.
Our results show that, at least in our test, using a weight of
greater than or equal to 2 produces the most reliable GRNs.
This weight means that at least one histone mark and the
expression of the TF agrees with the existence of each edge.
The worse performance shown with greater weights can be
explained due to that by increasing the weight value, the
number of edges and graphlets in the networks decrease.
However, using only edges with greater weights decreases
the reliability of the edges (tables 4 and 5). Which suggests
that the known effect of different epigenetic marks is contra-
dictory, and thus our simple filtering approach fails to gather
the complexity of the epigenetic code.

To highlight the differences and similarities between Fly
T-WEoN and other approaches, we report a brief comparison
between Fly T-WEoN and four other methods in table 10.

The other methods used for the comparison were CENTI-
PEDE [16], Anchor [19], TEPIC [21] and Mocap [20]. It is



Table 10. Qualitative comparison of different methods and Fly T-WEoN. The table indicates for each tool the language used in its implementation, its purpose,
its advantages and disadvantages and general user-friendliness.

tool language purpose input data (dis) advantages GUI

CENTIPEDE [16] R infers bound TFBS from

Chip-seq of histone

modifications and

DNAse-seq

matrix of read counts around

motif matches based on

DNAse-seq or ChIP reads and

the following prior

information: PWM score for

motif matches represented in

the genome, conservation

score based on evolutionary

information of motif and motif

distance to TSS

easy to run and very intuitive to

generate output data; however

it needs many previous steps

of data preprocessing to

generate the correct input file

no

Anchor [19] Python predicts in vivo TF bindings

profiles across cell types

genomic coordinates (BED file),

DNase-seq data (BAM file and

BigWig file), DNA sequence

(genome fasta file), TFs

motifs and Gencode GFF file

needs various preprocessing steps

of all data (long times,

computing intensive), then, it

is easy to run

no

Tepic [21] C++, R,

Python

prediction and analysis of

TFBS from epigenetic

data, supporting more

than 30 species

genome sequence in fasta file,

genome annotation file (GTF)

easy to run; however the output

is not friendly for posterior

analysis and requires post-

processing

no

Mocap [20] R, Python classification of TFBSs from

integration of chromatin

accessibility, motif scores,

TF footprints, CpG/GC

content, evolutionary

conservation

DNase-Seq or ATAC-Seq counts,

BigWig, motif matrix

low time consuming, but it

requires high computing

performance. It is easy to run,

but it is only available for

mouse and human and the

output requires post-processing

no

Fly T-WEoN Perl, Java apply filters from different

genomic and epigenomic

experiments to a

reference network in

order to generate

context-specific GRNs

BED files from histone PTMs,

methylation sequencing, DNA

accessibility sequencing and

RNA-seq file of counts, RPKM,

or FPKM

the major advantage is the

possibility to generate a

context-specific GRN without

further preprocessing of data in

a friendly way. However it is

only implemented for fly

yes
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important to stress that none of these methods was designed
or even tested for D. melanogaster, and thus a quantitative com-
parison is not straightforward. Given the heterogeneous data
employed by these methods, the absence of actual context-
specific GRNs, and the lack of specific tools for D. melanogaster,
it is not possible to perform quantitative comparisons between
them, and thus only qualitative comparisons are possible. Our
comparison (table 10) highlights the main characteristics of Fly
T-WEoN, i.e. the intuitive way to use Fly T-WEoN and the
integration of its results in Cytoscape, when compared with
the other four approaches. It is very important to highlight
that these tools use different types of data (table 10) in dissim-
ilar context to those used by Fly T-WEoN. This makes it even
more difficult to make a quantitative performance comparison
between them. Also, there are no context-specific data avail-
able for all data types used by Fly T-WEoN (DNAse,
RNAseq, DNA methylation and TFs ChIP-seq), which does
not allow for a full comparison.
Regarding the example of embryonic development of
D. melanogaster, we created 6 different networks, each depict-
ing transcriptional control by TFs for each of the four-hour
intervals of the first 24 h of a fly embryo. We opted for this
condition and time intervals because these were the conditions
for which there are more epigenetic and transcriptional data at
modENCODE and GEO datasets. Importantly, the stages rep-
resented by our networks are when cells and tissues in
D. melanogaster are more homogeneous, and thus all omic
data employed are deemed to be more significant. When com-
paring these GRNs with LoTo [36], we observed that the
networks increase the number of nodes and connections as
development progresses. This may indicate that in later
stages of development transcriptional regulation becomes a
more complex process that involves a greater number of TFs
in greater number of cell fates and tissues. Comparisons of
overall similarity between networks representing consecutive
time intervals showed that the largest variation takes place
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between 8–12 h and 12–16 h networks and that the overall top-
ology of the networks changes less in the last transition
between developmental stages included, i.e. in the comparison
of 16–20 h and 20–24 h networks.

With respect to variations in the local topology of single
nodes determined by F1 calculated for the presence/absence
of graphlets, most genes had small variations in all compari-
sons, a trend observed for all gene types in the networks (TFs,
protein coding and ncRNAs). The only exception is ncRNA
coding genes, mainly lncRNAs, which are almost as numerous
in the F1 range that indicates largest topological variation as in
the range depicting the lowest variation. These findings agree
with previous knowledge on the role played by lncRNA in
D. melanogaster development [43]. Regarding our observation
of relatively few TFs displaying large variations in their local
topology, and that those with larger changes (lowest F1) are
densely linkedbetween them, these findings agreewith the con-
cept of clusters ofmaster regulators [44]. In this concept, a small
cluster of highly interconnected TFs are the master regulators
controlling the other regulators whose function is to act as effec-
tors or ‘fine-tuners’ of the orders given by themaster regulators.
In our example, regarding the master regulator concept, the
‘fine-tuners’ would be regulatory nodes found in the F1
ranges with higher values that are linked to the master regula-
tors and to many other genes that do not code for regulators.
Nonetheless, it should also be considered that especially at
the earlier stages of the embryo, there are many TFs that are
inherited from the mother [45], and given that our approach
uses as approximation for TF activity the expression of their
coding genes, maternal TFs are disregarded. The fact of observ-
ing an increasing number of nodes as the networks depict later
stages also agreeswith known facts regarding developments, as
tissues and specialized cells appear, both regulators and non-
regulator genes tend to perform more specialized functions
[45]. Our functional analysis also corroborates this (table 9),
more general functions related at the earlier stages and more
specialized functions as development progresses, validating
again the networks generated with Fly T-WEoN.

Considering the subnetwork guiding dorsal–ventral pat-
terning, we have shown how our approach is able to recover
most known regulatory events that are involved in this pro-
cess. For example, regulatory interactions arising from sna or
by brk were almost all missed by our approach to construct
the reference network. Regarding the effect of all filters
employed on this example, in the same way as the overall per-
formance estimation made with the L3 network, we also
looked at how well inferred is this network in the filtered
0-4h interval (figure 4b), showing how from those edges
found in the regulatory network, only those involving TFBSs
related to no marks or to a single negative mark were missing
in the contextualized subnetwork.
5. Conclusion
Here, we demonstrated the reliability of our tool, Fly
T-WEoN, with results indicating that most of the regulatory
events depicted by edges in its resulting networks are likely
taking place. In addition to this validation, and given the cur-
rent lack of tools that integrate epigenetic data for the
construction of GRNs in D. melanogaster, we also provided a
qualitative comparison with other approaches, helping in
this way to stress the usability of our method. The minimum
input required by Fly T-WEoN is a quantification of the
expression of genes, but the results we show here prove
how the quality of the network improves by using other
epigenetic data or quantification of miRNAs.

We finally demonstrated through a case study the useful-
ness of genomic data to filter out known regulations from a
reference network and make context-specific gene regulatory
networks where functions of genes with varying regulation
correlate with the development stage. Moreover, we devel-
oped a Cytoscape app for Fly T-WEoN that serves as
frontend for the presented method, allowing users to create
and visualize context-specific GRNs from their processed
RNA-seq, DNase-seq, bisulphite-seq, and ChIP-seq datasets
or data obtained from public databases. We expect to further
develop a backend software harnessing machine learning
algorithms that would allow final users to predict gene
expression from minimal and cheap genomic data, and
extend the current method from fruit fly to other model
organisms, specially human.
Data accessibility. Fly T-WEoN can be obtained free of charge at https://
weon.readthedocs.io and electronic supplementary material files can
be accessed at https://figshare.com/projects/WEoN˙FlyT/76983.
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