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Abstract: The use of implanted microelectrode arrays (MEAs), in the brain, has enabled a greater
understanding of neural function, and new treatments for neurodegenerative diseases and psychiatric
disorders. Glial encapsulation of the device and the loss of neurons at the device-tissue interface are
widely believed to reduce recording quality and limit the functional device-lifetime. The integration
of microfluidic channels within MEAs enables the perturbation of the cellular pathways, through
defined vector delivery. This provides new approaches to shed light on the underlying mechanisms
of the reactive response and its contribution to device performance. In chronic settings, however,
tissue ingrowth and biofouling can obstruct or damage the channel, preventing vector delivery.
In this study, we describe methods of delivering vectors through chronically implanted, single-shank,
“Michigan”-style microfluidic devices, 1–3 weeks, post-implantation. We explored and validated three
different approaches for modifying gene expression at the device-tissue interface: viral-mediated
overexpression, siRNA-enabled knockdown, and cre-dependent conditional expression. We observed
a successful delivery of the vectors along the length of the MEA, where the observed expression
varied, depending on the depth of the injury. The methods described are intended to enable vector
delivery through microfluidic devices for a variety of potential applications; likewise, future design
considerations are suggested for further improvements on the approach.
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1. Introduction

An increasing prevalence of patients affected by neurodegenerative diseases and psychiatric
disorders places an economic, social, and psychological burden on society [1–6]. In research settings,
there has been a significant rise in the use of microelectrodes implanted in the brain to record neural
activity and reveal the underlying mechanisms of these diseases. Moreover, brain-machine interfaces
(BMIs) and closed-loop deep brain stimulation (DBS) are emerging applications of recording arrays,
in preclinical and clinical trials [7–11]. However, their signal qualities are notoriously unstable and
are prone to loss over time, which undermines the efficacy of decoding algorithms, the accuracy of
data collection in basic science studies, and the detection of conditioning signals necessary to drive
the closed-loop strategies [12–15]. The brain initiates a tissue response, following implantation, that
is characterized by a progressive glial encapsulation and neuronal loss, which is widely believed to
contribute to the diminished recording quality and signal loss [14,16,17]. However, despite recent
findings, both, the nature of the relationship between the tissue response and recording quality, as well
as the underlying mechanisms responsible, remain unclear [18].
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In recent years, an increasingly complex view, of tissue response to neural implants, has emerged,
where changes in the structure and function of the responding cell-types accompany well-known
effects on cellular density (glial encapsulation and local loss of neurons). Recent evidence suggests
that the local shifts in ion channel expression, synaptic transporter expression, and astrocyte subtype
follow from a device implantation [14,19]. Additionally, Eles et al. noted new evidence that mechanical
trauma accompanies prolonged, localized calcium influx, post-implantation [20]. For non-neuronal
responses, a recent study employed a mouse bone marrow chimera model as an innovative approach
to delineate the roles of resident microglia versus blood-derived macrophages, in determining the
microelectrode performance. The study revealed that the knockout of CD14 from blood-derived
macrophages improved the recording quality, over 16 weeks [21]. Further, new approaches using
extracellular matrix-based intracortical arrays have reduced inflammatory responses, demonstrating
the important role of acellular elements in modulating the tissue response [22,23]. While these
findings provide insight on the fundamental mechanisms of the tissue response, they also illustrate the
complexity of the device-tissue interactions and the significant unknowns that remain, with respect to
the signaling pathways responsible.

Advances in the development of new genetic tools provide opportunities to identify the precise
pathways of cellular responses, where devices are being designed and fabricated with increasingly
sophisticated means of delivering the necessary reagents to the surrounding tissue. Multifunctional
microelectrode arrays offer the ability to interrogate the cellular events surrounding the device, via
electrical, chemical, and optical modes of stimulation [24–27], and integrated microfluidic channels
permit the vector delivery for genetic modification of the local neural network [27,28]. The resulting
upregulation or downregulation, of the specific signaling pathways, is a potentially powerful means of
investigating the mechanisms of the tissue response. However, difficulties can arise in chronic settings,
since biofouling and tissue ingrowth can compromise the patency of the infusion channel, making
repeated dosing, and vector delivery at long-term time points, challenging [27,29,30].

Here, we present data illustrating a proof-of-principle for delivering vectors capable of modifying
gene expressions (siRNA and viral vectors), via a functional microfluidic device capable of recording
neural activity in the primary motor cortex of adult rats. By delivering reagents designed for
gene knockdowns (BLOCK-iTTM siRNA, Thermo Fischer, Waltham, MA, USA), overexpressions
(AAV8-GFAP-mCherry, UNC Vector Core, Chapel Hill, NC, USA), and conditional expressions
(AAV2-Cre-GFP, Vector Biolabs, Philadelphia, PA, USA), our results provide a methodology for
the genetic modification, of the tissue response, at the neural-electrode interface.

2. Materials and Methods

2.1. Injection Protocol (In Vitro)

The workflow of the injection protocol developed is illustrated in Figure 1A. A custom 16-channel
single shank microfluidic microelectrode array (Neuronexus, Ann Arbor, MI, USA) was pre-threaded
with a 40 gauge SS316L wire (KidneyPuncher, Mesa, AZ, USA). Due to the slight bend in the
microfluidic channel, near the electrical connector (Figure 1F), an infusion cannula (33 gauge internal
cannula, C315LI/SPC PlasticsOne, Roanoke, VA, USA) was used as a guide for the wire insert.
For initial in vitro testing and methods development, the MEA was inserted into a brain tissue
phantom, consisting of a 0.6% agarose hydrogel, cast into a 10 cm cell culture petri dish, and was held
in place using a hemostat and C-clamps (Figure 1B,C) [31]. Subsequently, the wire was inserted 1 mm
past the tip of the MEA into the agarose medium, to clear the microfluidic channel and reduce the
back pressure. To infuse, the infusion cannula was first attached to a 10 uL Hamilton syringe, with
7 cm silicon tubing (C313CT, PlasticsOne, Roanoke, VA, USA). Using a Quintessential Stereotaxic
Injector (Stoelting, Gelsenkirchen, Germany), 4 µL of mineral oil was withdrawn at 0.1 µL/min,
followed by 2 µL of air, and finally, 2 µL of saline, tinted with fast green (Electron Microscopy Sciences,
Hatflied, PA, USA), at the same rate. Using hemostats, the cannula was carefully inserted into the
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microfluidic channel and glued in place. The saline was then infused into the agarose medium at a
rate of 0.1 µL/min (a standard infusion rate for vector injection into brain tissue) [32].

2.2. Adapter Circuit

Due to the close proximity of the microfluidic channel, an adapter circuit was designed and
fabricated to allow added clearance between the connector and the infusion channel, and facilitate
the collection of neural recording data. Using the EAGLE schematic software (Autodesk, San Rafael,
CA, USA), the circuit board was designed to extend the connection site 1 inch away from the device
(fabricated by Gold Phoenix PCB, Wuhan, China) (Figure 1D,E). Electrical connectors (Omnetics,
Minneapolis, MN, USA) with through-hole style leads were chosen for ease of assembly, and connection
pads were determined based on manufacturer specifications.
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Figure 1. (A) Microfluidic device implantation and infusion protocol. (B) In vitro saline infusion into
0.6% agarose. Saline was tinted with fast green to confirm delivery. Inset displays the microfluidic
device. (C) In vivo infusion of the AAV8 viral load. (D) Top view of the adapter board layout.
Green circles indicate the plated through-holes through which the electrical connector (Omnetics,
Minneapolis, MN, USA) leads were inserted. Electrical traces were placed on the top (red) and bottom
(blue) to prevent traces from overlapping. Dimensions indicated in the figure are in millimeters.
(E) Fabricated adapter board. (F) Cross section of a microfluidic probe. Red arrow indicates a slight
bend in the microfluidic channel.
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2.3. Surgical Procedure

For the conditional expression, we purchased a reporter rat strain from the National BioResource
Project (Kyoto University, Kyoto, Japan) which enables high-resolution imaging of dendritic spines
in ex vivo brain slices [33]. For the reporter strain, female Long Evans rats were generated
with a floxed STOP tdTomato to allow conditional expression of the red fluorescent reporter,
via viral delivery of Cre recombinase (4.0E12 GC/mL AAV2-Cre-GFP in 5% Glycerol in PBS,
Vector Biolabs, Philadelphia, PA, USA). For overexpression and knockdown studies, adult male
Sprague–Dawley rats (Charles River, Wilmington, MA, USA) were delivered an AAV vector, with
a GFAP promoter and mCherry reporter (AAV8-GFAP-mCherry 2.7E12 virus molecules/mL in
350 nM NaCl and 5% D-Sorbitol in PBS, UNC Vector Core, Chapel Hill, NC, USA) and BLOCK-iTTM

siRNA (200 nM Invivofectamine-BLOCK-iTTM-Complexation solution, Thermo Fisher, Waltham, MA,
USA), respectively. Animals were unilaterally implanted in the motor cortex, using a commercially
manufactured 16-channel single shank MEA, with a microfluidic channel (NeuroNexus, Ann Arbor, MI,
USA) that was pre-threaded with a 40 gauge SS316L wire (KidneyPuncher, Mesa, AZ, USA), based on
previously published methods that used single shank standard (non-microfluidic) Michigan arrays [19].
The majority of the implanted microfluidic devices were nonfunctional. All devices were modified so
that the plastic tubing was ~2 cm long. Animals were anesthetized with ~2% isoflurane, throughout
the surgery. Using a motorized drill, a 2 mm × 2 mm craniotomy was performed to expose the cortex
(3 mm anterior, 2.5 mm lateral to bregma). The dura was resected and the MEA was implanted at a
2 mm depth, in the cortex. Subsequently, the wire was manually threaded and inserted ~1 mm past
the tip of the MEA. A dental acrylic headcap, anchored by three bones screws, was used to support
the MEA. Excess dental acrylic was used to attach the wire to the plastic tubing of the microfluidic
channel. Bupivacaine was administered for topical analgesia, at the wound site, and meloxicam was
administered for systemic analgesia, via an intraperitoneal injection during recovery. All surgical
procedures were approved by the Michigan State University Animal Care and Use Committee (Project
identification code AUF # 11/17-196-00).

2.4. Injection Protocol (In Vivo)

Animals were infused 1–3 weeks, post-implantation. Animals were anesthetized with ~2%
isoflurane for the duration of the procedure. Oil, air and 2 µL of viral load were withdrawn, as described
in the Injection Protocol section. The wire was removed from the microfluidic channel and the cannula
was inserted, using hemostats, and was glued in place. The viral load was infused at 0.2–0.4 µL/min.
For troubleshooting techniques, see Box 1.
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Box 1. Troubleshooting techniques for in vivo infusions.

Troubleshooting Techniques

The channel became clogged

If the wire insert was pulled out, tissue could infiltrate and clog the microfluidic channel, preventing a successful
infusion. In order to clear the channel, a new wire must be inserted; however, a blunt wire might not be able to
pierce through the debris. Filing the tip of the wire to a point could help clear the debris from the channel and
might require multiple attempts.

The plastic tubing broke off

The plastic tubing could be damaged or completely broken through contact with the environment, as the animal
explored its cage. If the plastic tubing could be recovered from the enclosure, it could be reattached with super
glue, immediately before infusion. If the tubing could not be recovered, a guide cannula (PlasticsOne, Roanoke,
VA, USA) could be used as a substitute.

The microfluidic channel became damaged

If the plastic tubing was broken, the microfluidic channel could become damaged or could be removed, as well.
If a portion of the microfluidic channel was still attached, the channel could be straightened out and reattached,
or the plastic tubing could be replaced. If the microfluidic channel had broken off completely, the channel had to
be reconstructed. First, it had to be ensured that the microfluidic channel was clear of debris. A cannula could be
threaded with a wire insert, and inserted into the plastic tubing/guide cannula, until the ends were aligned. The
wire should be extended far enough, past the opening, so that it could be easily manipulated. Using forceps, the
wire could be guided into the microfluidic channel to align the cannula and plastic tubing/guide cannula. Super
glue could be applied to the bottom of the plastic tubing/guide cannula to allow it to set. Finally, the cannula
and wire insert could be removed.

The virus did not infuse

If the virus did not infuse, it was possible that the wire was not inserted far enough and the channel was blocked
with tissue. A wire could be re-inserted through the channel until it extended approximately one millimeter
past the end of the microfluidic channel. If the virus still did not infuse, the infusion rate was increased slightly,
until successful.

2.5. Immunohistochemistry

Two to three weeks post-injection, animals were deeply anesthetized with an overdose of sodium
pentobarbital, and transcardially perfused with 4% paraformaldehyde (PFA). Brains were extracted,
stored in 4% PFA overnight and cryoembedded, following sucrose protection. Cryosections were
collected at a 20 µm thickness and hydrated with PBS, prior to blocking in a 10% normal goat serum in
PBS for 1 h. Tissue was subsequently incubated overnight, at 4 ◦C, with the mouse anti-glial fibrillary
acidic protein (GFAP) (Cell Signaling Technology, Danvers, MA, USA). The following day, cryosections
were rinsed with PBS and incubated with the goat anti-mouse IgG (H+L) Alexa Fluor 488 conjugate
(1:200, Thermo Fisher Scientific, Waltham, MA, USA), for two hours, at room temperature. Finally,
nuclei were counterstained with Hoechst and coverslipped with ProLong Gold antifade reagent (Fisher
Scientific Company, Hampton, NH, USA). An Olympus Fluoview 1000 inverted confocal microscope
was used to image samples with a 20× PlanFluor dry objective (0.5NA). For comparison, GFAP-stained
tissue from “traditional” (non-microfluidic) single shank Michigan-style arrays, implanted in the motor
cortex, was assessed using images collected during a previous study [34].

2.6. Image Analysis

All images were analyzed using a MATLAB script adapted from Kozai et al. [15] with
modifications previously reported [19]. A hand-traced outline of the injury was used to define
concentric 10 µm-thick bins. The average intensity of the fluorescent markers within each bin was
calculated using the corners of the image as a reference. Bin intensity was normalized to the most
distal bin. Results were assessed using a mixed model ANOVA and SPSS software (IBM, Chicago, IL,
USA) as previously described [19].
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2.7. Signal Processing

Neural recording data were acquired with a Tucker-Davis Technologies RZ2 system (Alchua,
FL, USA) and processed using a MATLAB script. Wideband data was sampled at ~48 kHz, in
isoflurane-anesthetized rats placed in a Faraday cage, and analyzed offline as described [34,35].
A combination of bandpass filtering and identification of threshold crossings (at 3.5 standard deviations
from the mean of the sampling distribution) were used to collect and store 3 ms snippets, centered at
the minimum of the recorded segment. Local field potentials (LFPs) were filtered between 1–100 Hz.
LFP amplitude was calculated by multiplying the standard deviation of the signal by six, yielding 99.7%
of the signal amplitude. Principal component analysis and fuzzy C-means clustering (membership
index > 0.8) were performed to identify putative units, in combination with visual inspection of the
mean waveforms. Common average referencing [36] was used to mitigate noise sources common to
every electrode site (such as line noise and movement artifacts).

3. Results

3.1. Development of Injection Methods (In Vitro)

Optimal infusion methods were determined through trial and error in vitro, prior to
implementation in vivo. The rate of withdrawal or infusion of each component (oil, air, and virus) was
found to be a critical determinant of success for the overall procedure. When withdrawn at a rate higher
than the optimum (0.1 µL/min), bubbles would form within the oil, preventing a successful infusion.
Additionally, due to the viscosity of the oil, higher rates of withdrawal resulted in inaccuracies in the
volume of oil collected. Subsequently, if the air was withdrawn at a higher rate, bubbles would form
in the oil. Likewise, withdrawing the viral load at higher rates could result in withdrawal of air into
the sample and an unsuccessful infusion.

3.2. Increased GFAP Expression Surrounding Microfluidic Devices

The inclusion of a microfluidic channel on the device necessarily increased the footprint of the
implant. Given the evidence for a relationship between device architecture and tissue response [37,38], we
explored the level of astrogliosis surrounding the microfluidic devices, in comparison to “traditional”
single shank, silicon probes. Microfluidic devices created larger injuries compared to traditional
devices, with average injury areas of 0.056 mm2 and 0.004 mm2, respectively (Figure 2A). Although the
width of the microfluidic device was 185 µm, injury sizes were noticeably larger. Hoechst staining
confirmed the absence of cells within the injury area (not shown). This exacerbated injury size could be
due to the removal of the tissue that adhered to the device while extracting the brain. This larger injury
size was accompanied by increased astrogliosis. Quantification of GFAP fluorescence surrounding
microfluidic devices showed significantly elevated levels of GFAP expression (p < 0.05), up to 130 µm
of the insertion site boundary (relative to the distal bin intensity values). Traditional devices showed
a slightly more spatially restricted response, with significantly elevated levels of GFAP expression
(p < 0.05) detected up to 100 µm from the device tract. Furthermore, a trend toward an overall elevation
in GFAP expression was detected in microfluidic devices, in comparison to the traditional devices
(p < 0.1) (Figure 2B). These results indicated that the larger footprint of the microfluidic device could
slightly exacerbate the reactive astrogliosis.
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Figure 2. (A) GFAP staining surrounding microfluidic and traditional devices indicates astrogliosis and
a larger injury footprint related to the microfluidic device. Scale bar = 100 µm. (B) Microfluidic devices
show significantly elevated levels of GFAP expression within 130 µm of the injury, in comparison to
the distal control values (p < 0.05). Traditional devices have a slightly more compact region of gliosis,
with significantly elevated levels of GFAP within 100 µm (p < 0.05). * denotes injury center.

3.3. Signal Quality of Microfluidic Devices

We observed an initial increase in LFP amplitude one day, post-implantation, followed by a
gradual decrease in the amplitude, before stabilizing at four weeks, post-implantation (Figure 3B).
These observations follow a general trend of decreasing signal quality over time. Additionally, a
cursory observation yielded limited identification of unit activity, with the units being detected only at
5 days, post-implantation (Figure 3A). While the sample size was limited, the observation confirms the
ability to successfully detect unit activity with microfluidic devices, in a chronic setting.
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Figure 3. (A) Recorded units. All scale bars are 10 µV amplitude, 0.5 ms timescale. (B) Average
LFP amplitude.

3.4. Microfluidic Devices Successfully Deliver Virus along the Length of the Injury

Animals were infused 1–3 weeks, post-implantation according to the methods developed in vitro.
Some alterations to the infusion protocol developed in vitro were necessary to successfully deliver the
viral load in vivo. An infusion rate of 0.1 µL/min proved insufficient to overcome the back pressure in
an in vivo setting. Increasing the infusion rate to 0.2 µL/min was sufficient for most animals; however,
variations between animals required infusion rates up to 0.4 µL/min for successful virus delivery.

Animals were sacrificed 2–3 weeks after infusing, and cryosections were imaged with an Olympus
Fluoview 1000 confocal microscope to assess the expression of the infused virus. All successfully
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infused animals showed expression of the delivered fluorescent reporter surrounding the injury site
(Figure 4). We observed a qualitative increase in the amount of expression, and diffusion of the vector
at deeper sections of the injury, compared to the superficial sections. This pattern of dispersion is most
likely due to the channel having a single opening at the tip of the probe.Micromachines 2018, 9, x 8 of 12 

 

 
Figure 4. Spread of fluorescent reporter expression (appears white) of AAV8-GFAP-mCherry 
(overexpression), BLOCK-iTTM siRNA (knockdown), and AAV2-Cre-GFP (conditional) at superficial 
(~100–650 μm), mid (~750–1000 μm), and deep (~1100–1300 μm) sections of the injury. Reporter 
expression is spatially broader in deep sections of the injury (near the infusion tip) in comparison to 
more superficial sections. Control images were taken from the contralateral hemisphere; * denotes 
injury center. Scale bar = 100 μm. 

  

Figure 4. Spread of fluorescent reporter expression (appears white) of AAV8-GFAP-mCherry
(overexpression), BLOCK-iTTM siRNA (knockdown), and AAV2-Cre-GFP (conditional) at superficial
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Reporter expression is spatially broader in deep sections of the injury (near the infusion tip) in
comparison to more superficial sections. Control images were taken from the contralateral hemisphere;
* denotes injury center. Scale bar = 100 µm.
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4. Discussion

While it is widely believed that the biological response to implanted electrodes is intimately linked
to their function [16,17], direct evidence for this relationship is surprisingly scarce. Multiple studies
have explored correlations between a specific measure of recording quality (such as the number of
units detected), impedance data, and/or an isolated metric of the biological response (for instance,
local neuronal density) to gain insight into the association between functional characteristics and
cellular responses. However, the variability in the outcomes reported in these studies underscores
the complexity and multi-faceted nature of the underlying source(s) of recorded signal loss, interface
instability, and shifting stimulation thresholds [18,39,40]. Likewise, while new device designs
incorporate increasingly sophisticated features and materials [41], the relationship between each
of these design features, the impacts on tissue response, and chronic device performance remain poorly
characterized. The development of new tools and test beds, to understand the basic science governing
tissue-device interactions, could provide a direct link between biological mechanisms and device
function, ultimately delivering guiding principles for the design features necessary to enable improved
tissue integration.

In the current study, we developed and validated methods to modify gene expression using
multiple techniques (silencing, conditional expression, and overexpression). Each of these approaches
provides a new “knob” to turn, to tune the biological response to devices in controlled ways, potentially
providing a mechanistic link between observations of localized changes in gene and protein expression
and device performance. This approach builds on previous work that has used drug-based strategies
to modulate the biological response to electrodes, either through exacerbation or mitigation of
effects, to explore the role of neuroinflammation in signal loss. For example, microelectrodes in
animals administered lipopolysaccharide, a common pro-inflammatory stimulus, had a notably
lower signal-to-noise ratio and fewer units detected, as compared to the control rats; whereas,
anti-inflammatory drugs have been shown to decrease neuroinflammation and improve recording
quality [17,42–45]. However, targeting specific signaling pathways, through a perturbation of the
gene expression, may offer a more granular view of the key biological mechanisms mediating the
neurotoxicity and inflammation that occur at the neural-electrode interface.

As more information on the genes differentially expressed at the device interface becomes
available, new opportunities to identify relevant candidate pathways will emerge. Recent studies
evaluating gene expression surrounding implanted devices noted an increased expression of GFAP,
TNFα, NOS2, HMGB1, CD14, and numerous members of the IL gene family [46–48]. Additionally,
Bennett et al. showed genes regulating tight junction and adherens junction proteins in the blood-brain
barrier were downregulated, after 72 h, post-implantation [48]. Manipulation of gene expression, by
upregulation or downregulation, could reveal potential breakthroughs in improving device function
and integration in the brain. Further, Cre-recombinase allows an added layer of control of the local
gene expression, by enabling the conditional knockout and genome editing [49].

While the approaches developed in this study were successful in the localized modulation of
gene expression, several areas for future improvements were identified. The epoxy used to attach
the plastic tubing to the probe was brittle and prone to cracking. This resulted in the potential loss
of the plastic tubing during the natural exploratory behavior of the subject, ultimately leading to the
microfluidic channel becoming damaged. A more flexible epoxy could reduce the likelihood of this
issue. Additionally, the proximity of the microfluidic channel to the electrical connector necessitated
the use of an adapter, in order to avoid damaging the channel, while recording the neural activity.
While not affecting our ability to infuse, having a single opening at the tip of the probe resulted in
an unequal distribution of the delivered virus, along the length of the probe. Alternative designs
that enable more control over the distribution and location of viral delivery would be beneficial for
applications that seek to perturb the environment, at specified sites, along the length of the probe.

Recent efforts in neural engineering have accentuated the need for understanding the basic
science behind the biological mechanisms at the device interface. Next-generation device design is
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contingent on identifying these unknown device-tissue interactions. This work provides an approach
to interrogate and understand the local environment around an implanted device, enabling new
opportunities to investigate the tissue response to implants, and identify improved device designs.

Author Contributions: Conceptualization, E.K.P.; Methodology, B.M.W.; Formal Analysis, B.M.W.; Investigation,
B.M.W., S.R.D. and J.W.S.; Writing-Original Draft Preparation, B.M.W., S.R.D. and E.K.P.; Writing-Review &
Editing, B.M.W., S.R.D., J.W.S. and E.K.P.; Visualization, B.M.W.; Supervision, E.K.P.

Funding: This research was supported by the Department of Biomedical Engineering and the Department of
Electrical and Computer Engineering at Michigan State University.

Acknowledgments: The authors thank Melinda K. Frame from Center for Advanced Microscopy for confocal
training, and Takashi D. Y. Kozai and Zhannetta Gugel for the intensity profiling MATLAB script.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.;
Ravina, B.M.; Schifitto, G.; Siderowf, A.; et al. Projected number of people with Parkinson disease in the
most populous nations, 2005 through 2030. Neurology 2007, 68, 384–386. [CrossRef] [PubMed]

2. Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of
Parkinson’s disease in the United States. Mov. Disord. 2013, 28, 311–318. [CrossRef] [PubMed]

3. Adelman, G.; Rane, S.G.; Villa, K.F. The cost burden of multiple sclerosis in the United States: A systematic
review of the literature. J. Med. Econ. 2013, 16, 639–647. [CrossRef] [PubMed]

4. Greenberg, P.E.; Kessler, R.C.; Birnbaum, H.G.; Leong, S.A.; Lowe, S.W.; Berglund, P.A.A.; Corey-Lisle, P.K.
The Economic Burden of Depression in the United States: How Did It Change Between 1990 and 2000?
J. Clin. Psychiatry 2003, 64, 1465–1475. [CrossRef] [PubMed]

5. Arthur, K.C.; Calvo, A.; Price, T.R.; Geiger, J.T.; Chiò, A.; Traynor, B.J. Projected increase in amyotrophic
lateral sclerosis from 2015 to 2040. Nat. Commun. 2016, 7, 12408. [CrossRef] [PubMed]

6. Wimo, A.; Jönsson, L.; Bond, J.; Prince, M.; Winblad, B.; Alzheimer Disease International. The worldwide
economic impact of dementia 2010. Alzheimer’s Dement. 2013, 9, 1–11.e3. [CrossRef] [PubMed]

7. Rosin, B.; Slovik, M.; Mitelman, R.; Rivlin-Etzion, M.; Haber, S.N.; Israel, Z.; Vaadia, E.; Bergman, H.
Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism. Neuron 2011, 72, 370–384.
[CrossRef] [PubMed]

8. Hascup, K.N.; Hascup, E.R.; Stephens, M.L.; Glaser, P.E.A.; Yoshitake, T.; Mathé, A.A.; Gerhardt, G.A.; Kehr, J.
Resting glutamate levels and rapid glutamate transients in the prefrontal cortex of the Flinders Sensitive
Line rat: A genetic rodent model of depression. Neuropsychopharmacology 2011, 36, 1769–1777. [CrossRef]
[PubMed]

9. O’Doherty, J.E.; Lebedev, M.A.; Ifft, P.J.; Zhuang, K.Z.; Shokur, S.; Bleuler, H.; Nicolelis, M.A.L. Active tactile
exploration using a brain-machine-brain interface. Nature 2011, 479, 228–231. [CrossRef] [PubMed]

10. Lebedev, M.A.; Nicolelis, M.A.L. Brain–machine interfaces: Past, present and future. Trends Neurosci. 2006,
29, 536–546. [CrossRef] [PubMed]

11. Ezzyat, Y.; Wanda, P.A.; Levy, D.F.; Kadel, A.; Aka, A.; Pedisich, I.; Sperling, M.R.; Sharan, A.D.; Lega, B.C.;
Burks, A.; et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves
memory. Nat. Commun. 2018, 9, 365. [CrossRef] [PubMed]

12. Nolta, N.F.; Christensen, M.B.; Crane, P.D.; Skousen, J.L.; Tresco, P.A. BBB leakage, astrogliosis, and tissue loss
correlate with silicon microelectrode array recording performance. Biomaterials 2015, 53, 753–762. [CrossRef]
[PubMed]

13. McCreery, D.; Cogan, S.; Kane, S.; Pikov, V. Correlations between histology and neuronal activity recorded
by microelectrodes implanted chronically in the cerebral cortex. J. Neural Eng. 2016, 13, 036012. [CrossRef]
[PubMed]

14. Salatino, J.W.; Ludwig, K.A.; Kozai, T.D.Y.; Purcell, E.K. Glial responses to implanted electrodes in the brain.
Nat. Biomed. Eng. 2017, 1, 862–877. [CrossRef]

http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03
http://www.ncbi.nlm.nih.gov/pubmed/17082464
http://dx.doi.org/10.1002/mds.25292
http://www.ncbi.nlm.nih.gov/pubmed/23436720
http://dx.doi.org/10.3111/13696998.2013.778268
http://www.ncbi.nlm.nih.gov/pubmed/23425293
http://dx.doi.org/10.4088/JCP.v64n1211
http://www.ncbi.nlm.nih.gov/pubmed/14728109
http://dx.doi.org/10.1038/ncomms12408
http://www.ncbi.nlm.nih.gov/pubmed/27510634
http://dx.doi.org/10.1016/j.jalz.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23305821
http://dx.doi.org/10.1016/j.neuron.2011.08.023
http://www.ncbi.nlm.nih.gov/pubmed/22017994
http://dx.doi.org/10.1038/npp.2011.60
http://www.ncbi.nlm.nih.gov/pubmed/21525860
http://dx.doi.org/10.1038/nature10489
http://www.ncbi.nlm.nih.gov/pubmed/21976021
http://dx.doi.org/10.1016/j.tins.2006.07.004
http://www.ncbi.nlm.nih.gov/pubmed/16859758
http://dx.doi.org/10.1038/s41467-017-02753-0
http://www.ncbi.nlm.nih.gov/pubmed/29410414
http://dx.doi.org/10.1016/j.biomaterials.2015.02.081
http://www.ncbi.nlm.nih.gov/pubmed/25890770
http://dx.doi.org/10.1088/1741-2560/13/3/036012
http://www.ncbi.nlm.nih.gov/pubmed/27108712
http://dx.doi.org/10.1038/s41551-017-0154-1


Micromachines 2018, 9, 476 11 of 12

15. Kozai, T.D.Y.; Li, X.; Bodily, L.M.; Caparosa, E.M.; Zenonos, G.A.; Carlisle, D.L.; Friedlander, R.M.; Cui, X.T.
Effects of caspase-1 knockout on chronic neural recording quality and longevity: Insight into cellular and
molecular mechanisms of the reactive tissue response. Biomaterials 2014, 35, 9620–9634. [CrossRef] [PubMed]

16. Kozai, T.D.Y.; Jaquins-Gerstl, A.S.; Vazquez, A.L.; Michael, A.C.; Cui, X.T. Brain Tissue Responses to
Neural Implants Impact Signal Sensitivity and Intervention Strategies. ACS Chem. Neurosci. 2015, 6, 48–67.
[CrossRef] [PubMed]

17. Jorfi, M.; Skousen, J.L.; Weder, C.; Capadona, J.R. Progress towards biocompatible intracortical
microelectrodes for neural interfacing applications. J. Neural Eng. 2015, 12, 011001. [CrossRef] [PubMed]

18. Michelson, N.J.; Vazquez, A.L.; Eles, J.R.; Salatino, J.W.; Purcell, E.K.; Williams, J.J.; Cui, X.T.; Kozai, T.D.Y.
Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface:
New emphasis on the biological interface. J. Neural Eng. 2018, 15, 033001. [CrossRef] [PubMed]

19. Salatino, J.W.; Winter, B.M.; Drazin, M.H.; Purcell, E.K. Functional remodeling of subtype-specific markers
surrounding implanted neuroprostheses. J. Neurophysiol. 2017, 118, 194–202. [CrossRef] [PubMed]

20. Eles, J.R.; Vazquez, A.L.; Kozai, T.D.Y.; Cui, X.T. In vivo imaging of neuronal calcium during electrode
implantation: Spatial and temporal mapping of damage and recovery. Biomaterials 2018, 174, 79–94.
[CrossRef] [PubMed]

21. Bedell, H.W.; Hermann, J.K.; Ravikumar, M.; Lin, S.; Rein, A.; Li, X.; Molinich, E.; Smith, P.D.; Selkirk, S.M.;
Miller, R.H.; et al. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
Biomaterials 2018, 163, 163–173. [CrossRef] [PubMed]

22. Shen, W.; Karumbaiah, L.; Liu, X.; Saxena, T.; Chen, S.; Patkar, R.; Bellamkonda, R.V.; Allen, M.G. Extracellular
matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on natural
materials. Microsyst. Nanoeng. 2015, 1, 15010. [CrossRef]

23. Oakes, R.S.; Polei, M.D.; Skousen, J.L.; Tresco, P.A. An astrocyte derived extracellular matrix coating reduces
astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 2018, 154,
1–11. [CrossRef] [PubMed]

24. Canales, A.; Jia, X.; Froriep, U.P.; Koppes, R.A.; Tringides, C.M.; Selvidge, J.; Lu, C.; Hou, C.; Wei, L.; Fink, Y.;
et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits
in vivo. Nat. Biotechnol. 2015, 33, 277–284. [CrossRef] [PubMed]

25. Seidl, K.; Spieth, S.; Herwik, S.; Steigert, J.; Zengerle, R.; Paul, O.; Ruther, P. In-plane silicon probes for
simultaneous neural recording and drug delivery. J. Micromech. Microeng. 2010, 20, 105006. [CrossRef]

26. Anikeeva, P.; Andalman, A.S.; Witten, I.; Warden, M.; Goshen, I.; Grosenick, L.; Gunaydin, L.A.;
Frank, L.M.; Deisseroth, K. Optetrode: A multichannel readout for optogenetic control in freely moving
mice. Nat. Neurosci. 2011, 15, 163–170. [CrossRef] [PubMed]

27. Jeong, J.-W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.-I.; Shi, Y.; et al.
Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell 2015, 162,
662–674. [CrossRef] [PubMed]

28. Jennings, J.H.; Stuber, G.D. Tools for Resolving Functional Activity and Connectivity within Intact Neural
Circuits. Curr. Biol. 2014, 24, R41–R50. [CrossRef] [PubMed]

29. Sommakia, S.; Lee, H.C.; Gaire, J.; Otto, K.J. Materials approaches for modulating neural tissue responses to
implanted microelectrodes through mechanical and biochemical means. Curr. Opin. Solid State Mater. Sci.
2014, 18, 319–328. [CrossRef] [PubMed]

30. Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2017,
2, 16093. [CrossRef]

31. Chen, Z.-J.; Gillies, G.T.; Broaddus, W.C.; Prabhu, S.S.; Fillmore, H.; Mitchell, R.M.; Corwin, F.D.; Fatouros, P.P.
A realistic brain tissue phantom for intraparenchymal infusion studies. J. Neurosurg. 2004, 101, 314–322.
[CrossRef] [PubMed]

32. Cardin, J.A.; Carlén, M.; Meletis, K.; Knoblich, U.; Zhang, F.; Deisseroth, K.; Tsai, L.-H.; Moore, C.I.
Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of
Channelrhodopsin-2. Nat. Protoc. 2010, 5, 247–254. [CrossRef] [PubMed]

33. Igarashi, H.; Koizumi, K.; Kaneko, R.; Ikeda, K.; Egawa, R.; Yanagawa, Y.; Muramatsu, S.; Onimaru, H.;
Ishizuka, T.; Yawo, H. A Novel Reporter Rat Strain That Conditionally Expresses the Bright Red Fluorescent
Protein tdTomato. PLoS ONE 2016, 11, e0155687. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.biomaterials.2014.08.006
http://www.ncbi.nlm.nih.gov/pubmed/25176060
http://dx.doi.org/10.1021/cn500256e
http://www.ncbi.nlm.nih.gov/pubmed/25546652
http://dx.doi.org/10.1088/1741-2560/12/1/011001
http://www.ncbi.nlm.nih.gov/pubmed/25460808
http://dx.doi.org/10.1088/1741-2552/aa9dae
http://www.ncbi.nlm.nih.gov/pubmed/29182149
http://dx.doi.org/10.1152/jn.00162.2017
http://www.ncbi.nlm.nih.gov/pubmed/28356474
http://dx.doi.org/10.1016/j.biomaterials.2018.04.043
http://www.ncbi.nlm.nih.gov/pubmed/29783119
http://dx.doi.org/10.1016/j.biomaterials.2018.02.014
http://www.ncbi.nlm.nih.gov/pubmed/29471127
http://dx.doi.org/10.1038/micronano.2015.10
http://dx.doi.org/10.1016/j.biomaterials.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29117574
http://dx.doi.org/10.1038/nbt.3093
http://www.ncbi.nlm.nih.gov/pubmed/25599177
http://dx.doi.org/10.1088/0960-1317/20/10/105006
http://dx.doi.org/10.1038/nn.2992
http://www.ncbi.nlm.nih.gov/pubmed/22138641
http://dx.doi.org/10.1016/j.cell.2015.06.058
http://www.ncbi.nlm.nih.gov/pubmed/26189679
http://dx.doi.org/10.1016/j.cub.2013.11.042
http://www.ncbi.nlm.nih.gov/pubmed/24405680
http://dx.doi.org/10.1016/j.cossms.2014.07.005
http://www.ncbi.nlm.nih.gov/pubmed/25530703
http://dx.doi.org/10.1038/natrevmats.2016.93
http://dx.doi.org/10.3171/jns.2004.101.2.0314
http://www.ncbi.nlm.nih.gov/pubmed/15309925
http://dx.doi.org/10.1038/nprot.2009.228
http://www.ncbi.nlm.nih.gov/pubmed/20134425
http://dx.doi.org/10.1371/journal.pone.0155687
http://www.ncbi.nlm.nih.gov/pubmed/27195805


Micromachines 2018, 9, 476 12 of 12

34. Purcell, E.K.; Thompson, D.E.; Ludwig, K.A.; Kipke, D.R. Flavopiridol reduces the impedance of neural
prostheses in vivo without affecting recording quality. J. Neurosci. Methods 2009, 183, 149–157. [CrossRef]
[PubMed]

35. Ludwig, K.A.; Uram, J.D.; Yang, J.; Martin, D.C.; Kipke, D.R. Chronic neural recordings using silicon
microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
J. Neural Eng. 2006, 3, 59–70. [CrossRef] [PubMed]

36. Ludwig, K.A.; Miriani, R.M.; Langhals, N.B.; Joseph, M.D.; Anderson, D.J.; Kipke, D.R. Using a Common
Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays. J. Neurophysiol.
2009, 101, 1679–1689. [CrossRef] [PubMed]

37. Seymour, J.P.; Kipke, D.R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 2007,
28, 3594–3607. [CrossRef] [PubMed]

38. Kozai, T.D.Y.; Langhals, N.B.; Patel, P.R.; Deng, X.; Zhang, H.; Smith, K.L.; Lahann, J.; Kotov, N.A.; Kipke, D.R.
Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.
Nat. Mater. 2012, 11, 1065–1073. [CrossRef] [PubMed]

39. Kozai, T.D.Y.; Catt, K.; Li, X.; Gugel, Z.V.; Olafsson, V.T.; Vazquez, A.L.; Cui, X.T. Mechanical failure modes of
chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials 2015, 37, 25–39.
[CrossRef] [PubMed]

40. Malaga, K.A.; Schroeder, K.E.; Patel, P.R.; Irwin, Z.T.; Thompson, D.E.; Bentley, J.N.; Lempka, S.F.;
Chestek, C.A.; Patil, P.G. Data-driven model comparing the effects of glial scarring and interface interactions
on chronic neural recordings in non-human primates. J. Neural Eng. 2016, 13, 16010–16024. [CrossRef]
[PubMed]

41. Wellman, S.M.; Eles, J.R.; Ludwig, K.A.; Seymour, J.P.; Michelson, N.J.; McFadden, W.E.; Vazquez, A.L.;
Kozai, T.D.Y. A Materials Roadmap to Functional Neural Interface Design. Adv. Funct. Mater. 2018,
28, 1701269. [CrossRef] [PubMed]

42. Kozai, T.D.Y.; Jaquins-Gerstl, A.S.; Vazquez, A.L.; Michael, A.C.; Cui, X.T. Dexamethasone retrodialysis
attenuates microglial response to implanted probes in vivo. Biomaterials 2016, 87, 157–169. [CrossRef]
[PubMed]

43. Rennaker, R.L.; Miller, J.; Tang, H.; Wilson, D.A. Minocycline increases quality and longevity of chronic
neural recordings. J. Neural Eng. 2007, 4, L1–L5. [CrossRef] [PubMed]

44. Golabchi, A.; Wu, B.; Li, X.; Carlisle, D.L.; Kozai, T.D.Y.; Friedlander, R.M.; Cui, X.T. Melatonin improves
quality and longevity of chronic neural recording. Biomaterials 2018, 180, 225–239. [CrossRef] [PubMed]

45. Potter, K.A.; Buck, A.C.; Self, W.K.; Callanan, M.E.; Sunil, S.; Capadona, J.R. The effect of resveratrol on
neurodegeneration and blood brain barrier stability surrounding intracortical microelectrodes. Biomaterials
2013, 34, 7001–7015. [CrossRef] [PubMed]

46. Ereifej, E.S.; Smith, C.S.; Meade, S.M.; Chen, K.; Feng, H.; Capadona, J.R. The Neuroinflammatory Response to
Nanopatterning Parallel Grooves into the Surface Structure of Intracortical Microelectrodes. Adv. Funct. Mater.
2018, 28, 1704420. [CrossRef]

47. Karumbaiah, L.; Saxena, T.; Carlson, D.; Patil, K.; Patkar, R.; Gaupp, E.A.; Betancur, M.; Stanley, G.B.;
Carin, L.; Bellamkonda, R.V. Relationship between intracortical electrode design and chronic recording
function. Biomaterials 2013, 34, 8061–8074. [CrossRef] [PubMed]

48. Bennett, C.; Samikkannu, M.; Mohammed, F.; Dietrich, W.D.; Rajguru, S.M.; Prasad, A. Blood brain barrier
(BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials 2018, 164, 1–10. [CrossRef]
[PubMed]

49. Nagy, A. Cre recombinase: The universal reagent for genome tailoring. Genesis 2000, 26, 99–109. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jneumeth.2009.06.026
http://www.ncbi.nlm.nih.gov/pubmed/19560490
http://dx.doi.org/10.1088/1741-2560/3/1/007
http://www.ncbi.nlm.nih.gov/pubmed/16510943
http://dx.doi.org/10.1152/jn.90989.2008
http://www.ncbi.nlm.nih.gov/pubmed/19109453
http://dx.doi.org/10.1016/j.biomaterials.2007.03.024
http://www.ncbi.nlm.nih.gov/pubmed/17517431
http://dx.doi.org/10.1038/nmat3468
http://www.ncbi.nlm.nih.gov/pubmed/23142839
http://dx.doi.org/10.1016/j.biomaterials.2014.10.040
http://www.ncbi.nlm.nih.gov/pubmed/25453935
http://dx.doi.org/10.1088/1741-2560/13/1/016010
http://www.ncbi.nlm.nih.gov/pubmed/26655972
http://dx.doi.org/10.1002/adfm.201701269
http://www.ncbi.nlm.nih.gov/pubmed/29805350
http://dx.doi.org/10.1016/j.biomaterials.2016.02.013
http://www.ncbi.nlm.nih.gov/pubmed/26923363
http://dx.doi.org/10.1088/1741-2560/4/2/L01
http://www.ncbi.nlm.nih.gov/pubmed/17409469
http://dx.doi.org/10.1016/j.biomaterials.2018.07.026
http://www.ncbi.nlm.nih.gov/pubmed/30053658
http://dx.doi.org/10.1016/j.biomaterials.2013.05.035
http://www.ncbi.nlm.nih.gov/pubmed/23791503
http://dx.doi.org/10.1002/adfm.201704420
http://dx.doi.org/10.1016/j.biomaterials.2013.07.016
http://www.ncbi.nlm.nih.gov/pubmed/23891081
http://dx.doi.org/10.1016/j.biomaterials.2018.02.036
http://www.ncbi.nlm.nih.gov/pubmed/29477707
http://dx.doi.org/10.1002/(SICI)1526-968X(200002)26:2&lt;99::AID-GENE1&gt;3.0.CO;2-B
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Injection Protocol (In Vitro) 
	Adapter Circuit 
	Surgical Procedure 
	Injection Protocol (In Vivo) 
	Immunohistochemistry 
	Image Analysis 
	Signal Processing 

	Results 
	Development of Injection Methods (In Vitro) 
	Increased GFAP Expression Surrounding Microfluidic Devices 
	Signal Quality of Microfluidic Devices 
	Microfluidic Devices Successfully Deliver Virus along the Length of the Injury 

	Discussion 
	References

