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Abstract 

High yield recombinant protein production is highly desirable for biotechnological purposes. In the design of recom‑
binant expression conditions, a number of essential central elements such as expression strain, type of medium, bio‑
process optimization, and mathematical modeling should be considered. Well-designed industrial scale production of 
one recombinant protein with optimized influential parameters and yield can address the cost and production repro‑
ducibility issues. In the present study, statistical experimental design methodology was used to investigate the effect 
of fermentation conditions (dissolved oxygen, IPTG, and temperature) on rPDT production by Escherichia coli. rPDT is 
a recombinant fusion protein consisting of three different protein domains including the N-terminal 179 amino acid 
fragment of the S1 subunit of pertussis toxin, the full-length genetically detoxified diphtheria toxin (CRM197), and the 
50 kDa tetanus toxin fragment C. A 15 Box–Behnken design augmented with center points revealed that IPTG and 
DO at the center point and low temperature will result in high yield. The optimal condition for rPDT production were 
found to be 100 µM IPTG, DO 30% and temperature 20 °C.
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Introduction
Recombinant DNA technology has made it possible 
to produce different recombinant proteins in amounts 
required for research, clinical and industrial purposes 
(Rosano and Ceccarelli 2014; Pavlou and Reichert 2004; 
Kebriaeezadeh et al. 2013). Escherichia coli is known as a 
preferable expression system, because of its rapid growth 
and simplicity of cultivation. In spite of all the advan-
tages, production of recombinant proteins involves very 
complicated steps that require application of sophisti-
cated control and optimization approach (Andersen and 
Krummen 2002). Therefore, the critical task is to gain 

a great wealth of knowledge about the variables and 
responses related to the process yield and quality attrib-
utes of the product (Assenberg et al. 2013; Papaneophy-
tou and Kontopidis 2014).

Design of experiments (DoE) defined as the statisti-
cal techniques used for planning, conducting, analyzing 
and interpretation of experimental data, provides power-
ful means to manage process parameters to optimize the 
results (Marini et al. 2014). Replacing the One-Variable-
at-a-Time (OVAT) approach in design of experiments, 
DoE makes it possible to simultaneously investigate dif-
ferent parameters affecting the response (Papaneophytou 
and Kontopidis 2014). Regarding the wide range of influ-
ential factors in protein expression process, a screening 
survey would be necessary as a first step. Thereafter, opti-
mization step should be done to find the optimal produc-
tion process in which the selected design space includes 
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plenty of variables. However, the most important inter-
actions should be selected and introduced into the final 
model (Ellis 2001; Khoshayand et al. 2011; Hussain et al. 
2008; Bayat et al. 2015).

In the present study, the bacterial strain expressing 
rPDT protein was selected and the rPDT production 
was optimized using statistical design. rPDT protein 
composes of the immunoprotective S1 fragment of per-
tussis toxin, the full-length nontoxic diphtheria toxin 
(CRM197), and fragment C of tetanus toxin (Aminian 
et al. 2007; Eisel et al. 1986). This fusion protein has been 
expressed in E. coli carrying the recombinant plasmid 
(pCoPDT) and has a molecular weight of 161 kDa that is 
recognizable by specific antibodies against the three tox-
ins. rPDT expression is inducible by IPTG (Aminian et al. 
2007; Esposito and Chatterjee 2006; Soria-Guerra et  al. 
2009). rPDT is a fusion protein containing the immuno-
protective S1 fragment of pertussis toxin, the full-length 
non-toxic diphtheria toxin and fragment C of tetanus 
toxin which has been engineered to serve as a candidate 
for the vaccination against diphtheria–tetanus–pertussis 
(Aminian et  al. 2007). However, the satisfactory protein 
yield challenge should be addressed. rPDT is a fusion 
protein and vaccine candidate which is not expressed in 
high amounts in bacteria. This paper tries to optimize 
rPDT production using DOE and develop model-based 
scalable process for similar protein production platforms 
particularly for fusion proteins. Considering the impor-
tance of recombinant fusion protein production using 
DOE, the present study intended to find the optimized 
condition for rPDT protein in a 5-l fermenter using the 
Box–Behnken statistical design. The aim was to produce 
adequate amount of rPDT fusion protein in a scalable 
and reproducible process to be able to run biochemical 
and immunological challenge tests and develop rPDT as 
a vaccine candidate through human clinical trials.

Materials and methods
Chemicals and media
Solvents and chemical reagents were analytical grade 
from Sigma-Aldrich. All the medium ingredients were 
obtained from Merck, Germany. LB (Luria–Bertani) 
medium is composed of NaCl 1% (W/V), Peptone 1% 
(W/V) and yeast 0.5% (W/V).

Instruments
UV–visible spectrophotometer (PerkinElmer, Lambda 
25) was used for OD determination. New Brunswick 
fermenter (model Bioflo 310, New Brunswick Scientific, 
Edison, NJ, USA) with 5  l working volume vessel was 
used for the fermentation runs. Sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) analysis 

and Blotting were performed using BioRad electrophore-
sis systems.

Strain and plasmid
Escherichia coli Rosetta-gami2 carrying the recombinant 
plasmid (pET28a-pdt) was used for rPDT expression. The 
pET28a-pdt plasmid which was constructed in previous 
study is resistant to kanamycin (R) (Aminian et  al. 2007). 
The rPDT protein production was inducible with IPTG. The 
bacteria were maintained in − 80 °C freezer in 50% glycerol.

Fermentation conditions
The optimization studies were conducted in 5 l fermenter 
(New Brunswick BioFlo 310, NJ, USA) containing 3 l LB 
medium. All cultures contained 50 mg/l kanamycin. The 
bacteria were revived from frozen glycerol stocks fol-
lowing overnight culture in 2 ml LB containing 50 µg/ml 
kanamycin. To prepare the inoculum, the bacteria were 
added to a flask containing 150 ml LB broth, kanamycin 
50 mg/l and incubated until the OD reached to 1 at 37 °C 
under shaking speed of 180  rpm (IKA, KS 4000). Then, 
150 ml of culture was inoculated into the fermenter and 
the fermentation was operated at 37  °C. The pH was 
controlled at 7.2 using 10% NaOH and 10% H2SO4. The 
dissolved oxygen (DO) was maintained at 30% while agi-
tation and air flow rate were cascaded with no pure oxy-
gen purge. Primarily, the bacteria carrying the desired 
plasmid was cultured for 6 h withdrawing 2 ml samples 
every 1 h and measuring the turbidity at 600 nm to study 
the cell growth pattern. We used the results of this step to 
account for the growth phase design prior to the induc-
tion phase. The primary growth study showed that the 
culture should grow for about 4  h to achieve an optical 
density of 1.5 at 600  nm. Then, IPTG was added to the 
fermentation culture to induce the expression of rPDT 
protein. The expression phase of fermentation was oper-
ated at different operational conditions generated via sta-
tistical design for optimization studies. The fermentation 
runs terminated after further 6 h cultivation, the cultures 
were centrifuged at 5000g for 5 min in portions and 2 ml 
samples were taken for further studies.

Western blot analysis
Protein expression was assessed by Western blotting. At 
the end of each expression run of 6  h, 2  ml samples of 
fermentation were centrifuged (5000g for 10 min at 4 °C) 
and subsequently the pellet was resuspended in a mixture 
of 100  µl of 50  mM phosphate buffer (pH 7.0), 2-mer-
captoethanol (5%), 10% SDS and 0.004% bromophenol 
blue heated to boil for 5 min. The proteins were resolved 
by SDS-PAGE and transferred to nitrocellulose mem-
branes according to the method of Towbin et al. (1979). 
Non-specific binding sites were blocked by submerging 



Page 3 of 9Koopaei et al. AMB Expr  (2018) 8:135 

the membrane in 3% skim milk in TBST (0.1% Tween 
in TBS) for 1.5  h. The membrane was then incubated 
with anti-His tag monoclonal antibody (1/7500, Sigma-
Aldrich) which was followed by incubation with the 
peroxidase-conjugated goat anti-mouse IgG antibody 
(1/1000, Sigma-Aldrich). Extensive washing was carried 
out after each step. rPDT protein was detected by adding 
of the horseradish peroxidase (HRP) substrate (7.5  mg 
3,3′ diaminobenzidine (DAB), 10  µl 30% H2O2 in 15  ml 
TBST). Then, ImageJ software was employed to analyze 
the protein bands on the nitrocellulose papers.

Experimental design
In a preliminary study, Plackett–Burman (PB) design 
was employed to screen factors affecting rPDT expres-
sion. This design can be used to select the most impor-
tant factors among many candidates in order to make the 
study smaller and more manageable. Hence, using a PB 
factorial design, each factor was examined in two coded 
levels: − 1 and + 1 for low and high level, respectively. 
A first-order multiple regression was used to model the 
data, when no interaction between the main factors is 
assumed. Using the statistical software package Design-
Expert software version 7.0.0 (Stat-Ease, Inc., Minne-
apolis, MN, USA), the design matrix was built for the 
evaluation of 8 variables in 12 experiments. All experi-
ments were carried out in triplicate and the average of 
the levels of rPDT (band intensity) was taken as response. 
Different factors were screened for their effects on the 
rPDT expression (In Publishing). After recognition of 
the most influential parameters affecting rPDT produc-
tion by E. coli from the previous study, Box–Behnken 
response surface methodology approach was applied to 
determine the optimum levels of these variables towards 
the protein production in the fermenter with the scale-
up approach. Temperature, IPTG concentration, and DO 
were selected as factors for the optimization of rPDT 
expression each at three different levels coded as − 1, 0, 
and 1. The coded and actual values of the parameters are 
presented in Table  1. Table  2 shows the Box–Behnken 
design matrix generated by Design-Expert software ver-
sion 7.0.0 (Stat-Ease, Inc., Minneapolis, MN, USA) with 
a total number of 15 experiments including 12 factorial 
points and 3 center point replications. rPDT expression 

was assessed as the response. Predicted rPDT expression 
was calculated using the following quadratic polynomial 
equation:

in which Y is the predicted response, β0 is the intercept, 
βs are linear coefficients, βss are squared coefficients, Xsz 
are interaction coefficients, and X1, X2 and X3 are inde-
pendent variables.

Assuming this equation, the linear, quadratic and inter-
actions of the independent variables on the response 
could be evaluated. Design-Expert software package was 
used to perform the statistical analysis and generate the 
graph plots.

The effect of independent variables on the response 
was assessed using ANOVA and a p-value of < 0.05 was 
used as the results significance level. Multiple correla-
tion coefficient (R2) and adjusted R2 were used as qual-
ity indicators to assess the quadratic polynomial equation 
fitness. Relationship and interactions between the vari-
ables and the response was illustrated through contour 
and three-dimensional surface plots. Solving the second 
order equation from the model or grid search in RSM 
plots produced the optimal points.

Results
Growth kinetic and rPDT production by E. coli at basal 
fermentation condition
The growth curve of E. coli BL21 at basal fermenta-
tion condition was investigated to monitor the growth 
pattern (Fig.  1). Comparative western blotting on the 

(1)

Y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2 + β13X1X3

+ β23X2X3 + β11X
2

1 + β22X
2

2 + β33X
2

3

Table 1  Coded and  real values for  the  Box–Behnken 
design

Variable Variable code − 1 0 + 1

Temperature (°C) X1 20 30 40

DO (%) X2 10 30 50

IPTG (μM) X3 25 112.5 200

Table 2  Box–Behnken design matrix

Run T DO IPTG rPDT band intensity

1 20 10 112.5 10934.5

2 40 10 112.5 6874.91

3 20 50 112.5 11531.7

4 40 50 112.5 6147.456

5 20 30 25 10745.06

6 40 30 25 5949.517

7 20 30 200 11619.7

8 40 30 200 6395.547

9 30 10 25 8968.991

10 30 50 25 9389.53

11 30 10 200 9104.195

12 30 50 200 9437.547

13 30 30 112.5 9953.16

14 30 30 112.5 10302.3

15 30 30 112.5 10235
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experimental runs showed different amount of the PDT 
protein in each sample that was recognized by the anti-
His tag monoclonal antibody (Fig. 2). Figure 2 compares 
some of the experimental fermentation runs which were 
employed for the statistical analysis. It was observed that 
in bacterial growth phase, DO dropped to around 10% 
after 1 h when the cascade started to compensate for DO 
drop and purged air or oxygen. The oxygen supply con-
tinued afterwards to maintain the DO at desired levels 
(10%, 30% and 50%).

Optimization of rPDT production by statistical 
experimental design
An optimization approach was applied in the present 
study using the results from a prior screening study. In 
the previous study, different parameters were screened 
for effect on rPDT expression in E. coli in flask scale. 
Eight parameters including vector type, bacterial strain, 
culture medium, expression temperature, shaking 
speed, IPTG, glucose and antibiotic concentrations were 
screened using Plackett–Burman statistical design. In 
the present study, temperature and IPTG concentration 
as the two most significantly influential factors and dis-
solved oxygen that could not be precisely controlled in 
the flask setting, were optimized for the expression of 
rPDT in pilot scale via fermenter.

Optimization of the fermentation conditions by Box–
Behnken design
To explore the optimum production region of the 
fusion protein rPDT expression, the main effects of the 
most significant parameters (X1: T, X2: DO, and X3: 
IPTG) and the binary interactions were further inves-
tigated. Each independent factor was studied at three 
levels. Table 2 shows the Box–Behnken design matrix of 
the coded variables with the experimental results of the 

rPDT expression. Due to experimental limitations the 
fermentation runs were performed in one run. How-
ever, the center point was performed in five runs and 
the results showed a satisfactory level of consistence.

The plots of normal probability and Studentized 
residual versus the value predicted by the model reveals 
no trends that indicates homogeneity of variance in the 
data and the absence of outlier data in the experimental 
runs (Figs. 3 and 4).

Figure  5 shows the response surface plots for the 
experimental results. Figure 5a shows that lower levels 
of temperature favors higher production levels of rPDT. 
On the other hand, level of the protein remained con-
stant while increasing the dissolved oxygen level in the 
fermentation medium. Figure  5b also shows the same 
trend for temperature, however, when the tempera-
ture falls down, higher IPTG concentration increases 
the yield. Figure  5c reveals the relation between DO 
and IPTG showing that the center point values mostly 
provide the suitable fermentation conditions. It should 
also be considered that when low temperature was used 
for fermentation, higher DO and IPTG would favor the 
overall yield.

Fig. 1  Growth kinetics of Escherichia coli in the basal fermentation 
condition

Fig. 2  Comparative western blotting of the PDT protein; 
experimental runs 1–8

Fig. 3  Residual plot, internally Studentized residuals versus predicted 
values
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For predicting the optimal response, a second-order 
polynomial model was fitted onto the experimental data 
for rPDT expression:

where X1, X2, and X3 are the culture temperature, DO, 
and IPTG, respectively. Analysis of variance (ANOVA) 
showed that the model is significant (F-value = 73.81 
and p-value ≤ 0.0001). At the model level, the correlation 
measures for the estimation of the regression equation 
are the multiple correlation coefficient R and the determi-
nation coefficient R2. The closer the value of R is to 1; the 
better is the correlation between the measured and the 
predicted values. In this experiment, the value of R was 
0.9947 for the production of rPDT. This value indicates a 
high degree of correlation between the experimental and 
the predicted values. The value of determination coeffi-
cient R2 = 0.9896 for rPDT production, being a measure 
of fit of the model, indicates that about 1.4% of the total 
variations are not explained by the protein production. 
In addition, the adjusted R2 of 0.9762 and predicted R2 of 
0.9064 denote that the model explained the data variabil-
ity with a satisfactory precision (Table 3).

The optimal levels of the three components as obtained 
from the maximum point of the polynomial model were 
estimated using the Design Expert Software, and found 
to be: temperature 20  °C; DO 30% and IPTG 100  mM. 

Y = + 10316.55− 2432.94 X1 + 77.95 X2

+ 187.99 X3 − 331.16 X1X2

− 107.15 X1X3 − 21.80 X2X3

− 996.01 X
2

1 − 448.40 X
2

2 − 643.09 X
2

3

The optimal value of the rPDT production is 1.9 folds in 
comparison with that of the basal fermentation condi-
tions. This reflects the necessity and the value of optimi-
zation process for expression of recombinant proteins.

Validation of model and growth pattern
The optimized fermentation conditions found in the 
optimization study were validated experimentally and 
compared with the calculated data from the model. The 
model estimated rPDT production was 45  µg/l, while 
the polynomial model estimated an expression of 43 µg/l 
(data not shown). The validation study showed a high 
model accuracy of more than 98%, which is an evidence 
for the validity of the model in the selected fermentation 
design space.

Discussion
The production of recombinant proteins in E. coli has 
been a notable both scientific and industrial issue fac-
ing the researchers during recent decades (Ongkudon 
et al. 2011; Mahalik et al. 2014). In the current study, the 
production of rPDT was optimized in the pilot fermen-
tation scale while statistical experimental approach was 
employed. The present study promotes the application 
of statistical experimental design to elucidate the study 
design space. Knowing influential parameters and opti-
mizing them can help improve yield and quality attrib-
utes of the proteins such as soluble or biologically active 
products. For example, as Fig.  5 denotes nearly twofold 
change in protein expression (ranging from about 6000 to 
12,000 units) which implies that the DOE model depicts 
favorable process parameters to optimize the experi-
ments. Three influential parameters including tempera-
ture, IPTG concentration and dissolved oxygen were 
optimized. The application of the fermenter rendered 
the possibility of controlling propeller speed, dissolved 
oxygen and gas purge in a cascaded control system that 
may not be conveniently controlled in flask scale. rPDT 
protein composed of the immunoprotective S1 fragment 
of pertussis toxin, the full-length nontoxic diphtheria 
toxin, and fragment C of tetanus toxin. This fusion pro-
tein has been expressed in E. coli carrying the recombi-
nant plasmid and has a molecular weight of 161 kDa that 
is recognizable by specific antibodies. However, rPDT 
expression, inducible by IPTG, lacks satisfactory yield 
(Aminian et  al. 2007). In this study, the rPDT produc-
tion was optimized during two phases of screening and 
optimization studies. The results showed that the protein 
expression at lower temperature level favored expres-
sion yield that could theoretically improve soluble pro-
duction. The central levels of DO and IPTG served the 
optimum expression of rPDT protein. Nonetheless, the 
experimental set-up did not allow the temperature to be 

Fig. 4  Half-normal probability plot
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controlled at levels lower than 20 °C. In the present study, 
parameters like pH, antibiotic concentration and cul-
ture medium were kept constant. However, the bacterial 
OD at 600 nm could reach to 1.6 at the maximum as the 
plateau in the growth phase. It has been shown that the 
E. coli culture density could reach to high ranges which 
lead to significantly higher overall protein expression 
(Shiloach and Fass 2005). Temperature has been shown 
to favor cell growth but during the induction phase dis-
favors the soluble protein expression and results in inclu-
sion body formation. However, in the present study, 
low temperature contributed to production yield as the 

results denote. On the other hand, low temperature could 
compromise the plasmid stability and the overall produc-
tion yield of soluble protein (Sørensen and Mortensen 
2005). Papaneophytou et al. optimized the post-induction 
temperature for the expression of RANKL in E. coli in 
five levels (18, 22, 26, 30, and 34 °C). They found out that 
high temperature of 30 °C or higher in 24 h decreased the 
yield while culture at low temperature (20 °C) and time of 
4 h yielded favored soluble protein production. In addi-
tion, soluble protein expression was reached its maxi-
mum with both temperature and time to an optimum 
value then decreased (Papaneophytou et  al. 2013). Yari 

Fig. 5  a Response surface plot showing the interactive effect of DO and temperature on rPDT expression by E. coli. b Response surface plot 
showing the interactive effect of IPTG and temperature on rPDT expression by E. coli. c Response surface plot showing the interactive effect of DO 
and IPTG on rPDT expression by E. coli 
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et al. studied the effect of temperature on the expression 
of the recombinant BoNT/A-Hc in E. coli. Temperature 
(30 and 37 °C) did not have significant effect on the pro-
tein expression but low level of temperature favored cell 
cultivation (Yari et al. 2010, 2012).

Inducer concentration was the other variable that was 
optimized in this study. Based on the results, the expres-
sion increased while IPTG reached its central value. 
Noteworthy, with an industrial approach the lower the 
material is consumed the process is more industrially 
friendly. Papaneophytou et al. studied the effect of IPTG 
on the expression of RANKL in E. coli in five concentra-
tions (0.25, 0.5, 0.75, 1 and 1.25 mM). Protein expression 
peaked with IPTG concentration to a maximum and then 
dropped. There was also a significant interaction between 
time after induction and IPTG. However, IPTG and tem-
perature interaction negatively impacted the protein pro-
duction (Papaneophytou et al. 2013).

One important issue that the present study tried to 
shed light on was the influence of dissolved oxygen 
in the culture medium on the fusion protein produc-
tion because dissolved oxygen cannot be reliably con-
trolled in flask scale without related O2 sensor and 
Agitation-Gas purge control loop for DO sensor. Some 
other researchers just tried to control dissolved oxygen 
level in the E. coli culture medium in range including 
20–75% (Niccolai et  al. 2003; Hajinia et  al. 2012; Lee 
et  al. 2002). Although DO had a minor influence on 
the yield in the current study, but, it can be expected 
to have significant effects on the yield and the quality of 
the product in large scale fermentation processes where 
gradients in parameters like DO exists, also known as 

dissolved oxygen tension (DOT) (Sandoval-Basurto 
et al. 2005). As discussed elsewhere, short-term anaero-
bic condition caused by DOT gradient can compromise 
the product yield and quality through the diversion of 
metabolic pathways as directed by induced anaerobic 
genes (Sandoval-Basurto et al. 2005; Lee 1996; Hannig 
and Makrides 1998). Inappropriate DO control system 
or ill-functioning mixing regime of the bioreactor (e.g. 
baffle design, dead spot, recirculation zone) can under-
mine adequate DO supply and intensify the DOT gradi-
ent (Hambor 2012; Garcia-Ochoa and Gomez 2009).

The quadratic model included two factorial inter-
actions and three factor interactions were excluded 
from the model. The R2 for the model was higher than 
0.85. Pillay et  al. optimized the baculovirus-insect cell 
expression system to produce HIV-1 virus-like particles 
through four parameters including insect cell line, cell 
density, multiplicity of infection (MOI), and infection 
time. They found that cell density and infection time 
significantly affected the expression, but MOI did not 
(Pillay et al. 2009). Ongkudon and coworkers optimized 
the expression of plasmid-based measles vaccine (pcD-
NA3F) harbored in E. coli DH5α through medium opti-
mization and pH-temperature induction techniques 
using RSM. They could increase the expression yield by 
1.75 folds (Ongkudon et  al. 2011). This research pro-
vides a remarkable process optimization sample for 
pilot scale production of complex recombinant fusion 
protein vaccines.
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