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Introduction

The creation of cell-mimicking systems relies on combining a
minimal set of functionalities that are inspired by essential cel-

lular features and are either directly derived from biological
systems or reconstituted by using unnatural parts.[1, 2] The capa-

bilities to replicate and subsequently to segregate replicated

genetic information are among these essential features.
DNA replication systems of various degrees of complexity

have been successfully reconstituted.[3–8] In particular, meso-
philic bacteriophages offer attractive choices when developing

a replication apparatus for a minimal cell, due to their robust-
ness and the small set of components required. Polymerases
from bacteriophages T4, T7, and Phi29 are commonly used as

tools in molecular biology[9, 10] and can generate high DNA
yields based on multi-primed rolling-circle amplification
(RCA).[11] Recently, de novo synthesis and assembly of function-
al DNA replication components by using an in vitro transcrip-

tion and translation system has been demonstrated in the case
of the Phi29 bacteriophage. Phi29-mediated RCA synthesizes

long concatamers of linear double-stranded DNA, which could
be recircularized through Cre-lox recombination.[12] The T7 re-

plisome is another well understood system suitable for highly

processive RCA of DNA. It requires four core proteins, including
DNA polymerase Gp5, which complexes with Escherichia coli

host protein thioredoxin, the bifunctional helicase-primase
Gp4, and single-stranded DNA-binding protein Gp2.5.[13]

To minimize the risk of loss of genetic information during
cell division, cells further possess DNA segregation machiner-
ies. Eukaryotes use dynamic spindles consisting of micro-

tubules that rapidly reorganize by means of polymerization
and depolymerization and serve as tracks for molecular motors
for chromosome transport.[14–16] In contrast, prokaryotes have
evolved a more diverse range of DNA segregation mecha-

nisms,[17, 18] in which Walker-A ATPases of the ParA-type com-
monly partition chromosomal origins of replication.[19–27]

Furthermore, extrachromosomal plasmids possess their own

filament-based DNA segregating systems, typically containing
three elements: a centromeric DNA sequence, a DNA-binding

protein, and an ATPase.[28–31] The most prominent classes of
these partitioning systems are type I segregation systems em-

ploying ParA-type ATPases (similar to the chromosome-segre-
gating systems mentioned above), and type II segregation sys-

tems employing actin-like ATPases of the ParM type.[28] The dy-

namically unstable ParM polymers consist of polar, left-handed,
double-helical filaments and are tethered to plasmid DNA at

the growing (++) end through a helical accessory protein com-
plex.[32] The ParMRC system of the low-copy-number plas-

mid R1,[33] which as well as ParM also includes the centromeric
parC site and the parC-binding protein ParR, is the most thor-
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oughly characterized prokaryotic segregation machinery[34, 35]

that has also been reconstituted in vitro.[36]

Finally, compartmentalization of cellular functions is a hall-
mark of all living systems,[37] and several cellular processes

have been successfully reconstituted in biomimetic compart-
ments.[38–41] In this work, we reconstituted the core functional
aspects of replication and segregation, using the T7 system to
replicate circular plasmids and the Cre-lox system to regener-
ate them, as well as the ParMRC system for DNA segregation.

Furthermore, we showed that DNA replication could be cou-
pled to the segregation process by using condensed DNA

nanoparticles. These minimal replisome and segrosome machi-
neries were further incorporated into biomimetic compart-
ments.

Results

Minimal replisome reconstitution

To reconstitute the isothermal RCA replication of circular plas-

mids, we first used the complete T7 replication system, consist-

ing of four proteins: T7 DNA polymerase lacking the exonu-
clease activity,[42] thioredoxin, helicase Gp4, and the ssDNA-

binding protein Gp2.5. The template plasmid pRepC contained
the promoter for T7 RNA polymerase, a parC locus, and a loxP

site, to enable transcription, segregation, and recircularization-
respectively. We observed robust DNA replication through the

action of this T7 in vitro system in the presence of specific pri-

mers that anneal on both strands of the double-stranded tem-
plate plasmid (Figure 1 A and Figure S1 in the Supporting Infor-

mation). The observed reaction kinetics were comparable with
those of replication mediated by the Phi29 DNA polymerase in

the presence of random primers.
Surprisingly, DNA amplification through the action of T7

polymerase in the presence of sequence-specific primers could

be observed even in the absence of the accessory proteins,
consistent with previous reports of the T7 polymerase strand

displacement activity.[42, 43] In the presence of T7 RNA poly-
merase, DNA amplification through the action of the complete
T7 system also proceeded without external primers, thus sug-
gesting that the RNA polymerase activity is sufficient to initiate

DNA replication. Consistently with this, no RNA-polymerase-
primed replication was observed in case of the template plas-

mid lacking the T7 promoter. Finally, circular plasmids could be

regenerated from the linear RCA concatamers by recombina-
tion/circularization of DNA using Cre recombinase. This

enzyme recognizes the loxP sites on the plasmid, resulting in
at least partial regeneration of the circular plasmid (Figure 1 B).

To avoid possible interference between recombination and
replication,[12] Cre recombinase was only added after the plas-

mid replication had been allowed to proceed for 16 h. Recircu-

larization of DNA was confirmed by subsequent digest of the
recombination products with an exonuclease (Figure S2) that

enzymatically removes linear fragments.[44]

We further observed, upon prolonged replication (6–12 h),

the emergence of spherical particles of <3 mm in diameter in
the reaction mixture (Figure 1 C). As reported before, these

nanoparticles are co-precipitates of DNA and magnesium pyro-
phosphate that accumulates as the byproduct of DNA synthe-

sis in the absence of pyrophosphate kinase.[45] Consistent with
this, the observed nanoparticles could be stained by DNA-

binding dye (Figure S3). Notably, previous work had shown
that the nanoparticles are still accessible to transcription and

translation machineries.[46, 47]

Minimal segrosome reconstitution

To implement faithful DNA segregation in vitro, we reconstitut-

ed the R1-ParMRC segregation system. For visualization of the
segregation process, we adapted the microbead approach of

Garner et al. ,[36] in which biotinylated Cy3-labeled parC DNA

fragments serving as ParR anchors were bound to 300–350 nm
streptavidin-coated beads (Figure 2 A). We observed that upon

mixing with ParR and ATP, asters and spindles of Alexa488-la-
beled ParM were formed at the beads (Figure 2 B, Movies S1

and S2). Here, the term “aster” refers to ParM filaments that
are attached to the ParRC complex at one end only, seen as fil-

Figure 1. Replication, recircularization, and compaction of a plasmid contain-
ing the T7 promoter. A) Time course of RCA-based replication of pRepC plas-
mid containing the T7 promoter and loxP sites (depicted in Figure S1), mea-
sured as fluorescence of the DNA-binding PicoGreen dye. Reaction mixtures
contained, as indicated, Phi29 DNA polymerase, T7 DNA polymerase, and T7
RNA polymerase, as well as specific or random primers. For a control reac-
tion with T7 DNA polymerase and T7 RNA polymerase, a pQE30 plasmid
lacking the T7 promoter was used. B) Recircularization of the replicated plas-
mid, mediated by Cre recombinase. Where indicated, Cre recombinase was
added after 16 h of replication, and the reaction mixture was incubated for
another 30 min. Reaction mixtures were separated along with a DNA ladder
(1 kb) on a Midori-green stained agarose gel. The lower band migrating
below 5 kb corresponds to the circularized DNA, whereas larger products
apparently correspond to linear concatamers (Figure S2). C) DNA nanoparti-
cles emerging upon prolonged (>12 h) T7 DNA replication reaction. Scale
bar: 10 mm.
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Figure 2. DNA segregation by the ParMRC system. A) Schematic representation of in vitro segregation of Cy3-labeled parC sequences (red) bound to beads
through streptavidin/biotin chemistry. Polymerization of Alexa488-labeled ParM (green) leads to filament formation and segregation of beads in dependence
on ParR (blue). B) In vitro reconstitution of the ParMRC system, with ParM (green) forming spindles connecting two beads, as well as free asters that are
linked to the parC-coated beads (red) by ParR (unlabeled). Reaction mixtures containing 5 mm ParM, 250 nm ParR, and 14 pm parC-coated beads were mixed
with 10 mm ATP to induce polymerization. Scale bar: 5 mm. C) Distribution of aster length, and D) number of asters per bead. E) TEM image of ParM filament
bundles growing from a bead. Scale bar: 200 nm. F) Time-lapse series of an elongating ParM spindle pushing parC-bound beads apart. Scale bar : 10 mm.
G) Distributions of spindle lengths. H) Stability of spindle length (green), aster length (red), and asters per bead (blue) over time.
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aments growing up to &3 mm (Figure 2 C). On average, about
three asters per bead were formed (Figure 2 D). Transmission

electron microscopy (TEM) showed that these are bundles of
multiple (>20) filaments growing from the microbead surface

(Figure 2 E). In contrast, the term “spindle” refers to ParM fila-
ments that are attached in a bipolar manner to the ParRC com-

plexes, resulting in bead segregation (Figure 2 F). These at-
tached ParM spindles are much longer than asters, with a

median length of 12.9 mm (Figure 2 G). Both spindles and

asters remain stable under our conditions up to 30 min (Fig-
ure 2 H). We further observed multipolar spindles interconnect-

ing more than two beads (Figure S4 and Movie S2).

DNA segregation as a dynamic event

During segregation of artificial beads, we observed relay be-
havior in which a bead was moved back and forth between

two or more other beads (Figure 3 A, B, Movies S3 and S4). This

is reminiscent of the dynamics of ParMRC-segregated plasmids
in vivo,[34] in which plasmids are rapidly (within &30 s) and

frequently shuttled from one pole of the cell to the other. To
better understand the potential role of these dynamics within

biomimetic compartments, we developed stochastic simula-
tions of our ParMRC bead system within a confined compart-
ment (Figure 3 C, D). Here, simulated beads move either by dif-

fusion, by aster growth pushing them away from a boundary,
or by forming a spindle with another bead. Spindles that can
grow no further break. When simulated within a narrow rec-
tangular compartment (with a 4:1 aspect ratio), we found that

beads were shuttled back and forth between the compartment
ends, similarly to what was observed experimentally (Fig-

ure 3 C). Interestingly, we found that these repeated segrega-
tion events led to robust bead partitioning: that is, equal num-

bers of beads being positioned at opposite ends of the com-
partment (Figure 3 D). Because spindles are more likely to form

at the compartment end with the most beads, on average a
bead is moved from that end to the other. The continuous rep-
etition of this process leads, on average, to an equal number
of beads at each end of the compartment, with relatively little
variation. Thus, the observed dynamics would be expected to

increase the efficiency of DNA segregation.

DNA segregation in microcompartments

To demonstrate segregation under spatial confinement experi-
mentally, we encapsulated the segregation machinery in sever-

al different types of microconfinement (Figure 4). These includ-
ed water-in-oil emulsion droplets (Figure 4 A, B), water-in-oil

droplets squeezed into a microfluidic PDMS channel (Fig-

ure 4 C), and half-open PDMS channels sealed with E. coli lipids
(Figure 4 D), as well as BSA-coated microfluidic PDMS channels

(Movie S5). All tested confinements sustained dynamic spindle
formation and hence bead segregation, with no apparent in-

terference with the ParMRC system, although no segregating
spindles could be observed in water-in-oil droplets with diame-

ters below a threshold of approx. 10 mm, most likely due

to a limiting number of molecules. Notably, ParM polymers
aligned with the long axes of the tested compartments, thus

indicating that the growing spindles can orient themselves by
exerting a force to slide against the walls of the compartment,
although no deformation of the water-in-oil droplets could be
observed.

Figure 3. DNA segregation as an ongoing, dynamic event. A) Time-lapse imaging of one parC-covered bead (red arrow) undergoing the segregation process
multiple times between two neighboring beads within 210 s. Scale bar: 5 mm. B) A kymograph shows the localization dynamics of this bead. C) Simulation of
ParMRC-mediated bead segregation. Shown are the positions of three beads along the long axis of a rectangular compartment (blue lines). Red areas indicate
spindle formation and extension. D) Distribution of bead positions along the long axis of the compartment resulting from simulation in (C), with approximate-
ly equal number of beads being positioned at each end of the compartment.
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Lifetime extension of segregation in micro-
compartments by ATP-regenerating and
oxygen-scavenging systems

Active segregation by dynamic ParM filaments relies on energy

consumption, such that ATP might quickly become a limiting
factor, especially under spatial confinement conditions. Indeed,

both in the open (Figure 2 H) and in the confined (Figure 5 A)

systems, ParM spindles were no longer observed after 30 to
50 min of incubation. The lifetime of the segregation system

could indeed be significantly extended by including an ATP
regeneration system, based on phosphocreatine and creatine

kinase (Figures 5 B and S5). Further extension could be ach-
ieved by supplementing the reaction mixture with an enzymat-

ic oxygen scavenger based on pyranose oxidase and cata-

lase,[48] to prevent oxidative damage of the proteins and espe-
cially the ParM filaments (Figure 5 C, D).

Segregation of DNA nanoparticles

We next explored whether DNA nanoparticles formed during
prolonged replication (Figure 1 C) could be segregated by
ParM spindles. Upon addition of isolated DNA nanoparticles

formed by the parC-containing plasmid to ParMR, ParM bind-
ing and filament formation on these nanoparticles were ob-
served (Figure 6 A). In contrast, control nanoparticles lacking
parC sites did not induce ParM filament formation (Figure 6 B),
thus confirming the specificity of the reaction and additionally

showing that parC DNA is accessible within the nanoparticles.
ParM filaments grew radially from the parC-containing nano-

particles (Figure 6 A, C and Movies S6–S8) and formed stable
bundles connecting nanoparticles, similar to the bipolar struc-
tures observed when using artificial beads. These ParM-con-

nected nanoparticles with multiple parC sites formed a dense
dynamic meshwork that could push and disperse groups of

nanoparticles (Figure 6 C and Movies S6–S8).

Figure 4. Segregation of parC-coated beads in microcompartments. Several
different types of biomimetic confinement were tested. A), B) Water-in-oil
droplets. Scale bars : 10 mm and 5 mm, respectively. C) Water-in-oil droplet
squeezed into PDMS channel. Scale bar: 20 mm. D) Half-open PDMS channel
covered with lipid bilayer isolated from E. coli. Scale bar: 10 mm.

Figure 5. Lifetime extension of the segregation system in water-in-oil drop-
lets. Formation of ParM spindles at indicated time points for the system re-
constituted A) as in Figure 2, B) with ATP regeneration, and C) with both ATP
regeneration and an oxygen-scavenger system. Scale bars: 5 mm. D) Quantifi-
cation of aster formation in experiments shown in A (*), B (*) and C (*).
Error bars indicate standard deviations.
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Discussion

The design of a minimal replication/segregation machinery
constitutes one of the major challenges on the pathway to-

wards the creation of a minimal synthetic cell. In this work, we
successfully reconstituted modules for DNA replication and

DNA segregation by using bacteriophage and plasmid systems,

encapsulated these reactions in microcompartments, and
showed that they could be coupled through the formation of
DNA nanoparticles.

Here we used RCA replication mediated by T7 DNA poly-

merase, in which replication could be initiated in a primer-free
system by T7 RNA polymerase,[49] thus providing an attractive

alternative for minimal self-replication systems. The linear repli-
cation products resulting from RCA could be at least partly
resolved by using Cre recombinase, in an approach similar to

that recently proposed for the Phi29 replication system.[12] The
efficiency of template recircularization and its coupling to repli-

cation could be further improved by optimizing the enzyme/
template ratio and by using a Cre recombinase mutant that

does not interfere with the DNA replication reaction.[12]

Out of the different cytomotive filament-based systems of
bacterial plasmid segregation,[18, 30, 31, 50] we used the best-stud-

ied R1/ParMRC machinery.[50] DNA segregation by this system
was reconstituted by using parC-coated beads that, similar to a

previous study,[36] induced ParR-dependent nucleation of ParM
filaments. Multiple filaments further bundled into asters, as

well as into spindles connecting the beads. Whereas asters
were only a few micrometers in length, spindles extended over

tens of micrometers and could thus be used for segregation of
comparatively large DNA units (comparable in size to 300–

350 nm beads) in compartments that were significantly longer
than bacterial cell size.

Further, the observed oscillatory dynamics of the ParMRC

segregation machinery are interesting in the context of its in
vivo function. Although type II plasmid segregation is typically
assumed to be a unique event that occurs prior to cell divi-
sion,[32, 51, 52] our observations suggest that it might rather be a
dynamic, extended process. This conclusion is supported by
the computational model of spatiotemporal segregation, and

it can explain previously observed plasmid dynamics.[34]

Because any future design of a minimal cell-like system must
likely involve compartmentalization, we also verified the func-

tionality of the segregation system in microcompartments, as
has previously been done for several protein machineries in-

cluding actin,[53, 54] the Min system,[40, 55] and MreB.[56, 57] Although
the compartmentalization itself apparently did not interfere

with the function of the ParMRC system, the performance of

the encapsulated system deteriorated more rapidly than in the
case of the reactions performed in bulk. This was likely due to

ATP depletion and/or the ADP poisoning effect[32, 58, 59] leading
to depolymerization of ParM.[32] The lifetime of the system

could be prolonged by including an ATP-regenerating system
that counteracts both the ATP depletion and ADP accumula-

Figure 6. Segregation of DNA nanoparticles by the ParMR system. A) DNA nanoparticles formed upon replication of the parC-containing pRepC plasmid as-
sociate with Alexa488-labeled ParM in a ParR-dependent manner. Reaction conditions were as in Figure 2 F. B) Control reaction with pUC19 plasmid lacking
parC. C) Time series of dynamic ParM filament meshwork formed around one large DNA nanoparticle that shears off and pushes apart smaller nanoparticles.
Scale bars: 20 mm.
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tion. Yet a further increase in performance duration resulted
from incorporation of an oxygen-scavenging system based on

pyranose oxidase and catalase.[48]

With regard to the application of the ParMRC system in the

cell-free segregation systems, we observed preferential align-
ment of ParM filaments along the long axis of the confine-

ment. However, at least in water-in-oil droplets, ParM filaments
did not exert sufficient force to cause compartment deforma-

tion, unlike actin/myosin-based filaments in membrane vesi-

cles.[60] However, this is not surprising, in view of the high sur-
face tension of droplets compared to vesicles. Application of
the ParMRC system for in vitro segregation should be largely
facilitated by the condensation of replicated DNA. In a bacteri-
al cell, DNA is condensed both by supercoiling and by several
DNA-binding proteins. Although in vitro reconstitution of

these activities might in principle be possible, the inorganic

DNA precipitates produced as by-products of in vitro DNA syn-
thesis[46, 47] provide a promising alternative. As these DNA nano-

particles are accessible for protein binding and functional as
templates for transcription,[47] they might indeed mimic the

condensed state of cellular DNA and serve as templates for
successive replication in minimal systems. Moreover, DNA

nanoparticles might be superior to individual plasmids as seg-

regation substrates, as the presence of multiple parC sites and
slow diffusion facilitate nucleation of multifilamented bipolar

spindles.
One current limitation of DNA nanoparticles is their hetero-

geneous size, which has a major impact on their segregation.
We observed that only nanoparticles of <1 mm in diameter

could be efficiently segregated, whereas the presence of small

nanoparticles led to the emergence of multiple nucleation
sites and thus of a filament meshwork instead of the well-

defined bipolar spindles. Nevertheless, more uniform sizes of
DNA nanoparticles might be achievable through restriction of

reaction volumes, as well as by optimization of replication con-
ditions.

In summary, although a number of challenges, such as opti-

mization and synchronization of all processes remain, we were
able to use bacterial phage and plasmid proteins to reconsti-

tute DNA replication and segregation, the two key features of
minimal cell design. These enzymatic systems were functional
in different microcompartments, and the segregation process
could be sustained over extended periods of time with the
help of energy regeneration. We further showed that replica-

tion and segregation of plasmid DNA can be connected by
using DNA nanoparticles, and that site-specific recombination
can be used to resolve plasmid concatamers emerging from
the RCA replication. Finally, the observed oscillatory dynamics
of the ParM-mediated segregation are likely important for the
function of this system in vivo.

Experimental Section

Strains : E. coli DH5a strain was used for cloning purposes. Strains
BL21(DE3) or M15 with pREP4 were used for protein production.

For protein expression, encoding sequences of T7 helicase Gp4
and single-stranded DNA-binding protein Gp2.5 were amplified by
PCR from the T7 DNA (Bioron) and cloned in frame at BamHI and
HindIII sites of pQE30 (Qiagen).

In vitro replication : The pRepC plasmid used for in vitro replica-
tion was derived from a pET11a plasmid containing a T7 promoter,
a parC site, and a 34 bp Cre-lox site. For T7 DNA replication,
0.1 ng mL@1 of template plasmid was used. The reaction mixture
consisted of the thioredoxin-reconstituted (Sigma) T7exo@ DNA
polymerase (80 nm, a kind gift from Smita S. Patel, Rutgers School
of Public Health, NJ), T7 helicase unit Gp4 (60 nm), ssDNA-binding
protein Gp2.5 (4 mm), dTTP (5 mm), and dNTPs (1.25 mm). To pro-
vide continuous reverse-stranded synthesis, external specific pri-
mers (0.4 mm) that primed adjacently on opposite strands were
used. Reaction components were mixed in a replication buffer
[Tris·HCl (pH 7.5, 40 mm), potassium glutamate (50 mm), MgCl2

(10 mm), EDTA (2 mm), dithiothreitol (DTT, 1 mm), PEG 4000 (1 %)].
For self-primed DNA replication, T7 RNA polymerase (NEB, 1 U) and
NTPs (0.2 mm) were added to stimulate the strand opening and
RNA priming at the T7 promoter region on the replication tem-
plate plasmid. For Phi29 DNA replication, Phi29 DNA polymerase
(NEB, 1 U) was used with random primers (2.5 mm) and dNTPs
(1.25 mm). The replication reactions were monitored for 4–12 h at
30 8C. The replication kinetics were measured with a plate reader
(Tecan) and use of DNA-binding PicoGreen dye in the reaction. To
circularize the replicated DNA, Cre recombinase (NEB, 1 U) was
added to the 1:10 diluted replication reaction mixture in 20 mL
reaction volume and further incubated for 30 min. To confirm the
emergence of recircularized plasmid upon Cre recombination, the
reaction mixture was treated for 2 h with exonuclease V (NEB,
50 mU mL@1) that degrades linear DNA.

DNA nanoparticle formation : To generate DNA nanoparticles, the
DNA replication reaction with T7 DNA polymerase and primers (as
above) was carried out overnight (for >12 h). Precipitates of DNA
nanoparticles were collected by centrifugation at 10 000 g for
10 min, washed thrice with nuclease free water, and stored at 4 8C.

Purification of Gp4 and Gp2.5 : T7 helicase Gp4 and single strand-
ed DNA-binding protein Gp2.5 were expressed as N-terminal His5

tags from a pQE30 plasmid. Proteins were expressed from plasmids
in E. coli M15 strain with pREP4, and induced with isopropyl b-d-1-
thiogalactopyranoside (IPTG, 1 mm) at 30 8C for 4 h. The cells were
lysed by sonication. The His-tagged proteins were enriched from
the soluble fraction of cell lysate by using a Protino Ni-TED column
(Macherey–Nagel), purified with a gel filtration Superdex S200
column, and stored in a buffer containing potassium phosphate
(pH 7.5, 20 mm), DTT (0.1 mm), EDTA (0.1 mm), and glycerol (20 %).

Expression and purification of ParM : The plasmid pET11a contain-
ing parC, the expression plasmids pET11a containing ParR, and
ParM, containing five additional amino acids (GSKCK) at the C ter-
minus to allow covalent attachment of fluorescent probes contain-
ing sulfhydryl-reactive functional groups, were a kind gift from
Paul Buske.[36] BL21(DE3) cells were transformed with pET11a pro-
tein expression vectors under the control of a T7 promoter, grown
to an OD600 of 1.0, and induced with lactose (2 %) overnight at
30 8C.

The cell pellet was resuspended in five volumes of lysis buffer con-
taining Tris·HCl (pH 7.5, 30 mm), KCl (25 mm), MgCl2 (1 mm), DTT
(2 mm), Triton-X-100 (0.1 %), phenylmethylsulfonyl fluoride (PMSF,
2 mm) and a small amount of DNase. Cells were lysed by sonica-
tion (6 V 5 min, 2 min cooling breaks in between). The cell lysate
was clarified by centrifugation at 100 000 g and 4 8C for 1 h and
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subsequently subjected to an ammonium sulfate cut (0–40 %). It
was centrifuged at 24 000 g for 30 min at 4 8C, the supernatant was
discarded, and the pellet was resuspended in eight volumes of
buffer A [Tris·HCl (pH 7.5, 30 mm), KCl (25 mm), MgCl2 (1 mm), DTT
(2 mm)] . It was again clarified at 100 000 g at 4 8C for 1 h and then
treated with ATP solution [ATP (10 mm), MgCl2 (1 mm), pH 7.5] for
polymerization. These polymers were spun immediately at
100 000 g at 4 8C for 15 min. This procedure was performed twice,
and the pellet was resuspended in 2 mL of buffer F [KCl (100 mm),
Tris·HCl (pH 7.5, 30 mm), DTT (1 mm), MgCl2 (2 mm)][36] and gel-fil-
tered through a Superdex S200 column equilibrated in buffer F.
Pure fractions were then determined by SDS-PAGE, pooled, and
frozen at @80 8C in glycerol (20 %).

Expression and purification of ParR : Proteins were expressed in
BL21(DE3) strain with pET11a ParR. Cultures were grown in lysoge-
ny broth (LB) and induced at OD600 = 1 with lactose (2 %) at 30 8C
for 16 h.

The cell pellet was resuspended in three volumes of lysis buffer [2-
(morpholin-4-yl)ethanesulfonic acid (MES, pH 6.0, 50 mm), KCl
(100 mm), EDTA (2 mm), glycerol (5 %), DTT (2 mm), PMSF (2 mm)
and a small amount of DNase].

Cells were lysed by sonication (6 V 5 min, 2 min cooling breaks in
between). The cell lysate was clarified by centrifugation at
100 000 g and 4 8C for 1 h and subsequently subjected to ammoni-
um sulfate precipitation (0–50 %). It was centrifuged at 24 000 g for
30 min at 4 8C, the supernatant was discarded, and the pellet was
resuspended in buffer 1 [50 mL; MES (pH 6.0, 25 mm), DTT (1 mm),
EDTA (1 mm)] . It was again clarified at 100 000 g at 4 8C for 1 h and
then rapidly loaded onto a MonoS column. Bound proteins were
eluted with a gradient of NaCl (0–1 m). Enriched protein peak frac-
tions analyzed on SDS-PAGE were collected, concentrated to 2 mL
in a YM-10 centricon, and gel-filtered with buffer R [KCl (300 mm),
MES (pH 6.0, 30 mm), EDTA (1 mm), DTT (1 mm)] on an S75
column.[36] Pure peak fractions were pooled after SDS-PAGE analysis
and stored in glycerol (20 %) at @80 8C.

All purified proteins were verified by MALDI MS.

Labeling of ParM with fluorescent dyes : DTT and glycerol were
removed with a PD10 salt exchange column (by following the
manufacturer’s protocol) equilibrated in buffer F. For labeling, a
commercially available kit was used (Alexa Fluor488 Protein Label-
ing Kit, Invitrogen, followed instructions according to the manufac-
turer’s protocol). Average labeling efficiency was (90:10) %.

Creation of parC with biotin/Cy3 moieties and DNA–bead cou-
pling : Primers that would generate a 356 bp stretch of DNA con-
taining the parC sequence including a 5’-biotin and a 3’-cy3
moiety were designed. Spherical streptavidin-coupled magnetic
beads (Polysciences, 50 mL) were washed thrice with wash buffer
[1.5 mL; Tris·HCl (pH 8.2, 10 mm), NaCl (1 m), EDTA (1 mm)] by using
a magnetic separator. Beads were then resuspended in wash
buffer (1.3 mL) plus Tween 20 (0.2 %). Biotinylated DNA (300 nm,
200 mL) was added to the tube, mixed, and incubated for 1 h at
4 8C. Beads were then washed with wash buffer (3 V 1.5 mL), fol-
lowed by washing with buffer FE (2 V 1.5 mL; Tris·HCl (pH 7.0,
30 mm), KCl (100 mm), EDTA (1 mm). Beads were resuspended in
FE (50 mL) and stored at 4 8C.

Glass slide and coverslip preparation : For passivation, commer-
cially pre-cleaned slides and coverslips were used. Slides and cover-
slips were again cleaned in a sonication bath with acetone, etha-
nol, isopropanol, and DI water (3 min each). The surface was dried
under a nitrogen gas jet and subsequently plasma-treated with

oxygen plasma (45 s). Eventually, gas-phase silanization was per-
formed overnight by placing the slides in a desiccator. The silane
(chlorotrimethylsilane, Sigma, approx. 200 mL) was placed in a
small beaker in the desiccator and a mild vacuum was applied. The
treated glass slides were stored in a dust-free environment.

R1 spindle assembly : Centromeric DNA [14 pm DNA-coated (parC)
beads or enriched DNA nanoparticles] was combined with 30 %
Alexa488-labeled motor protein ParM (total concentration: 5 mm),
adapter protein ParR (250 nm), methyl cellulose (0.4 %, 400 cP), DTT
(5 mm), and bovine serum albumin (BSA, 15 mg mL@1) in buffer F.
The reaction mixture was spotted on a glass slide, and the reaction
was started with ATP (10 mm, one tenth of the reaction volume of
100 mm ATP). To reduce oxidation, reactions were sealed with nail
polish after covering with a coverslip.

Widefield fluorescence microscopy : For widefield fluorescence
microscopy an inverted epifluorescence microscope (Nikon Eclipse
Ti-U, Nikon Instrument, Japan) was used at 488 nm, with a 20 V or
40 V objective and a Zyla 4.2 Plus sCMOS camera (Andor Technolo-
gy, Ltd, UK). The microscope was equipped with 525/50 nm or 647/
57 nm mounted emission filters, respectively.

Transmission electron microscopy of R1 spindles : Samples were
prepared as in the case of in vitro spindle assembly but without
BSA. Polymerization was induced by addition of nucleotides, and
samples (10 mL) were applied to carbon-coated and glow-dis-
charged grids. These were subsequently stained with aqueous
uranyl acetate (2 %). After rinsing by blotting with water twice and
evaporation of the water, samples were visualized with a Tecnai
T20 electron microscope at 200 kV.

Production of biomimetic microcompartments and encapsula-
tion of protein systems : Water-in-oil droplets were prepared by
use of a solution (2 %, v/v) of PFPE-PEG-PFPE surfactant
“E2K0660”[61] in HFE-7500 fluorinated oil (from 3M). The surfactant
was sourced from RAN Biotechnologies (www.ranbiotechnologies.-
com). Droplets were produced by mixing of surfactant-stabilized
hydrophobic phase (1.8 % surfactant and HFE-7500 oil) with aque-
ous phase by vortexing. For encapsulation experiments the aque-
ous phase was the solution containing the appropriate protein sys-
tems (e.g. segregation machinery, oxygen-scavenging system, ATP
regeneration). The droplets were subsequently trapped in glass
capillaries of 50 mm inner diameter (microcapillary tube, Sigma).

Microfluidic devices were constructed by standard photolithogra-
phy techniques.[62–64] A SU-8 master was prepared on a silicon
wafer, cast with freshly mixed poly(dimethylsiloxane) (PDMS; sili-
cone elastomer kit SYLGARD 184, 1:10 crosslinker to base ratio,
Dow Corning, USA) and polymerized overnight at 65 8C. After
oxygen plasma treatment, microfluidic devices were bound on a
glass slide. Lipid-bilayer PDMS microcompartments were prepared
as previously described.[65]

O2-scavenging system : For the oxygen-scavenging system, pyra-
nose oxidase and catalase were purchased from Sigma. Final assay
concentrations were 3.7 U mL@1 of pyranose oxidase and 90 U mL@1

catalase. Stocks (100 V) of pyranose oxidase (38 mg mL@1) and of
catalase (2 mg mL@1) were prepared by dissolving in suitable vol-
umes of buffer F. The solution was filtered with use of centrifuge
filters (0.22 mm). Aliquots (10 mL) were flash-frozen in liquid nitro-
gen and stored at @80 8C. For use, equal volumes of both were
mixed to provide a 50 V solution. d-Glucose needs to be added in
a final concentration of 0.8 %. A 50 V stock can be prepared with
40 % glucose. This was subsequently filtered for sterility and stored
at @80 8C.
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ATP-regeneration system : The ATP-regeneration system used was
based on creatine kinase and creatine phosphate as substrate. To
regenerate 0.1 mm ATP in 200 mL solution, creatine phosphate
(20 mm) was added to creatine kinase (0.1 mg mL@1).

Image processing and measurement of length and quantity dis-
tributions : Microscopy images were processed with NIH Fiji
ImageJ. Contrast or brightness adjustments were applied uniformly
to the entire image field. The software was also used to determine
spindle and aster length, as well as quantity-of-asters-per-bead dis-
tributions.
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