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Abstract

Background: Autonomously replicating sequences (ARSs) function as replication origins in
Saccharomyces cerevisiae. ARSs contain the |17 bp ARS consensus sequence (ACS), which binds the
origin recognition complex. The yeast genome contains more than 10,000 ACS matches, but there
are only a few hundred origins, and little flanking sequence similarity has been found. Thus,
identification of origins by sequence alone has not been possible.

Results: We developed an algorithm, Oriscan, to predict yeast origins using similarity to 26
characterized origins. Oriscan used 268 bp of sequence, including the T-rich ACS and a 3' A-rich
region. The predictions identified the exact location of the ACS. A total of 84 of the top 100
Oriscan predictions, and 56% of the top 350, matched known ARSs or replication protein binding
sites. The true accuracy was even higher because we tested 25 discrepancies, and 15 were in fact
ARSs. Thus, 94% of the top 100 predictions and an estimated 70% of the top 350 were correct.
We compared the predictions to corresponding sequences in related Saccharomyces species and
found that the ACSs of experimentally supported predictions show significant conservation.
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Conclusions: The high accuracy of the predictions indicates that we have defined near-sufficient
conditions for ARS activity, the A-rich region is a recognizable feature of ARS elements with a
probable role in replication initiation, and nucleotide sequence is a reliable predictor of yeast
origins. Oriscan detected most origins in the genome, demonstrating previously unrecognized
generality in yeast replication origins and significant discriminatory power in the algorithm.

Background

Every growing cell must faithfully copy its genome prior to
cell division. This process must be tightly controlled so that
every part of the genome is replicated once and only once.
Forty years ago, Jacob, Brenner, and Cuzin proposed the first
such control scheme: the replicon model [1]. The replicon was
defined as the fundamental unit of replication, much like the
operon or regulon in transcription. The initiator protein -
DnaA in bacteria - binds a sequence within a replicon called a

replicator, and then DNA synthesis initiates from a nearby,
well-defined origin. Thus, through synthesis or activation of
the initiator protein, the cell can direct the start of replication
and couple it to other events in the cell cycle.

The replicon hypothesis is a useful description of replication
in prokaryotes, but the situation in eukaryotes has proven to
be more complex. Eukaryotic chromosomes contain many
origins of replication, and the apparent importance of
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conserved replicator sequences varies substantially among
organisms. The unicellular fungus S. cerevisiae occupies a
middle ground, in that initiation occurs at discrete origins as
in bacteria, but, as in other eukaryotes, not all origins are used
in every cell cycle [2]. Thanks to the advantages of yeast as a
model organism in replication studies, more is known about
its origins than those of any other eukaryote. The conserved,
recognizable features of origin sequences are the subject of
this report.

Yeast replication origins are autonomously replicating
sequences (ARS), defined operationally as sequences that
support the maintenance of a plasmid in growing yeast cells
[3]. ARS elements do so by directing initiation of DNA repli-
cation, resulting in replication intermediates that can be
detected by techniques such as two-dimensional gel electro-
phoresis [4,5]. However, some ARS sequences do not act as
origins on the chromosome, or do so only inefficiently, per-
haps due to the earlier firing of a nearby origin or repressive
chromatin. We will refer to any cis-acting element that leads
to replication initiation on a plasmid or chromosome as an
origin.

At the core of every yeast replication origin is a replicator
sequence containing a conserved 17 bp stretch known as the
ARS consensus sequence (ACS) [6]. One of the strands of the
ACS is T-rich; by convention, we will always refer to this
strand when describing origin sequences. The ACS is required
for binding of the initiator protein, the origin recognition
complex (ORC) [7,8]. ORC is a multifunctional heterohexam-
eric ATPase, conserved among eukaryotes [9,10], with roles
in transcriptional silencing [11,12] and cytokinesis [13,14] in
addition to replication initiation. ORC subunits bind origins
throughout the cell cycle and recruit other components of the
pre-replicative complex (pre-RC), notably the minichromo-
some maintenance (MCM) protein hexamer [15].

ARS sequences are composed of two or three domains. The
most important is the central, ACS-containing A domain,
which is absolutely necessary but not sufficient for origin
function [16]. ARSs also have a B domain 3' to the ACS that
contains individual elements important, but not essential, for
activity [17]. The B1 element, found in every ARS, is adjacent
to the ACS and is part of the ORC binding site [7,8]. B2 ele-
ments, present in most but not all ARSs, function in pre-RC
assembly [18,19] and frequently overlap with DNA unwinding
elements (DUEs) [20,21]. DUEs are unwound by (-) superhe-
lical tension and presumably during replication initiation. B3
is a transcription factor binding site found in some ARSs that
influences nucleosome positioning [22]. Several origins also
require a 5'-located C domain containing a transcription fac-
tor binding site or sites for full function [23-25]. It was
recently shown that the MCM1 protein binds several ARSs on
either or both sides of the ACS; this probably contributes to
origin function as well [26].
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The ACS is not unique, as many positions are degenerate,
including five positions that may be either A or T. Addition-
ally, exact matches are rare; most origins match 14 or more of
the 17 positions, but a handful match only 11 to 13. In the yeast
genome, there are about 17,500 matches to 14 positions of the
ACS and 89,000 matches to 13 positions, orders of magnitude
more than the 300-400 origins indicated by experiments [27-
29]. Despite their common functions, B and C domains from
different origins do not have clearly recognizable sequence
similarity [17]. Therefore, it has not been possible to distin-
guish a functional ACS from the vast excess of inactive occur-
rences without labor-intensive experiments such as ARS
assays, two-dimensional gels, or microarray-based detection
of origin activity or ORC/MCM binding. Moreover, these
techniques have resolutions ranging from about 300 bp to
several kb. A sequence-based capability to recognize an ARS
element would identify the exact location of ORC binding;
this resolution can be attained experimentally only through
site-directed mutagenesis or replication initiation point map-
ping [30], neither of which is practical on a genomic scale.
This accuracy would facilitate advanced analyses of origin
components and potential interactions with surrounding
genomic elements.

Here, we report the development of an algorithm we call Oris-
can to predict the exact location of yeast replication origins
based solely on sequence information. The algorithm
searched for sequences similar to a training set, or group of
known examples, consisting of 26 yeast origins that were pin-
pointed by site-directed mutagenesis. In addition to the ACS,
the Oriscan algorithm uses 251 bp of flanking sequence,
including a region of elevated, strand-biased adenine content
in the B domain against a background of generally increased
A+T content. A total of 94 out of the 100 top predictions
match evidence of origin activity, including a number of ARSs
not detected in previous studies. This extremely high accu-
racy demonstrates that high-ranking predictions made by
Oriscan have sequence attributes sufficient for origin func-
tion. These attributes have substantial generality as well, as
the top 350 predictions of Oriscan identified 58% of about
340 probable origins identified by ARS assay or ORC/MCM
binding. Furthermore, we found that ACS conservation
extends beyond the genome of S. cerevisiae; using alignments
to related yeasts, we demonstrate that ACSs show signifi-
cantly increased conservation. Thus, despite the apparent
heterogeneity of sequences flanking the ACS of yeast origins,
the success of Oriscan demonstrates that these sequences
possess subtle but recognizable uniformity.

Results
Analysis of known origin sequences and construction of
Oriscan
We used 26 known yeast replication origin sequences (Addi-
tional data file 1) to build a profile with which to search the
genome. The origins were aligned by their ACS with no gaps.
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Yeast replication origin profile and information content. In both panels, solid vertical lines at coordinates -108 and +159 indicate the 268 nucleotide region
used by Oriscan. (@) Yeast origins were aligned by ACS with no gaps. The frequency of each base in the ACS T-rich strand in a 9 nucleotide window is
plotted by distance from the ACS center. The ACS is visible as the high central peak in T frequency; the nearby A-rich region is enclosed in dashed vertical
lines. Solid vertical lines enclose the region used in the Oriscan algorithm. (b) Information content in bits is shown for each position of the aligned origins.
The ACS appears as the high central peak. The A-rich region to the right also shows elevated information content. The red line indicates the average
information content for an alignment of randomly chosen sequences. Between (a) and (b), the positions of A and B elements in ARS/ [48] are shown for

reference.

We observed that sequences flanking the ACS differed signif-
icantly from the rest of the genome; in particular, the region
3' to the ACS contains a high proportion of A residues
(approximately 44%; Figure 1a). In the ACS, there are 3.0 Ts
for every A, and this ratio changes to 0.6 in this A-rich area.
To assess sequence conservation quantitatively, we used
nucleotide frequencies to calculate the information content
[31] at each position of the aligned origin sequences (Figure
1b). We used the formula I = Zf]log,(f;/p;), where f;is the
observed frequency of a base in a single position, p;is that
base's frequency in the whole genome, the summation is over
the four bases, and I is the information content in bits. A bit
represents a two-fold reduction in variability. Because the
A+T content of the yeast genome is 61.7%, a perfectly

conserved A or T residue contains 1.7 bits instead of exactly 2,
and a perfectly conserved G or C would contain 2.4 bits. As
expected, the ACS has the highest information content in the
region we analyzed, averaging 0.88 bits per position. The area
25 to 105 bp 3' of the center of the ACS is also enriched in
information, visible in Figure 1a as the broad peak of high
adenine content. The mean information content here is 0.18
+ 0.01 bits/position, significantly greater (p < 0.001) than 23
randomly chosen yeast genomic sequences, which showed an
information content of 0.10 bits/position.

The 100 nucleotides immediately 5' to the ACS (-108 to -9 bp
relative to the ACS) and the 53 nucleotides 3' to the A-rich
region (+107 to +159 bp) had a significantly higher A+T
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Refinement of Oriscan predictions. The number of matching (green) and
total (black) predictions at different stages in the algorithm are shown.
From the |12 million positions in the yeast genome, the best | 1,800
matches to the core ACS were selected, and these matched 354 members
of the ORC/MCM evaluation set (ACS). Selection against poly-T
sequences removed 5,268 predictions, leaving 6,532, including 332
matches to the ORC/MCM set (non-T). Further selection using the 268
nucleotide matrix containing flanking sequence removed 4,632 predictions,
leaving 1,900, including 257 matches (flanking). These predictions were
then ranked; the top 350 contained 179 matches, and the top 100
contained 84 matches.

content (68%) than bulk sequence (62%; p < 0.001). Inclu-
sion of these sequences improved the performance of Oris-
can, but use of sequences further from the ACS degraded
performance. In our search for replication origins, therefore,
we chose to use sequences from -108 to +159 bp, including
both the A-rich region and both areas of increased AT
content.

Predictions and evaluation

We compared Oriscan predictions to an evaluation set of all
origins identified using ARS assays and two-dimensional gel
electrophoresis plus the set of proposed ARS elements (pro-
ARSs) identified via ORC and MCM binding [28]. This list
totaled 408 probable origins, although some of these are false
positives, as discussed below. Each member of the evaluation
set and the experimental evidence for that member is detailed
in Additional data file 1. We did not include the chromosomal
origins identified by microarray [27] in the evaluation set,
henceforth referred to as array origins, for several reasons.
This set has lower precision (+4 kb) than the ORC/MCM data
(+0.5-1 kb) as indicated by comparison to precisely localized
origins. It is also subject to chromosomal context effects,
including passive replication by nearby, earlier origins and
poorly understood effects on the efficiency of firing.

Before evaluation, we removed the training set from consid-
eration. Training set members generally scored extremely
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well but are not a fair test of Oriscan's performance. An Oris-
can prediction was scored as a match if it fell in a region with
demonstrated origin activity or within 250 nucleotides of a
region identified as an ORC/MCM binding site. We consid-
ered the latter to be a conservative expansion of the pro-ARS
locations, since this set was shown to mislocalize several
known origins by up to 600 bp [28].

The Oriscan algorithm consists of steps that sequentially dis-
card inactive sequences to separate origins away from the rest
of the genome, followed by a ranking procedure to sort the
predictions in order of similarity to known origins (Figure 2).
We demanded that candidates pass three successive thresh-
olds based on position-weight matrices generated from the
training set (Additional data file 2). In the first step, Oriscan
analyzed the 17 bp ACS. We empirically set the threshold to
select the best 12,000 matches (Additional data file 3), as this
included matches to 87%, or 354, of the 408-member evalua-
tion set (ACS; Figure 2). Further relaxation of stringency
caused inclusion of many more non-origin sequences,
thereby degrading performance. Our threshold allowed up to
four mismatches within the 17 bp consensus (WWWWTT-
TAYRTTTWGTT, where W=AorT,Y=CorT,and R=Aor
G), and imposed larger penalties for mismatches to more con-
served positions. Thus, some candidates with only two mis-
matches were rejected.

Thymine matches 14 of the 17 positions in the ACS, so many
poly-T sequences passed the first step even though such a
sequence has never been identified as an ORC binding site.
Therefore, in the second step, we examined the three non-T
positions - A, R, and G - of the ACS independently of the rest.
We rejected about 5,000 sequences that mismatched at least
two of the three positions. Only 22 matches were lost, leaving
332 matches (non-T; Figure 2). The third step in the Oriscan
algorithm was to analyze the flanking sequences from 108
nucleotides 5'to 159 nucleotides 3' to the central nucleotide of
the ACS. We selected 1,882 sequences, including matches to
257 members of the evaluation set, that scored >2.4 standard
deviations better than mean bulk sequence. As with the ACS,
this cutoff was chosen to pass as many probable origins as
possible without degrading performance.

The final phase of the algorithm consisted of ranking the
1,882 matches in order of their likelihood of activity (Addi-
tional data file 4). This was done by deriving two profiles: one
corresponding to active origins based on the training set, and
the other to inactive candidates. Candidates with scores near
histogram peaks in the active profile, but not the inactive pro-
file, received high ranks, and the inverse cases received low
ranks. Distributions of ACS and flanking scores as Oriscan
progressively whittled down origin candidates are shown in
Additional data file 5.

We found that origin predictions ranking in the top 350 fre-
quently coincided with evidence of origin activity (Top 350;
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Specificity and sensitivity of ranked predictions. The training set was
removed from consideration before generation of this figure. (a)
Prediction accuracy is depicted visually as a function of rank. Each
prediction was plotted in rank order and coded green if it matched a
member of the evaluation set of probable origins or black if it did not, and
plotted in rank order from left to right. The high concentration of matches
in the top predictions is visible as large blocks of green on the left. (b)
Specificity, defined as 100% minus the false positive rate, and sensitivity,
100% minus the false negative rate, are plotted for ranked groups of
predictions in cumulative increments of 50 for the first 700 predictions
and then for the total ranked list of 1,900 predictions. The ORC/MCM set
was used for evaluation. Sensitivity gradually increases, and specificity
decreases, as predictions of lower rank are included.

Figure 2). This was almost always the case for predictions
with a rank of 100 or better (Top 100; Figure 2). The break-
down of matching and non-matching predictions by rank is
shown in Figure 3a. The high concentration of matches
among the top predictions is easily visible. Figure 3b shows
the specificity and sensitivity of Oriscan predictions, where
specificity is the fraction of predictions that match, and sensi-
tivity is the fraction of the evaluation set that was predicted.
The specificity of the strongest predictions is very high; it is
nearly as high for the top 100 as for the top 50, but then
declines as predictions of lower rank are added. Sensitivity
rises as more predictions are added, but less so after the top
350; specificity declines a bit more steeply after this point. We
therefore chose 100 and 350 predictions as useful cutoffs. A
total of 84 of the top 100 predictions, training set excluded,
matched a member of the evaluation set. The top 350 predic-
tions had 56% specificity and 42% sensitivity against the
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evaluation set. For reasons discussed below, these values
underestimate the true performance of the algorithm.

New origins found by Oriscan

We wished to test whether some predictions that did not
match the evaluation set were actually origins. The predic-
tions were assayed for the ability to promote replication of an
otherwise originless plasmid [32]. Of the 16 predictions in the
top 100 that did not match the evaluation set, ten had ARS
activity (Figure 4a and Additional data file 6). Thus, 94 of the
top 100 predicted origins are supported by experimental evi-
dence, showing that Oriscan effectively recognizes sequences
that are sufficient for origin function. We calculated the prob-
ability of ARS activity in a randomly selected genomic frag-
ment to be 1.4%, based on the comprehensive screen of
chromosome VI [33] and the mean length of the fragments we
used (434 bp). Our 10 out of 16 success rate is highly signifi-
cant by the exact binomial test (p < 0.0001).

Of the 16 predictions, three were within 600 nucleotides of an
ORC/MCM binding site (g, j, and 1in Figure 4a), and all three
were ARSs. We presume that these are cases of positional
errors in the ORC/MCM set. Furthermore, four of these 16 (a,
f, k, and m in Figure 4a) were within 4 kb of an array origin
found by Raghuraman et al. [27], despite not having matched
an ORC/MCM binding site; two of these four (f and m)
showed ARS activity.

Buoyed by these results, we performed ARS assays on a sam-
ple of predictions from chromosome XV that included many
with ranks between 101 and 350 (Figure 4b and Additional
data files 6 and 7). We tested ten of the 18 predictions that did
not match the evaluation set, and five were active (a, b, f, k,
and m in Figure 4b). Of these five, one (k) was 300 nucleo-
tides from the edge of an ORC/MCM site and is probably
another case of a positional error, and another (m) matched
an array origin. As above, the five out of ten success rate is
highly significant (p < 0.0001). As a control, we tested four
predictions that agreed with ORC/MCM binding sites (c, d, h,
and j in Figure 4b), and all four were active.

This sample indicates that 56% is an underestimate of the
accuracy of Oriscan's top 350 predictions. Based on extrapo-
lation from chromosome XV to the rest of the genome, there
should be at least 50 active Oriscan predictions not detected
previously, including about ten positional errors. Inclusion of
these 50 ARSs raised the specificity of Oriscan to about 70%
and sensitivity to about 50% for the top 350 predictions. This
is a lower bound because we assumed that no more predic-
tions were active on chromosome XV. We made this assump-
tion because the ten predictions we tested were not chosen
randomly.

The evaluation set contains false positives, as testing of ORC/
MCM binding sites showed that about one in five was not an
ARS [28]. This extrapolates to about 70 unspecified members
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Figure 4

Predictions and ARS assay results compared to probable origin locations. (a) Shown are predictions in the top 100 that did not match the evaluation set
along with their ARS activities. Likely origins in the evaluation set are in blue (ORC/MCM), and Oriscan predictions are in black. The width of the bars is
not to scale. Vertical gray lines drawn through predictions show whether there is overlap with an evaluation set member. ARS assay results are scored on
a scale of 0 to 3 for origin strength; 0 indicates inactivity, | indicates weak activity, and 2 and 3 indicate increasingly strong activity. Chromosomes are

identified in Roman numerals at the top left of each plot, and positions in kb are given beneath the axis. Each prediction assayed is given a lowercase letter
in red for reference in the text. For legibility, ARS assay results are offset for the pair of closely spaced predictions on chromosome IX. (b) All predictions
and ARS assay results on chromosome XV. Plotting conventions are as in (a), except that origins which were tested after mutation of the ACS (f, j, and m)
have a number indicating the ARS activity of the mutant in red under the original number. There are two very closely spaced predictions at 715 kb (g);

neither was active, and this is denoted with a single 0.

of the evaluation set. Reduction of the evaluation set size by
70 increases the sensitivity of Oriscan's top 350 predictions to
58%, or 73% for the 1,882 predictions that passed the first
three steps of Oriscan. Specificity was not affected. Thus,
Oriscan is capable of detecting most origins in the genome,
indicating that the description of origins that underpins the
algorithm has considerable generality. As a way of checking
our statistical adjustments to sensitivity, we used Oriscan to
analyze its own training set. Because there were no false pos-
itives or negatives, no adjustments are necessary. To avoid
bias, we analyzed each training set member with a version of
the algorithm that excludes that member; without such exclu-
sion, known as jackknifing, most of the training set would
have outscored the rest of the genome by several standard

deviations. We found that 15 of the 26 training set members
ranked in the top 350, giving a sensitivity of 58%. This
matched the final sensitivity of the top 350 predictions, sup-
porting the validity of our statistical corrections.

Oriscan pinpoints the ORC binding site

To demonstrate the single nucleotide precision of Oriscan, we
selected three predictions on chromosome XV (f, j, and m in
Figure 4b) shown to have ARS activity, for site-directed muta-
genesis. One (j) was the strongest prediction Oriscan made
and matched an ORC/MCM binding site; a second (m)
matched an array origin but not an ORC/MCM binding site;
and a third (f) was near but outside an evaluation set member.
In each case, four bases near the center of the ACS were

Genome Biology 2004, 5:R22
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Conservation of the ACS across species. (a) The rate of evolution was
calculated for the ACSs of 75 experimentally supported predictions and
known origins (red solid diamonds, solid lines) using alignments to
sequence of four other yeasts (see text). As a control, we performed the
same analysis on 1,580 alignments of ACSs that passed the non-T step of
Oriscan but did not match an ORC/MCM or known origin locus (black
open squares, dashed lines). Substitutions per site were estimated by
maximum parsimony, and error bars indicate the standard error of a
Poisson distribution. Statistical significance is indicated by asterisks

(* indicates p < 0.02; ** indicates p < 0.001). (b) The fraction of mutations
that were conservative, that is, between the two allowed bases at a
degenerate position, was calculated for each degenerate nucleotide of the
ACS using the same probable active and control ACS alignments as in (a).
Symbols and asterisks are as in (a).

mutated to give a BamHI restriction site, which is GC-rich
and easily verified by restriction analysis. We then repeated
the ARS assay. In the first two cases (j and m), the mutations
completely abolished ARS activity. In the last case (f), ARS
activity was noticeably weakened, as indicated by both colony
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growth rate and an ade2-1 colony color assay indicative of the
copy number of the ARS plasmid [34] (Additional data file 6).
The compromised but not abolished ARS activity may indi-
cate that the original ARS contains multiple ORC binding
sites, including the one predicted by Oriscan. To assay ARS
activity of (f), we had cloned a 486 bp fragment that contained
atotal of five matches to >13 of the 17 ACS positions, including
>9 of 11 central positions. One of the other four matches may
also bind ORC.

Evolutionary conservation of the ACS

The genomes of several related Saccharomyces sensu stricto
species have recently been sequenced [35,36]. We sought to
determine whether core ACSs predicted by Oriscan were
highly conserved in these species, which would suggest con-
servation of origin function. We used high-quality multiple
alignments of segments of intergenic sequences from S. cere-
visiae with S. paradoxus, S. mikatae, S. kudriavzevii, and S.
bayanus that were computed using the T-Coffee program
[37]1 (D.Y. Chiang and M.B. Eisen, unpublished observations).

We analyzed the sequences that aligned to the core ACSs of all
known origins and experimentally supported top 350
predictions; we found 75 alignments with sequence from all
five species. We used these to calculate the rate of evolution at
each position using maximum parsimony [38] (Figure 5a). As
a control, we performed the same calculations on all aligned
ACSs that passed the Non-T step of Oriscan (Figure 2) and
were not located within an ORC/MCM binding site or known
origin (N = 1,580). Ten positions in the ACS match a single
base; of these, eight showed higher conservation than the
control. The mean decrease in rate of evolution at these posi-
tions was 38% + 9%. No degenerate positions showed signif-
icant conservation, consistent with the reduced constraint on
these bases. The two positions at the 5' end that are predomi-
nantly A or T actually showed above-background mutation
rates. However, it was particularly common for an ACS that
contained an A at one of these positions in S. cerevisiae to
have a T in one or more of the other species, and vice versa,
despite the rarity of transversion (pyrimidine to purine or
purine to pyrimidine) mutations. Thus, it seems likely that
these positions maintain their preference to be A or T in
closely related genomes.

To analyze this preference for matching residues quantita-
tively, we examined mutation bias in all degenerate ACS posi-
tions. We define conservative mutations as changing between
the two acceptable nucleotides at a degenerate position, such
as Ato T or T to A at the 5' positions discussed above. Once
again, we compared probable active ACSs to the control set
(Figure 5b). We found that the fraction of conservative muta-
tions is higher for the probably active loci at every position;
this difference was statistically significant in five of seven
positions. Overall, the fraction of conservative mutations
increased from 21% in the controls to 37% in the set of prob-
able active ACSs.
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Thermodynamic analysis of predictions

Elevated AT content results in easily melted DNA. This has
been previously linked to origin function independently of
exact sequence, particularly in the case of DUEs [21,39]; these
generally overlap with the A-rich region and the B2 element.
We analyzed the melting free energy [21,40] of origin candi-
dates selected by Oriscan to determine whether thermody-
namic characteristics might be useful in refining predictions
and also to see whether the predictions have a similar melting
free energy to that of known origins. Specifically, we
considered the sequence from -108 to +159 - the same area
analyzed by the large position-weight matrix - and the A-rich
subset of this region, +25 to +105. For both of these regions,
known origins have lower melting free energies than inter-
genic sequences, which in turn show less stability than bulk
sequence. We found that predictions ranking above 350 had
melting free energies indistinguishable from known origins in
both of these regions, but inclusion of helical stability analysis
in the Oriscan algorithm did not improve performance (not
shown). The position-weight matrix, which accounts for the A
versus T strand bias in the A-rich region, contributes to pre-
diction accuracy more effectively than melting free energy.
This is consistent with a role for the A-rich region beyond
being easily melted.

Discussion

We developed the Oriscan algorithm to predict the exact loca-
tion of replication origins in the S. cerevisiae genome based
entirely on the similarity of their sequences to previously
identified ARS elements. Oriscan uses both the ORC binding
site and its flanking regions to identify candidates, and it then
ranks potential origins by their likelihood of activity. Starting
from an initial selection of 12,000 ACS matches, of which the
vast majority (97%) are inactive, Oriscan picked the 100 most
similar to known origins. All but six match sites with evidence
of origin activity, including ten previously undetected ARS
elements. Thus, the algorithm can recognize many origins
with near-perfect specificity, indicating that we have defined
sufficient conditions for origin function in yeast. The top 350
predictions have 70% specificity and 58% sensitivity, showing
considerable generality. This specificity value means that
Oriscan has a false positive rate of only one per 115 kb of
sequence. In comparison, current eukaryotic promoter pre-
diction algorithms have false positive rates of one per 12 kb
with 52% sensitivity [41], or one per 1.1 kb with 53% sensitiv-
ity [42]. Oriscan's performance is the first time that eukaryo-
tic replication origins have been accurately identified by
sequence alone.

Oriscan selects matches to the ACS that are flanked by
sequence broadly similar to known origins. The most striking
feature outside the ACS is an A-rich region 25-105 nucleotides
to the 3' side. The rest of the flanking sequence used by Oris-
can was enriched in both A and T residues. The A-rich region
encompasses the area where DUEs are found [21] and where
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the first RNA primers are synthesized [43]. Thus, it is similar
to the AT-rich boxes in Escherichia coli oriC, which are like-
wise situated adjacent to the replicator sequence [44] and are
a DUE [45]. The role of the strand-bias is unknown, but A-
tracts influence nucleosome positioning in vivo [46,47].

The addition of 208 experimentally supported Oriscan pre-
dictions (Additional data file 8) to the 26-member training set
allowed us to reexamine the ACS and its flanking sequences.
Immediately 5' to the ACS, we found a T-rich region (Figure
6), mirroring the A-rich region on the 3' side. This enrichment
had not been previously appreciated amid the noise of low-
level conservation and generally elevated AT content. Nucle-
otide frequencies became considerably smoother elsewhere
in flanking regions when considering the larger sample (Fig-
ure 6).

Interestingly, we also found conserved sequence within the
B1 region (Figure 6 and Additional data files 9 and 10). In
ARSI, the B1 element lies from 14 to 27 nucleotides down-
stream of the ACS center [48]. We found that positions 22-25
showed the moderately conserved consensus WTTT, visible
in Figure 6 as the spike in T content between the ACS and the
A-rich region. A small amount of conservation in this region
was noted previously [6].

The addition of the predicted sequences caused small adjust-
ments in the ACS itself (Additional data files 9 and 10). A
large change was not expected because this sequence is well
conserved and the new ACSs were selected on the basis of
their similarity to the original 26.

The ACS and B1 elements have been described as short
sequences that could be inactivated with a small number of
mutations [2], whereas the B2 element was frequently associ-
ated with DUEs and was sometimes short and sequence spe-
cific, as in ARS1 [48], but in other cases, such as ARS305 [49],
it extended over a longer region and was not easily inactivated
by point mutations. When present, the B3 element was also
sequence specific, although binding site sequences for other
transcription factors can be substituted [48]. Our results
clearly agree with the conception of the ACS and B1 elements
as short, discrete sequences. Meanwhile, the size of the A-rich
region and the overlap of its location with that of B2 elements
suggests that most yeast origins contain a long B2 element.
We find no indication of a short, highly conserved stretch
within the A-rich region (Figure 6 and Additional data file 9),
although it may have escaped our notice if its position is var-
iable. Nonetheless, a MEME search [50] of the known and
predicted origin sequences listed in Additional data file 8 for
conserved sequence motifs did not reveal any such candidates
(data not shown). B3 elements were not analyzed by Oriscan
because of their variability in sequence and position, as well
as their complete absence from some origins.
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Figure 6

Augmented sequence profile of known and predicted yeast replication origins. The 26-member training set and 208 experimentally supported predictions
were combined, and their nucleotide frequencies were moving-averaged in a 3 nucleotide window. We used a 3 nucleotide window because it was the
minimum needed to produce a relatively smooth plot. Shown is the 268 nucleotide region analyzed by Oriscan; the positions of A and B elements in ARSI
[48] are indicated below the horizontal axis. A peak in the frequency of T residues between the ACS and the A-rich region corresponding to the WTTT
consensus within the Bl element is indicated by an asterisk, and a T-rich region is noted 5' to the ACS.

We found that ACSs likely to be part of origins show highly
significant conservation across species in a position-specific
manner. Increased conservation has also been found for
another important class of non-coding DNA: transcription
factor binding sites [51]. That we found a high degree of con-
servation at predicted and known origins is an additional ver-
ification of Oriscan's ability to identify functional origins
amid a sea of other sequence. The lower rate of evolution at
non-degenerate positions in probably active ACSs and the
preference for conservative mutations at degenerate
positions strongly suggests that many origin loci have been
conserved during the 20 million years since these species
diverged. It has been shown that the most slowly evolving
positions generally participate in the most important contacts
with the protein that binds them [52]. We expect therefore the
primary sequence-specific contacts between ORC and the
ACS to occur at the highly conserved, nondegenerate nucleo-
tides between positions -4 and +7. Surprisingly, two of these
positions were not included in the original, 11 bp version of
the ACS [6].

Chromatin-bound ORC complexes that do not associate with
MCM may be involved in functions independent of replica-
tion, particularly control of chromatin silencing [11,53]. We
analyzed the data of Wyrick et al. [28] and found 60 sites not
designated pro-ARSs which bound ORC (p < 0.05) but not
MCM (p > 0.05 within 2 kb). We compared these 60 sites to
the top 350 Oriscan predictions and found only a single
match. In contrast, Oriscan found 180 of the 408 evaluation
set members, which were ORC/MCM binding sites and

known origins. Thus, Oriscan specifically recognized ORC
binding sites that associate with MCM and therefore probably
function as origins.

Conversely, there are 88 sites that were reported to bind
MCM but not ORC [28]. Of these, ten were predicted by Oris-
can; two of the sites are on chromosome XV, and both showed
ARS activity (a and b in Figure 4b). It is unlikely that these
loci do not, in fact, bind ORC, since Oriscan recognized an
ACS. ORC binding probably failed to be detected by chroma-
tin immunoprecipitation.

Oriscan made a number of predictions that did not agree with
the evaluation set. We tested 25 of these discrepancies and
found that 15 had ARS activity. Extrapolating from the results
on chromosome XV, we expect that there are at least 50 pre-
dictions overall in Oriscan's top 350 that are origins but do
not match the evaluation set. Surely, many of these origins
were missed earlier because of experimental error. For exam-
ple, we found three probable positional errors, where Oriscan
predicted an origin within a few hundred nucleotides of an
ORC/MCM binding signal. We also found that in eight of the
15 new origins, binding of replication proteins was detected
but at a statistically insignificant level, such that the location
was not designated a pro-ARS [28]. Of the new origins we
found, four did not correspond to any ORC/MCM or array
origin signal. We speculate that these origins may be used
under different conditions than those used in the binding
assay. Perhaps they become more active in a transcription
factor or chromatin modification-dependent manner.
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We found that 55% of the top 100 Oriscan predictions match
array origins [27] within 4 kb. This is a poorer match than
with the evaluation set, but is greater than the 44% overlap of
the training set with the array origins, and about the same as
the 52% agreement between ORC/MCM sites and the array
origins. The incomplete overlap of these three sets with array
origins is probably caused by chromosomal context effects,
including failure of an origin to fire because a nearby origin
fires first as well as the difficulty of detecting weak origins
using microarrays.

While Oriscan efficiently recognized most origins, it was una-
ble to detect all of them, as indicated by the sensitivity of 58%
for the top 350 predictions. Origins are missed at both the
ACS and flanking sequence recognition steps of Oriscan. Even
four training set members (ARS121, ARS304, ARS601, and
ARS1413) are not recognized by Oriscan after jackknifing
because they have unusual ACSs. Relaxing the algorithm to
retain these four allows too many non-origin sequences
through and degrades performance. The 12,000 ACS matches
selected by the first step of Oriscan include matches to 87% of
the evaluation set; the remaining 13% are most probably
missed because they have unusual ACSs like the four training
set members.

A similar situation exists for the flanking sequence, as seven
training set members fail this step, and application of the
flanking sequence matrix reduces sensitivity by about 10%.
These missed origins may simply be outliers, or they may dif-
fer more fundamentally from most ARSs. Finally, the ranking
step at the end of Oriscan uses the scores from previous steps
and is subject to the same sources of insensitivity. Thus, the
incomplete sensitivity of Oriscan results from a combination
of factors rooted in the heterogeneity of origins that previ-
ously prevented their systematic identification entirely.

Conclusions

The Oriscan algorithm's strategy of searching for a specific,
well-conserved sequence within a broader region with more
loosely defined characteristics was highly effective in identi-
fying yeast replication origins. Thus, we demonstrated that
the majority of origins in yeast have a subtle, recognizable
consistency beyond the ACS. This paradigm, particularly the
idea of a broad region of low-level conservation, will probably
be applicable elsewhere, such as in the search for origins in
other organisms. Cis-acting sequences seem to function in
metazoan origin determination at some stages of the life cycle
[54,55]. However, a detailed understanding of their structure
has been elusive because of the greater size and complexity of
these origins [56]. If enough similar origins are identified at
high resolution, Oriscan might serve as a model for building
an algorithm to recognize them.
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Materials and methods

Oriscan

The training set consisted of 26 known yeast origins (Addi-
tional data file 1) for which the ACS had been rigorously iden-
tified by site-directed mutagenesis. Three of the origins are
compound, having more than one active ACS [33,57]. In these
cases, we did not incorporate the flanking sequence, which
may have structural organization different from the more
common simple origins. Therefore, from simple origins only,
we extracted the sequence from -108 to +159 relative to the
ACS T-rich strand center. These bounds were initially chosen
by eye, based on the plots in Figure 1; Oriscan was not sensi-
tive to small changes (<10 nucleotides) in the bounds, and
greater changes either gave no change or a decrease in per-
formance. The seven active ACSs from compound origins
were added, and these sequences were aligned manually by
the ACS with no gaps. We constructed a position-weight
matrix, designated the 268 nucleotide matrix, consisting of
one column for each position and one row for each of the four
bases. We also constructed the ACS submatrix, which covered
only the ACS and consisted of the natural logarithm of each
original matrix element divided by the appropriate genomic
frequency (0.3085 for A and T, and 0.1915 for G and C). To
avoid infinite values, immediately before log transformation,
zeroes were substituted with (2N,,), where N, is the train-
ing set size (30 for the ACS). A third log-transformed subma-
trix, the non-T matrix, consisted only of the non-T positions
in the ACS (wwwwtttAyRtttwGtt). Log transformation
improved the performance of the ACS and non-T submatri-
ces; extremely rare bases are penalized to a greater extent,
due to the deformation of log-space as frequency approaches
zero. Thus, log-transformed matrices are more effective when
analyzing a highly conserved sequence such as the ACS. Con-
versely, the 268 nucleotide matrix performed better without
log transformation due to the more variable, less conserved
sequence it covers.

We used the three matrices to analyze the yeast genome.
PERL and R [58] scripts were written to scan the genome for
matches to the ACS and further analyze those matches.
Matrix scores were adjusted such that lower values indicate
better matches. The three matrix scores were subjected to the
following cutoffs: ACS matrix score of -6 or better, corre-
sponding to 2-4 mismatches out of 17, depending on the con-
servation of the mismatched position; non-T matrix score of
0.5 or better, corresponding to no more than one mismatch;
and 268 nucleotide matrix score of 38 or better, which was
2.4 standard deviations better than the mean for bulk
sequence. These scores, along with the number of adenine
residues between 25 and 105 nucleotide 3' of the ACS center,
were saved for all positions (approximately 2,000) that
passed the cutoffs.

We then calculated overall similarity of each candidate
sequence to the training set as follows. For each of the four
analyses, we generated smoothed histograms showing the

Genome Biology 2004, 5:R22



http://genomebiology.com/2004/5/4/R22

score distributions for known origins and the about 2,000
candidates. These histograms essentially describe the charac-
teristics of the populations of known origins and of the set of
candidates that passed the cutoffs described above. The histo-
grams of known origins in the ACS and 268 nucleotide analy-
ses, intended as a reference for where other origins should
score, were constructed using jackknifing. This is a treatment
in which each individual sequence is evaluated using matrices
that were constructed from only the other members of the
training set. Without jackknifing, training set members score
disproportionately well.

In histogram smoothing, 15 equally spaced breaks were calcu-
lated for each analysis such that the extremes matched the
maximum and minimum scores. Normalized histograms
were calculated for these intervals, and also for a 16-break set
of intervals with the same spacing but shifted such that the
extremes were half an interval beyond the minimum and
maximum. These results were pooled, resulting in histograms
that counted each observation twice, and the counts were
smoothed by a three-point moving average. This procedure
was designed to suppress the jaggedness that is common to
histograms based on sample sizes in the range of our training
set. In order to avoid overtraining, it was never optimized to
increase performance.

We then derived an estimate of the population characteristics
of inactive predictions by scaling the known histograms by a
factor of 0.1 and subtracting them from the prediction histo-
grams; the difference was then renormalized. The value of 0.1
was chosen as an estimate of the proportion of active
sequences in the candidate population. The performance of
Oriscan was insensitive to variation of this parameter
between 0.05 and 0.2. The inactive and known histograms
were interpolated using cubic splines. To reduce sampling
error in low-density regions, we set minimum values; for the
splines representing inactive predictions, the minimum was
0.9(2N,)*where N, is the number of predictions that passed
the initial cutoffs. The minimum value for the known histo-
grams was the lesser of the bestfit Gaussian distribution or
(2N,)* where N, is the number of sequences in the training
set. We used these cubic spline interpolations to estimate the
likelihood of finding an origin on one hand, or an inactive
sequence on the other, given the characteristics of every can-
didate; we reasoned that origins would probably have scores
in high-density regions, or peaks, of the known histograms,
whereas inactive predictions would generally score in high-
density regions of the inactive histograms. The splines are a
way of estimating the histogram height, or population den-
sity, at every score in a given range.

For each candidate, both sets of splines were evaluated at its
four scores. A final value p describing similarity to the known
and wrong populations was calculated as p = 0.1f,(0.9f, +
0.1f,)* where f; is the product of the four known spline evalu-
ations, and f, is the product of the four 'wrong' spline
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evaluations. The candidates were then ranked by p, with val-
ues near one indicative of the greatest similarity to known ori-
gins.

Predictions were evaluated against experimental evidence as
follows. The training set was always excluded. After the pre-
diction run, every position matching a member of the training
set was stricken. Then, each remaining prediction was
checked to see if it fell within bounds of a region suggested or
shown to have ARS or origin activity. The evaluation set had
408 members and was constructed by combining all ARS ele-
ments, chromosomal origins supported by two-dimensional
gels, and the set of pro-ARS loci [28]. The pro-ARS coordi-
nates were extended by 250 nucleotides in each direction
because Wyrick et al. [28] showed that these coordinates have
imperfect precision. As described in Results, this extension
was sometimes insufficient, but a larger extension would have
further increased the likelihood of an incorrect prediction
spuriously falling within a pro-ARS site.

To evaluate a set of predictions, the number of predictions
that did not match the evaluation set was divided by the
number of predictions analyzed (for example, the top 100 or
top 350) to give the raw false positive rate. This rate was then
adjusted upward for the expected number of wrong predic-
tions that match an active locus by chance. The adjustment
consisted of dividing the false positive rate by 1-x,,., where
Xgpec 18 the expected apparent specificity of random predic-
tions, equivalent to the fraction of the genome covered by the
evaluation set. Specificity was then calculated by subtracting
this adjusted false positive rate from one.

We calculated sensitivity in a similar manner, with the raw
false negative rate calculated as the number of members of
the evaluation set not matched by a prediction divided by the
total size. This was then adjusted upward by dividing by
1-X,,,s Where X, is the expected apparent sensitivity for ran-
dom predictions, calculated as the fraction of the genome cov-
ered by the set of predictions being evaluated (each prediction
was treated as covering a window of sequence the size of the
average member of the evaluation set). Sensitivity was then
calculated by subtracting the false negative rate from one.

ARS assays

To test predictions for ARS activity, we designed PCR primers
(Qiagen, Inc.) with flanking BamHI sites to amplify a 300-
550 nucleotide fragment containing the 268 nucleotide
region detected by the algorithm. The PCR product was
digested with BamHI (NEB, Inc.) and ligated into the BamHI
site of pRS326 [32]. The ligation reactions were transformed
into CaCl,-competent E. coli DH5a, and correct products
were verified by restriction mapping and sequencing. Site
directed mutagenesis was performed as described [59]; in
each case, the central 11 bp of the ACS were mutated to con-
tain the GC-rich BamHI restriction site. To assay ARS activ-
ity, 100 ng of plasmid was transformed into S. cerevisiae
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W303-1a (relevant genotype ura3-1 ade2-1) using the lithium
acetate procedure [60]. Transformants were plated on SC
URA-10 pg/ml ADE plates and incubated at least six days at
30°C, alongside an empty vector control. An insert was con-
sidered to have ARS activity if it promoted growth of colonies
able to be propagated at a frequency 103 times greater than
the empty vector. We categorized ARS elements according to
growth rate and color, which is indicative of plasmid copy
number [34] (Additional data files 6 and 7).

Evolutionary conservation of the ACS

Alignments of the ACS of predicted and known origins and
control ACSs were extracted from T-Coffee alignments of 1 kb
stretches upstream of S. cerevisiae ORFs generously pro-
vided by D.Y. Chiang and M.B. Eisen. The number of substi-
tutions in each position of each alignment were calculated
using an algorithm in which substitutions or deletions rela-
tive to S. cerevisiae were used to determine the maximum
parsimony cost (number of substitutions) based on the comb-
shaped phylogenetic tree that describes the relationship
between the five species [61]. Substitutions per position, plot-
ted in Figure 5a, were calculated by dividing the total cost at
each position by the number of species and the number of
alignments. Statistical significance was calculated empiri-
cally; we randomly selected 75 alignments from the control
set and calculated the substitutions per site as above. This was
repeated 10,000 times, and the p value was calculated as the
frequency at which an evolutionary rate occurred that was
equal to or less than the rate found for the probable origins.

The number of conservative mutations was determined by
recalculating the total cost at each position after setting syn-
onymous bases (for example, C and T for the central pyrimi-
dine position) equal to each other, and then measuring the
difference in cost; this difference was divided by the total
original cost to give the fractions plotted in Figure 5b. Statis-
tical significance was calculated using Student's two-tailed ¢-
test.

Additional data files

The following additional information is provided with the
online version of this article: Locations of known origins and
ORC/MCM binding sites used in the evaluation and training
sets (Additional data file 1); position weight matrices used by
Oriscan (Additional data file 2); ACS matches identified by
Oriscan (Additional data file 3); the ranked list of 1,882 can-
didate origins that passed the first three steps of Oriscan
(Additional data file 4); ACS and flanking score distributions
(Additional data file 5); the ARS assay results (Additional
data file 6); representative ARS assays (Additional data file 7);
sequences of the training set and experimentally supported
predictions ranking 350 or better (Additional data file 8); the
frequency matrix calculated from the sequences in Additional
data file 8, and used to generate Figure 6 and Additional data
file 10 (Additional data file 9); and finally, a graphical
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representation of ACS and B1 nucleotide frequencies in all
experimentally supported Oriscan predictions and known
origins (Additional data file 10).
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