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Abstract

Purpose Sclerosing adenosis (SA), found in � of benign

breast disease (BBD) biopsies, is a histological feature

characterized by lobulocentric proliferation of acini and

stromal fibrosis and confers a two-fold increase in breast

cancer risk compared to women in the general population.

We evaluated a NanoString-based gene expression assay to

model breast cancer risk using RNA derived from forma-

lin-fixed, paraffin-embedded (FFPE) biopsies with SA.

Methods The study group consisted of 151 women diag-

nosedwith SAbetween 1967 and 2001within theMayoBBD

cohort, of which 37 subsequently developed cancer within

10 years (cases) and 114 did not (controls). RNA was iso-

lated from benign breast biopsies, and NanoString-based

methods were used to assess expression levels of 61 genes,

including 35 identified by previous array-based profiling

experiments and 26 from biological insight. Diagonal linear

discriminant analysis of these datawas used to predict cancer

within 10 years. Predictive performance was assessed with

receiver operating characteristic area under the curve (ROC-

AUC) values estimated from 5-fold cross-validation.

Results Gene expression prediction models achieved cross-

validated ROC-AUC estimates ranging from 0.66 to 0.70.

Performing univariate associations within each of the five

folds consistently identified genes DLK2, EXOC6, KIT,

RGS12, and SORBS2 as significant; a model with only these

five genes showed cross-validated ROC-AUC of 0.75,

which compared favorably to risk prediction using estab-

lished clinical models (Gail/BCRAT: 0.57; BBD-BC: 0.67).

Conclusions Our results demonstrate that biomarkers of

breast cancer risk can be detected in benign breast tissue

years prior to cancer development in women with SA.

These markers can be assessed using assay methods opti-

mized for RNA derived from FFPE biopsy tissues which

are commonly available.

Keywords Benign breast disease � Sclerosing adenosis �
Breast cancer � Formalin-fixed paraffin-embedded �
NanoString � Risk prediction

Introduction

Breast cancer (BC) is the most commonly diagnosed can-

cer in women in the US, with estimated incidence of more

than 252,000 new cases and more than 40,000 deaths
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expected in 2017 [1]. Better identification of which women

are at increased risk for developing breast cancer would

have considerable benefit for optimal targeting of surveil-

lance and cancer prevention strategies. More than 1 million

women in the US have breast biopsies with benign findings

every year, and the majority of these biopsies are formalin-

fixed and paraffin-embedded (FFPE) to facilitate pathology

diagnosis [2, 3]. Investigations within the Mayo Clinic

benign breast disease (BBD) cohort have revealed that

more than � of the biopsies contain sclerosing adenosis

(SA), a histological feature characterized by epithelial and

myoepithelial lobulocentric proliferation, disordered acinar

architecture, and stromal fibrosis (Fig. 1); women with SA

have an approximately doubled risk of subsequent breast

cancer development [2, 4, 5]. We previously generated a

microarray-based gene signature using RNA obtained from

SA-containing biopsies, and found that this signature was

associated with subsequent cancer incidence [6]. The

results from these experiments suggested that transcrip-

tional elements associated with cancer risk are present

many years prior to development of disease, and could be

useful in predicting 10-year cancer risk for women with

SA. The purpose of the project described here was to

develop an expression-based assay method with clinical

utility to refine prognostic genes that will allow us to

design focused gene expression assays. We used Nano-

String-based methods optimized for use with FFPE-derived

RNA to define a set of transcriptional features that could be

used to create a model for assessment of breast cancer risk

for women with SA. We also assessed how transcription-

based risk assessments compare with and complement

existing Gail/BCRAT and BBD-BC risk models for this

group of women. The studies presented here provide proof

of principle for the use of the NanoString assay as a method

for risk prediction for women with SA, and further showed

that a reduced subset of the genes was just as effective for

identification of high-risk patients. Thus, this study pro-

vides a critical step towards improved breast cancer risk

prediction specifically for women with SA, and support for

future use of this discovery-validation procedure to identify

high-risk subgroups of women with other benign breast

disease (BBD) pathologies.

Methods

Patients and samples

The Mayo BBD Cohort has been previously described

[2, 6, 7]. Demographic descriptors and potential breast

cancer risk factors were identified via medical record

review and from self-response questionnaires. All subjects

have given research authorization. All study procedures

have been approved by the Mayo Clinic Institutional

Review Board. From patients diagnosed by the study

pathologist (D.W.V) with sclerosing adenosis (SA) on their

biopsy in the Mayo Clinic BBD Cohort with at least

10 years of follow-up time, a case/control set of 151

women was sampled as previously described [6], including

37 patients who subsequently developed cancer within

10 years (cases) and 114 patients that remained cancer free

at 10 years (controls). Study sample, demographic, and

clinical characteristics are presented in Table 1. Analysis

of the case–control set revealed that cases were more likely

to have atypical hyperplasia and were older than controls;

no other variables were found to be significantly associated

with case–control status.

Gene expression analysis

RNA extraction and quality control and DASL experiments

were previously described [6]; briefly, RNA was extracted

from three sequential five micron sections of FFPE biopsy

tissue, the amount and quality of RNA were assessed for

QC standards, and extracted RNA was assessed using the

Whole Genome DASL assay (Illumina, San Diego, CA).

Thirty-five genes in the original sclerosing adenosis time to

cancer-10 years (SATTC10) model [6] and twenty-six

genes selected for biological relevance (Table 2), along

with ten housekeeping genes, were used to create a custom

code set for NanoString technology analysis to identify a

gene signature subset that could be assessed using the

Fig. 1 Histology of sclerosing adenosis (SA). H & E image of SA

(arrow) in field containing normal lobules (arrowhead). Scale bar

500 lm
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Table 1 SA case–control set characteristics

Unaffected controls

(N = 114)a
Breast cancer cases

(N = 37)a
Total

(N = 151)a
P valueb

Overall impression 0.042

PDWA 101 (88.6%) 27 (73%) 128 (84.8%)

AH 13 (11.4%) 10 (27%) 23 (15.2%)

Number of atypical foci 0.107

0 101 (88.6%) 27 (73%) 128 (84.8%)

1 6 (5.26%) 3 (8.11%) 9 (5.96%)

2 3 (2.63%) 3 (8.11%) 6 (3.97%)

3 or more 4 (3.51%) 4 (10.8%) 8 (5.3%)

Year of index biopsy 0.124

1967–1981 24 (21.1%) 3 (8.11%) 27 (17.9%)

1982–1991 90 (78.9%) 34 (91.9%) 124 (82.1%)

Age at index biopsy \0.001

Mean (SD) 51.1 (10.2) 58.1 (10.8) 52.8 (10.7)

Q1, Q3 44.2, 58 48, 65 45.5, 61

Range 20–75 40–78 20–78

Family history of breast cancer 0.438

None 50 (44.6%) 21 (56.8%) 71 (47.7%)

Weak 36 (32.1%) 9 (24.3%) 45 (30.2%)

Strong 26 (23.2%) 7 (18.9%) 33 (22.1%)

Extent of lobular involution 0.013

None 13 (11.8%) 11 (31.4%) 24 (16.6%)

Partial 91 (82.7%) 24 (68.6%) 115 (79.3%)

Complete 6 (5.45%) 0 (0%) 6 (4.14%)

Columnar alteration 0.644

Absent 11 (9.65%) 2 (5.41%) 13 (8.61%)

Present 103 (90.4%) 35 (94.6%) 138 (91.4%)

Radial scars 0.405

Absent 89 (78.1%) 25 (69.4%) 114 (76%)

Present 25 (21.9%) 11 (30.6%) 36 (24%)

Age first live birth/No. Children 0.543

\21, 1 or more 26 (24.1%) 9 (25.7%) 35 (24.5%)

C21, 3 or more 38 (35.2%) 11 (31.4%) 49 (34.3%)

C21, 1–2 32 (29.6%) 8 (22.9%) 40 (28%)

Nulliparous 12 (11.1%) 7 (20%) 19 (13.3%)

BMI at biopsy 0.436

B21 28 (25.9%) 5 (13.5%) 33 (22.8%)

22–25 38 (35.2%) 14 (37.8%) 52 (35.9%)

26–29 21 (19.4%) 8 (21.6%) 29 (20%)

30? 21 (19.4%) 10 (27%) 31 (21.4%)

Use of HRT 0.590

Never 37 (34.6%) 13 (41.9%) 50 (36.2%)

Ever 70 (65.4%) 18 (58.1%) 88 (63.8%)

PDWA proliferative disease without atypia, AH atypical hyperplasia, BMI body mass index, HRT hormone replacement therapy
a Numbers expressed as N (percent) unless otherwise indicated. Due to a small number of missing data for some variables, total may not equal

151
b Chi square tests were used for categorical variables and t-tests for continuous variables (age)
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NanoString platform for risk of BC among women with

SA. The assay was performed according to manufacturer’s

protocol (nCounter XT CodeSet Gene Expression Assay).

Briefly, 100 ng of extracted RNA was hybridized with the

Reporter CodeSet and Capture ProbeSet for 18 h at 65 �C.
Samples were loaded onto the NanoString PrepStation for

processing and placed into the nCounter cartridge. The

cartridge was transferred to the nCounter digital analyzer

for image capture and data acquisition of fluorescent

reporters. Measurements were taken at high sensitivity with

555 FOV. Normalization was performed using standard

procedures with the NanoString-supplied software. Briefly,

sample counts were adjusted by the ratio of their mean, and

positive controls were adjusted to the overall mean of

positive controls, followed by subtraction of the negative

control count. The sample counts were then adjusted

depending on the ratio to the overall mean of the house-

keeping genes, using linear regression to estimate the

adjustment factor for each sample. Correlation between

normalized DASL probes and NanoString gene expression

values was analyzed by Spearman correlation using the

software R.

Statistical analysis

Quality control procedures and normalization were per-

formed on the NanoString gene expression data using the

NanoString nSolver Analysis Software. Probes were re-

annotated using the Basic Local Alignment Search Tool

(BLAST) to obtain the most current gene annotations. Data

were normalized by comparing to positive and negative

spike-in controls and to the housekeeping genes, and then

transforming the expression values using a log2 transfor-

mation. Observed expression values less than the spike-in

controls were set to missing. Probes that did not map to the

intended gene targets (N = 2) were excluded: CCDC64

and ZNF546, or failed in more than 20% of samples

(N = 13): BRCA1, C6orf150, DIAPH3, GSTA1, HOXB6,

HSDL1, KCNH3, MUC15, PTCHD1, ST6GALNAC5,

TNFSF11, TTTY17A, ZRANB. Therefore, 46 genes were

available for analysis (Supplemental Table 2). Samples

that failed in more than 50% of probes were also excluded

(N = 5). As a technical evaluation of the assay, Spearman

correlations were assessed between each DASL probe and

corresponding Nanostring probe. Additionally, univariate

associations of each NanoString probe to risk of breast

cancer within 10 years were evaluated with Wilcoxon rank

sum tests. Odds ratios were estimated with logistic

regression, both unadjusted and adjusted for age.

The previous analysis utilized a split-sample approach

with independent training and validation sets [6]. To

improve power for prediction modeling, the full sample

was utilized via fivefold cross-validation, where the full

Table 2 Genes in NanoString probeset

SATTC10 genes

AK5 Adenylate kinase 5

ATP6V0B ATPase, H? transporting, lysosomal 21 kDa

CCDC64 Coiled-coil domain containing 64

EXOC6 Exocyst complex component 6

GEMIN2 Gem (nuclear organelle) associated protein 2

GSTA1 Glutathione S-transferase alpha 1

HILPDA Hypoxia inducible lipid droplet-associated

ITPRIPL1 Inositol 1,4,5-trisphosphate receptor interacting

KCNH3 Potassium voltage-gated channel, subfamily H3

KCTD21 Potassium channel tetramerization domain 21

LARP6 La ribonucleoprotein domain family, member 6

LRRC4B Leucine rich repeat containing 4B

MAN2B2 Mannosidase, alpha, class 2B, member 2

MIR626 microRNA 626

MTHFD2 Methylenetetrahydrofolate dehydrogenase2

MUC15 Mucin 15, cell surface associated

NAPG N-ethylmaleimide-sensitive factor AP gamma

NDRG3 NDRG family member 3

NPFF Neuropeptide FF-amide peptide precursor

NPNT Nephronectin

PELI2 Pellino E3 ubiquitin protein ligase family member 2

PSMB1 Proteasome (prosome, macropain) subunit b1

PTCHD1 Patched domain containing 1

RGS12 Regulator of G-protein signaling 12

RNPS1 RNA binding protein S1, serine-rich domain

RRP15 Ribosomal RNA processing 15 homolog

SLC16A4 Solute carrier family 16, member 4

SORBS2 Sorbin and SH3 domain containing 2

TCEA3 Transcription elongation factor A (SII), 3

TGIF1 TGFB-induced factor homeobox 1

TPCN2 Two pore segment channel 2

TTTY17A Testis-specific transcript, Y-linked 17A

UFL1 UFM1-specific ligase 1

ZNF540 Zinc finger protein 540

ZNF546 Zinc finger protein 546

Additional selected genes

BRCA1 BRCA1, DNA repair associated

BTBD11 Ankyrin repeat and BTB/POZ domain-containing

MB21D1 Mab-21 Domain Containing 1 (also C6orf150)

DDR1 Discoidin Domain Receptor Tyrosine Kinase 1

DIAPH3 Diaphanous Related Formin 3

DLK2 Delta Like Non-Canonical Notch Ligand 2

EGR2 Early Growth Response 2

FBXO44 F-Box Protein 44

HMGA1 High Mobility Group AT-Hook 1

HOXB6 Homeobox B6

HSDL1 Hydroxysteroid Dehydrogenase Like 1

ITGA6 Integrin Subunit Alpha 6
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sample is randomly split into five equally sized pieces

(‘folds’); four-fifths of the sample was used for training and

the remaining one fifth was left out for an independent test

set, with the process being repeated five times across the

five folds. Samples were randomly selected for each of the

five folds stratified on case–control status, to require equal

distributions of cases and controls across fold. Training and

test set sample sizes, and age distributions were summa-

rized across each fold to ensure equal distributions. In each

training sample, a diagonal linear discriminant analysis

(DLDA) model was built to predict case–control status

based on multivariate gene expression, and applied to the

samples in the testing fold. Performance in the testing fold

was evaluated using ROC-AUC, and average AUC esti-

mates across the five testing folds are reported. Models were

constructed using gene expression alone, clinical variables

alone (Gail/BCRAT and BBD-BC model predictions), and

gene expression and clinical variables together. We devel-

oped models using all 65 genes from the entire NanoString

panel and using the 35 gene from the previously identified

SATTC10 dataset [6] to allow for a comparison between the

DASL-derived modeling and the current NanoString-

derived predictions. Because we found that not all of the

assessed gene expression data from the NanoString

assessment correlated with the prior DASL data, we aimed

to use a more refined set of genes for prediction using

univariate filtering from the set of 61 genes (where genes

with Wilcoxon rank sum p values less than or equal to 0.05

in the training sample were retained and evaluated in the

testing fold). Additionally, sensitivity analyses were con-

ducted to assess confounding by presence of atypical

hyperplasia (AH), by removing samples with AH.

Statistical analysis was carried out using R statistical

software version 3.3.1 (https://www.r-project.org).

Results

We generated a NanoString codeset containing the original

35 genes from the SATTC10 model, along with 26 addi-

tional genes selected on the basis of biological relevance to

breast cancer development and univariate association with

case–control status in the original training set of patients

[6] (Table 2), and 10 genes for background normalization.

After quality control and re-annotation, 46 genes were

available for analysis. Overall, NanoString gene expression

was significantly correlated with the expression of at least

one corresponding DASL probe for 28 of the 46 genes

evaluated (P\ 0.0006, Supplemental Table 1), displaying

moderate reproducibility of the gene expression results

between the DASL and NanoString methodologies. Of the

46 genes evaluated, expression of 11 were univariately

associated with breast cancer risk at 10 years (P\ 0.05); 7

were from the SATTC10 gene set, and 4 were biologically

relevant candidate genes (Supplemental Table 2).

We used the development of breast cancer at 10 years as

the primary end point for model development, using DLDA

modeling and five-fold cross-validation. When predictive

genes were selected on the basis of univariate association

with case status for each fold, the number of probes varied

from 6 to 17, with receiver operating characteristic area

under the curve (ROC-AUC) values averaging 0.78 over

the five training sets, and 0.67 over the five holdout vali-

dation sets (Table 3). When the BCRAT/Gail model was

applied to these same sets, ROC-AUC values averaged at

0.57 in the training sets and 0.55 in the validation sets;

combination of the univariate gene models with the

BCRAT/Gail assessments provided significant improve-

ment in training and validation sets to 0.78 and 0.68,

respectively. Similar assessment of the BBD-BC model

yielded average ROC-AUC values of 0.66 in both training

and validation sets, which were improved when combined

with the univariate gene models to 0.79 and 0.70 in the

training and validation sets, respectively. Modeling

approaches that used all 35 genes in the SATTC10 gene set

and all the genes in the NanoString codeset produced

similar results (Supplemental Tables 3, 4, respectively).

Furthermore, sensitivity analyses removing subjects with

AH also yielded similar result patterns, although AUC

estimates were slightly attenuated (Supplemental Table 5).

When we examined the specific genes selected on the

basis of univariate association with case status for each fold,

we noted that while there was some variation in gene

composition, five genes were present in every fold

(Table 4): EXOC6, RGS12, SORBS2 (from the SATTC10

Table 2 continued

Additional selected genes

KIT KIT Proto-Oncogene Receptor Tyrosine Kinase

MMP14 Matrix Metallopeptidase 14

MMP17 Matrix Metallopeptidase 17

RAC1 Rho Family, Small GTP Binding Protein Rac1

RBBP4 Retinoblastoma binding protein 4

SENP7 SUMO1/Sentrin Specific Peptidase 7

ST6GALNAC5 ST6 N-Acetylgalactosaminide Alpha-2,6-

Sialyltransferase 5

STX2 Syntaxin 2

TNFSF11 Tumor Necrosis Factor Superfamily Member 11

(RANKL)

TNK1 Tyrosine Kinase Non Receptor 1

TRIM2 Tripartite Motif Containing 2

UIMC1 Ubiquitin Interaction Motif Containing 1

USP6NL USP6 N-Terminal Like

ZRANB3 Zinc Finger RANBP2-Type Containing 3
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gene set), and DLK2 and KIT (from the set of biologically

relevant candidate genes). All of these genes showed higher

expression in cases than in controls (Fig. 2), consistent with

the positive coefficients for these genes in all models;

additionally, a cross-validated model using just these five

genes produced a cross-validated ROC-AUC of 0.75, sim-

ilar to models with more genes (Supplemental Table 6).

We also observed that the ROC-AUCs for the gene

prediction models in the leave out validation sets decreased

with increasing gene numbers from 0.73 for 6 genes to 0.58

for 17 genes (Table 3). The DLDA method generates

regression coefficients for each feature and a corresponding

intercept for each model; the magnitude and sign of the

coefficients in each model revealed that the relative con-

tribution for each of the five common genes decreased as

the models increased in gene number (Table 4), supporting

the concept that these genes are most important for pre-

diction, and that additional features decrease classification

accuracy.

Discussion

We show that NanoString-based gene expression data can

be used to model cancer risk for women with sclerosing

adenosis, a common proliferative finding present in about

� of all benign biopsies. The expression analysis used

highly fragmented RNA derived from archival FFPE

benign tissue biopsies, and yet performed well with the

NanoString assay. Models utilizing gene expression data

performed better on average than either the BCRAT/Gail

or BBD-BC models, and models including both gene

expression and clinical predictor variables showed slightly

improved performance compared to either gene expression

or clinical predictor variables alone. Univariate modeling

of randomly selected sets of the genes showed consistent

association of five genes with case status, and of these five

genes, two are therapeutically targetable cell surface

receptors that have been implicated previously in cancer

development or progression: DLK2, an effector of the

NOTCH signaling pathway [8, 9], and KIT, a receptor for

stem cell factor and other signaling molecules that is

inhibited by imatinib [10, 11]. That, all models using

DLK2 and KIT had positive coefficients for their expres-

sion values (indicating increased expression of the markers

is associated with increased BC risk, Table 4) is consistent

with their generally accepted roles in cancer development

and progression. The other three genes that showed con-

sistent expression across all models, SORBS2, RGS12, and

EXOC6, have been investigated as predictive or prognostic

cancer biomarkers [12–15]. While it is unclear specifically

how these latter three genes may contribute to breast cancer

Table 3 ROC AUC values from the fivefold cross-validation DLDA models

Model # Probes Cases:controls Training

Gene

expression only

Gail model

only

Gene expression

and Gail model

BBD-BC

model only

Gene expression and

BBD-BC model

1 6 29:92 0.81 0.54 0.81 0.61 0.81

2 10 29:91 0.78 0.58 0.78 0.69 0.79

3 10 30:91 0.77 0.61 0.78 0.67 0.78

4 10 30:91 0.76 0.61 0.77 0.69 0.79

5 17 30:91 0.75 0.53 0.75 0.63 0.76

Average 0.78 0.57 0.78 0.66 0.79

Model # Probes Cases:controls Validation

Gene

expression only

Gail model

only

Gene expression

and Gail model

BBD-BC

model only

Gene expression and

BBD-BC model

1 6 8:22 0.73 0.69 0.76 0.82 0.82

2 10 8:23 0.73 0.54 0.72 0.6 0.74

3 10 7:23 0.64 0.41 0.65 0.61 0.67

4 10 7:23 0.68 0.40 0.66 0.52 0.67

5 17 7:23 0.58 0.72 0.59 0.76 0.58

Average 0.67 0.55 0.68 0.66 0.70

Gene expression only, model contains only the selected probes; Gail model only, model includes only the BCRAT (Gail) Model predicted risk,

Gene expression and Gail model, model includes selected probes plus the BCRAT model predicted risk; BBD-BC model only, model includes

only the BBD-BC model predicted risk; Gene expression and BBD-BC model, models includes selected probes plus the BBD-BC model

predicted risk
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Table 4 Model training set DLDA coefficients by fold

Higher coefficients indicate higher expression in cases compared to controls; a coefficient of zero indicates no association/absence from the

model

Fig. 2 Gene expression distributions of five genes common to all models for breast cancer cases and controls at 10 years post biopsy

Breast Cancer Res Treat (2017) 166:641–650 647
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development or whether these molecules can be targeted

therapeutically, consistently positive coefficients are sug-

gestive of protumorigenic roles. Further investigations will

be necessary to evaluate whether these risk markers are

specific for women with SA or whether the biomarkers

identified here are indicative of differential risk for all

women with BBD.

Although the Breast Cancer Risk Assessment Tool

(BCRAT, also referred to as the Gail model) [16] provides

risk estimates at the population level, it is not as reliable

when predicting risk for individual women [17, 18]. An

individualized BC risk assessment model, designated the

BBD-BC model, was recently developed for women with

BBD and includes histologic features of the biopsy,

including SA, as well as other demographic and clinical

features. The BBD-BC model was found to provide

improved performance for women with BBD as compared

to the BCRAT model [18]. For women with SA in par-

ticular, we have found that risk stratification can be

achieved by consideration of other histological and clinical

features as well as expression of the proliferation marker

Ki-67 [5, 19]. Our results here show that further

improvements in individualized risk prediction can be

obtained through examination of transcriptional biomarkers

expressed in the benign breast biopsy tissue [19–25].

Microarray-based gene expression platforms have been

instrumental for advancing our understanding of breast

cancer and treatment and for identifying prognostic and

predictive gene signatures [26]. Although microarray-

based methods work well with RNA derived from fresh or

frozen samples, their mostly poorer performance with the

highly fragmented RNA that is derived from FFPE biopsies

has delayed their broad clinical implementation [27].

NanoString nCounter analysis methods quantify immobi-

lized RNA using customized barcodes; because this

method does not require library generation or polymerase

action, it works well with FFPE-derived RNA. Compared

to assays requiring fresh/frozen tissue, FFPE-based assays

facilitate clinical implementation since no changes in

sample collection and processing are needed. Our results

presented here validate the feasibility of our overall goal to

create an assay that incorporates NanoString-derived gene

expression biomarkers with patient demographic informa-

tion and pathological characteristics of the benign biopsy

that can be applied to all women diagnosed with SA.

Significant improvements in prediction ability will require

application of these methods to larger patient cohorts and

validation across multiple patient populations.

Strengths of our study include our focus on a SA, which

is diagnosed in as many as 250,000–500,000 women per

year in the United States; since SA is associated with a

more than doubling of BC risk, the aggregate increased BC

incidence following SA diagnosis is substantial. Moreover,

unlike very high-risk lesions such as atypical hyperplasia,

there are currently no clinical recommendations for women

diagnosed with SA and no way to assess which of these

women are at high risk and could thus benefit from inter-

ventions to reduce future BC incidence. Additionally,

because SA is a cellular and homogenous lesion that can

represent a substantial area of the biopsy tissue section, it

represents an optimal target for methods that can identify

risk signatures from RNA derived from entire tissue sec-

tions of FFPE samples, an approach that we feel will be

necessary for broadest clinical translation for this patient

population. Use of a NanoString-based risk signature assay

offers the advantage of objective risk data and is inde-

pendent of pathology interpretation. Moreover, our assay

provides additional risk stratification when combined with

standard clinical models, although as noted above, addi-

tional studies using larger patient cohorts will be necessary

to optimally combine clinical information with transcrip-

tional biomarkers for assessment of BC risk in patients

with SA. The threshold used to determine case status from

the predicted score can be optimized in future studies to

reduce false positives and false negatives while balancing

the consequences of each. Our study uses RNA derived

from whole tissue sections rather than laser microdissected

lesions; we believe this is most appropriate, since subse-

quent cancers derive from the complex tissue microenvi-

ronment, in which stromal factors are increasingly

recognized as important in cancer progression [28]. Limi-

tations include our focus on SA, which limits the appli-

cation of our signature to this particular patient group, the

relatively small number of events in each of the fivefold

cross validations, the absence of a completely independent

validation set and limited generalizability to women of

European descent. Furthermore, our cases and controls

were not matched, resulting in cases that were older and

more likely to have atypia hyperplasia than controls;

although this could induce potential biases, results were not

substantially different when adjusted for clinical model

predictions (which include age) or when restricted to sub-

jects without atypia. Additionally, our approach used linear

modeling to clarify application and interpretation; more

sophisticated modeling methods that incorporate higher

level feature interaction might further improve risk pre-

diction, but these would require larger patient sample sizes.

In conclusion, we have found that the relative expres-

sion levels of a small set of genes, determined from RNA

derived from FFPE-banked tissue biopsies and quantified

using a clinically relevant transcriptional assay method,

can be used to assess breast cancer risk for women with

SA, which is found in more than 250,000 women per year

in the US alone. Our results also identify specific genes that

may influence breast cancer development, and thus repre-

sent potential targets for novel intervention strategies.
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Ultimate clinical translation of our approach will aid in

decision-making for women with SA and their physicians,

who would be better able to choose prevention strategies

for women predicted to be at higher risk, and watchful

waiting for those women predicted to be in lower risk

categories [10, 11].
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