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ABSTRACT Human milk oligosaccharides (HMOs) may provide health benefits to in-
fants partly by shaping the development of the early-life intestinal microbiota. In a
randomized double-blinded controlled multicentric clinical trial, healthy term infants
received either infant formula (control) or the same formula with two HMOs (2=-
fucosyllactose and lacto-N-neotetraose; test) from enrollment (0 to 14 days) to
6 months. Then, all infants received the same follow-up formula without HMOs until
12 months of age. Breastfed infants (BF) served as a reference group. Stool microbi-
ota at 3 and 12 months, analyzed by 16S rRNA gene sequencing, clustered into
seven fecal community types (FCTs) with marked differences in total microbial abun-
dances. Three of the four 12-month FCTs were likely precursors of the adult entero-
types. At 3 months, microbiota composition in the test group (n � 58) appeared
closer to that of BF (n � 35) than control (n � 63) by microbiota alpha (within
group) and beta (between groups) diversity analyses and distribution of FCTs. While
bifidobacteriaceae dominated two FCTs, its abundance was significantly higher in
one (FCT BiH for Bifidobacteriaceae at high abundance) than in the other (FCT Bi for
Bifidobacteriaceae). HMO supplementation increased the number of infants with FCT
BiH (predominant in BF) at the expense of FCT Bi (predominant in control). We ex-
plored the association of the FCTs with reported morbidities and medication use up
to 12 months. Formula-fed infants with FCT BiH at 3 months were significantly less
likely to require antibiotics during the first year than those with FCT Bi. Previously
reported lower rates of infection-related medication use with HMOs may therefore
be linked to gut microbiota community types. (This study has been registered at
ClinicalTrials.gov under registration number NCT01715246.)

IMPORTANCE Human milk is the sole and recommended nutrition for the newborn
infant and contains one of the largest constituents of diverse oligosaccharides,
dubbed human milk oligosaccharides (HMOs). Preclinical and clinical association
studies indicate that HMOs have multiple physiological functions largely mediated
through the establishment of the gut microbiome. Until recently, HMOs were not
available to investigate their role in randomized controlled intervention trials. To our
knowledge, this is the first report on the effects of 2 HMOs on establishing microbi-
ota in newborn infants. We provide a detailed description of the microbiota changes
observed upon feeding a formula with 2 HMOs in comparison to breastfed reference
infants’ microbiota. Then, we associate the microbiota to long-term health as as-
sessed by prescribed antibiotic use.
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At delivery, a microbiologically essentially sterile infant (1, 2) is exposed to a
multitude of microbes from the mother and the environment (3, 4). The infant’s gut

is progressively colonized with a dense microbial population. Donor effects are impor-
tant, as seen from gut microbiota differences between Cesarean and vaginal deliveries
(3, 5–8). However, nutrition also has an important impact on the composition of the gut
microbiota, as seen from differences between breastfed and bottle-fed infants (8, 9) and
from the cessation of breastfeeding (6). Neonatal gestational age (5, 10, 11), antibiotic
therapy (12, 13), and diarrhea (14, 15) are additional factors affecting the development
of the gut microbiome. Microbes play a key role in the development of the immune
system (16–18) and host metabolism (19, 20). They are therefore speculated to exert a
key impact on neonate and infant health that may last until later in life (21–23).

Milk is a rich biological fluid providing both protection and nutrition for the suckling
newborns. Human milk contains nutrients and innate immune factors to support
normal growth and development. Nondigestible and structurally diverse oligosaccha-
rides, known collectively as human milk oligosaccharides (HMOs), form one of the
major breastmilk components. They may support immune function through the mod-
ulation of the gut microbiome ecology, resulting in colonization resistance, and the
establishment of an age-appropriate gut microbiota, educating the mucosal immune
system in its development (16, 24, 25). Due to their structural similarity with mucosal
glycans, HMOs may also function as soluble decoy receptors in the gut, protecting the
neonate from enteric pathogens (26), and may directly interact with gut epithelial cells,
yielding changes that may modulate host-microbial interactions (25).

In human milk, the oligosaccharides are extensions of lactose by one or more of the
following monosaccharides: glucose, galactose, N-acetylglucosamine (GlcNAc), fucose,
and sialic acid (N-acetylneuraminic acid) (25, 27). Three classes of oligosaccharides
coexist: neutral fucosylated, neutral nonfucosylated with N-acetylglucosamine, and
acidic with sialic acid. In contrast, cow’s milk contains very low levels of oligosaccha-
rides, which are primarily neutral nonfucosylated with galactose only and acidic with
sialic acid (27–29). Consequently, cow’s milk-based infant formula contains only rela-
tively low levels of oligosaccharides, expected to be less than 100 mg/liter of the
reconstituted formula (27), which, moreover, do not match with the major oligosac-
charide classes found in human milk.

We previously reported on the primary outcome of a randomized double-blinded
controlled multicentric safety clinical trial, in which a formula containing two major
HMOs, namely, 2=-fucosyllactose (2=FL) and lacto-N-neotetraose (LNnT), was found to be
safe and well tolerated, allowing for age-appropriate growth of the infants (30). As part
of the secondary objectives, we observed associations between feeding of the two-
HMO formula and reduced rates for reported illnesses (in the lower respiratory tract)
and infection-related medication use (antibiotics and antipyretics).

Here, we report on the impact of these HMOs (2=FL and LNnT) on the establishment
of the gut microbiota, and we further explore its relationship with the reported illnesses
and infection-related medication use.

RESULTS
Clinical trial. The randomized, double-blinded, controlled, multicenter interven-

tional clinical trial with two parallel formula-fed groups was registered at ClinicalTrials-
.gov (registration number NCT01715246, 16 October 2012). Healthy term infants re-
ceived either infant formula without HMOs (control group) or the same formula with
two HMOs (1.0 g/liter 2=FL and 0.5 g/liter LNnT; test group) from enrollment to
6 months. Then, all infants received the same follow-up formula without HMOs until
12 months of age. A group of 38 infants exclusively breastfed (BF) since birth and whose
mothers intended to exclusively breastfeed at least to 4 months was enrolled as a
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reference. From 4 months of age, complementary feeding (solid food) was allowed. The
trial details and clinical findings related to the primary objective and supportive
secondary objectives were recently published (30). The per-protocol (PP) infants who
completed the 6-month treatment and for whom we had stool samples at 3 months of
age represented 74% (control, 64/87) and 66% (test, 58/88) of the corresponding
intention-to-treat population (Fig. 1). This well-controlled subpopulation was used to
characterize the impact of the HMO supplementation on the stool microbiota.

Taxonomic composition in the stool microbiota by 16S rRNA gene sequencing.
Stool samples were collected at 3 months and 12 months of age. Microbiota compo-
sition was determined by multiplexed high-throughput sequencing of amplicons ob-
tained from the V3 and V4 regions of the 16S rRNA gene. After quality filtering,
16,014,421 sequences described the microbiota of 282 samples with an average
coverage of 47,430 (median) sequences per sample classified into 336 operational
taxonomic units (OTUs). Four samples of the per-protocol (PP) set with fewer than
10,000 sequences were excluded. Finally, the 3-month samples described 72% (control,
63/87) and 66% (test, 58/88) of the ITT population, and the 12-month samples de-
scribed 56% (control, 49/87) and 53% (test, 47/88) of the ITT population (Fig. 1).
Working with a subpopulation may affect the bias elimination of the study random-
ization. Therefore, we tested that the ITT population and the PP population reported
here showed no bias in the baseline characteristics between the formula groups
(Table 1) and no major difference in the clinical data (Table 2). Noteworthy, we used an
approach allowing accurate annotation of the 16S rRNA sequences belonging to the
genera Bifidobacterium (the dominant taxon at 3 months) and Lactobacillus down to the
species or subspecies level (15). The taxonomic composition of all samples is reported
at genus level in Fig. S1 in the supplemental material.

At 3 months, formula with two HMOs shifted stool microbiota composition and
diversity toward that of BF infants. When comparing the phylogenic diversity (31)
between feeding groups at 3 months, the lowest was in the BF group, and the test
group was significantly lower than the control group (P � 0.05) and therefore closer to
the BF group (Fig. 2A). Stratification by delivery mode showed a similar trend (Fig. 3A).

Randomized (n=175)

Alloca�on

6 months Interven�on 
(End of Treatment)

12 months Follow-up 
(End of Study)

Control ITT (n=87)

3 months stool samples used
for 16S rRNA (n =63)
(C-sec�on n=24, 38.1%)

12 months stool samples used 
for 16S rRNA (n=49)
(C-sec�on n=15, 30.6%)

Test ITT (n=88)

3 months stool samples used
for 16S rRNA (n=58)
(C-sec�on n=19, 32.8%)

12 months stool samples used 
for 16S rRNA (n=47)
(C-sec�on n=15, 31.9%)

Breas�ed reference 

3 months stool samples used 
for 16S rRNA (n=35)
(C-sec�on n=13, 37.1%)

BF (n=38)

12 months stool samples used 
for 16S rRNA (n=30)
(C-sec�on n=11, 36.7%)

Excluded from 6-month PP 
(n=53)* 

Low quality 
sample
(n=1) 

Low quality 
or missing 
samples
(n=14) 

Low quality 
or missing 
samples
(n=11) 

Low quality 
or missing 
samples

(n=3) 

Low quality 
or missing 
samples

(n=5) 

Control PP (n=64)
Completed 6-month interven�on

Test PP (n=58)
Completed 6-month interven�on

Control PP (n=59)
Completed 12-month study

Test PP (n=51)
Completed 12-month study

FIG 1 Flow of study participants. The number of stool samples analyzed at 3 and 12 months are specified for each arm and each delivery mode
in the colored boxes. *, reasons for exclusion: 4 or more teaspoons (20 g) of complementary foods per day; being off study formula for 3 or more
consecutive days before 4 months of age; disallowed medication use; out of visit window by more than 6 days; hospitalization for more than 3
consecutive days 1 week prior to visit date at 4 months visit. ITT, intention-to-treat; PP, per-protocol.
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The global difference in microbiota compositions between feeding groups was
statistically assessed by random permutations of redundancy analysis (RDA). At
3 months, the three groups were significantly separated at the genus level (P � 0.001)
(Fig. 2B), with the test group closer to the BF group. Likewise, the test and control
groups were significantly separated at the genus level (RDA1 component � 1%; P �

0.036). After stratification by mode of delivery, RDA at the genus level revealed a
stronger contribution of the Caesarean-delivered infants to the overall difference
between the formula-fed groups and the BF group (Fig. 3B). We calculated the
Bray-Curtis distances between samples at the genus level and evaluated the separation
between the test (T), the BF, and the control (Ct) groups (Fig. 3C and Table S1). As
shown on Fig. 3C, the groups of Caesarean (C)-section delivered infants (the triangle
T.C↔BF.C↔Ct.C) were more distantly related to each other than the groups of vaginally
delivered infants (the triangle T.V↔BF.V↔Ct.V). Although the BF infants were always
separated from the formula-fed infants, irrespective of delivery mode, the separation
was clearer with the control group (Ct.C↔BF.C compared to T.C↔BF.C, and Ct.V↔BF.V
compared to T.V↔BF.V). In the vaginally delivered infants, the separation between the
test and BF groups did not reach significance (T.V↔BF.V). Noteworthy, in the test
group, we could not distinguish between the delivery modes (T.C↔T.V), similarly to the

TABLE 1 Baseline characteristics of study participants

Infant characteristic

Value for:

ITT control (n � 87)a ITT test (n � 88)a PP control (n � 63)b PP test (n � 58)b BF reference (n � 35)b

Age (days)c 7.7 � 3.3 8.6 � 3.3 8.2 � 3.2 8.7 � 3.2 NAd

Male sex (n, [%]) 44 (50.6) 44 (50.0) 33 (52.4) 29 (50.0) 25 (71.4)
Gestational age (wks)c 39.2 � 1.0 39.2 � 1.1 39.3 � 1.1 39.2 � 1.0 39.3 � 1.1
Siblings at birth (n [% yes])e 58 (66.7) 56 (63.6) 41 (65.1) 35 (60.3) 20 (57.1)
Cesarean delivery (n [%])e 32 (36.8) 32 (36.4) 24 (38.1) 19 (32.8) 13 (37.1)
Wt (kg)c 3.4 � 0.4 3.4 � 0.4 3.3 � 0.4 3.4 � 0.4 3.4 � 0.3
Length (cm)c 50.9 � 1.9 50.7 � 1.7 49.9 � 1.8 50.1 � 1.8 50.3 � 1.5
aSome parameters were previously reported (30).
bStool samples with good-quality 16S gene amplification coverage.
cValues are means � standard deviations.
dNA, not applicable.
eNo difference between PP control and PP test by two-tailed chi-square with Fisher’s exact probability test.

TABLE 2 Formula intake and adverse event and medication reporting

Reported event OR (P value)a

No. (%) of infants or value

ITT control (n � 87)b ITT test (n � 88)b PP control (n � 63)c PP test (n � 58)c

Formula intake (3 mo) (ml/day)d 898 � 190 887 � 182 908 � 189 870 � 179

Antibiotic use
0–6 mo 0.6 (0.2) 43 (49.4) 30 (34.1) 32 (50.8) 22 (37.9)
0–12 mo 0.5 (0.07) 53 (60.9) 37 (42.0) 42 (66.7) 29 (50.0)

Antipyretic use
0–6 mo 0.6 (0.18) 31 (35.6) 23 (26.1) 26 (41.3) 17 (29.3)
0–12 mo 0.7 (0.35) 35 (40.2) 28 (31.8) 30 (47.6) 22 (37.9)

Bronchitis
0–6 mo 0.2 (0.004) 19 (21.8) 6 (6.8) 17 (27.0) 4 (6.9)
0–12 mo 0.3 (0.005) 24 (27.6) 9 (10.2) 22 (34.9) 7 (12.1)

LRTI (AE cluster)e

0–6 mo 0.5 (0.19) 21 (24.1) 13 (14.8) 18 (28.6) 10 (17.2)
0–12 mo 0.5 (0.054) 30 (34.5) 17 (19.3) 26 (41.3) 14 (24.1)

aOD, odds ratio and result of Fisher’s exact test between PP control and PP test.
bSome parameters were previously reported (30).
cStool samples with good-quality 16S gene amplification coverage.
dMeans � standard deviations.
eLRTI, lower respiratory tract infection; AE, adverse event.
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BF group (BF.V↔BF.C). However, in the latter group, the average distances and vari-
ances were higher, probably due to the absence of standardization of the breast milk.
On the contrary, the separation was very clear between delivery modes in the control
group (Ct.V↔Ct.C). This stratified analysis of distances showed that the effect of the
HMO supplementation was more pronounced in the population of Caesarean-delivered
infants.

At 3 months, the abundances of the genera Escherichia, Bifidobacterium, unclassified
Peptostreptococcaceae, and Streptococcus were modulated by the HMO supplementation,
placing the test group closer to the BF group (Fig. 2C and Table S2). Regarding the impact
of the delivery mode on the treatment effect for these genera (Fig. 3D), the control vaginally
delivered (control.vaginal) and test Caesarean-delivered (test.Caesarean) groups were at
similar levels, between the more contrasted control Caesarean-delivered (control.Caesar-
ean) and test vaginally delivered (test.vaginal) groups. The HMO supplementation moved
the microbiota profile seen in the C-section-born infants toward the profile observed in the
vaginally delivered infants in the control group.
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Since we used an approach allowing us to accurately annotate the 16S rRNA gene
sequences belonging to the genus Bifidobacterium down to the species or subspecies
level (15), we were able to establish that the HMO supplementation did not significantly
change the relative abundance of the individual bifidobacterial species and subspecies,
neither did the breastfeeding (see Table S3). In our data set, only 5% of the bifidobacteria
belonged to B. longum subsp. infantis, the majority of bifidobacteria were identified as B.
longum subsp. longum (18%), B. breve (15%), B. bifidum (12%), or B. catenulatum group
(11%).

At 12 months (6 months after cessation of the intervention), no significant differ-
ence in microbiota composition was observed between the two formula groups.
Compared to that in the 3-month samples, the phylogenetic diversity measured at
12 months showed a clear increase in all feeding groups, although solely the difference
between the control and BF groups remained significant at 12 months (see Fig. S2).

At 12 months of age, the global microbiota analysis by RDA showed a significant
ordination of the three groups at the genus level (RDA1 component � 2%; RDA2
component � 1%; P � 0.007). However, the two formula groups were not significantly
separated anymore (RDA1 component � 1%; P � 0.1). Similarly, we found no significant
differences in genus abundances between the two formula groups. Therefore, the
effect of the HMO supplementation on the microbiota composition was not observed
6 months after cessation of the intervention.

Seven fecal community types were defined in the 16S rRNA gene data set.
Using a Dirichlet multinomial mixtures (DMM) modeling framework (32), we clustered
the samples based on their profiles at the genus level. The optimal number of clusters
to describe our data set (see Fig. S3) defined seven fecal community types (FCTs)
showing very contrasted taxonomic compositions (Fig. 4) that were named with an
abbreviation of their respective dominant taxa: FCT En for Enterobacteriaceae, FCT Bi for
Bifidobacteriaceae, FCT BiH for Bifidobacteriaceae at higher abundance, FCT Fi for
Firmicutes, FCT Ba for Bacteroidaceae, FCT Pr for Prevotellaceae, and FCT In for an
intermediate state between 3- and 12-month FCTs (see details below).

The homogeneity of the FCTs ranged from the less variable FCT BiH and FCT Pr, the
latter also being the less frequent, to the most variable FCT En (theta values in Fig. 5C).
Considering that the main differences of genus abundances between FCTs were rooted
at the family level, we discuss them at the family level.

At 3 months, the HMO supplementation decreased the number of infants with
FCT Bi in favor of the BF-specific FCT BiH. Samples from 3-month-old infants mostly
harbored FCT En, FCT BiH, or FCT Bi (Fig. 4A). The most important differences between
these FCTs were observed in Bifidobacteriaceae, Lachnospiraceae, Peptostreptococ-
caceae, and Enterobacteriaceae (Fig. 5D). Both FCT BiH and FCT Bi showed a high
proportion of Bifidobacteriaceae, which was, however, higher in FCT BiH. FCT En was
characterized by high levels of Enterobacteriaceae and Lachnospiraceae (Fig. 5C). FCT Bi,
which showed an intermediate level of Lachnospiraceae, also harbored the highest
content of Peptostreptococcaceae. The average phylogenetic diversity of these three
FCTs showed FCT En � FCT BiH � FCT Bi (Fig. 5B). The distribution of the FCT BiH and
FCT Bi at 3 months was associated with the feeding groups (Fig. 6). Supplementation of
the formula with two HMOs increased the number of infants with FCT BiH (predomi-
nant in BF) at the expense of FCT Bi (predominant in control).

At 12 months (6 months after cessation of the intervention), no significant
association was detected between feeding groups and the four observed FCTs.

FIG 3 Legend (Continued)
around the centroid of each group. Two outliers of the BF.vaginal group are not shown on this figure. (C) Dissimilarities of microbiota. The thickness
of the lines represents the dissimilarity between groups (line weight is proportional to average pairwise Bray-Curtis distances at the genus level).
Separation between groups was assessed by the distribution of pairwise distances (when between groups’ distances � within groups’ distances;
assessed by Wilcoxon rank test) and shown as color-coded P values (the darker the color, the more significant the separation). (D) Box plots of relative
abundances for three genera. Median values are shown in boxes encompassing the interquartile range; whiskers show the 5% to 95% range; crosses
(diversity) or circles (genera) show the outliers. Significance by t test: *, P � 0.05; ***, P � 0.005; NS, not significant; BF, breastfed reference group; Ct,
control group; T, test group; C, Caesarean delivery; V, vaginal delivery. Sample size for each group is shown in panel A; n, number of samples.
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Between the four FCTs essentially observed at 12 months of age (Fig. 5A), the differ-
ences were mainly found in 6 families (Fig. 5E). FCT Fi, which showed the highest
phylogenetic diversity among the FCTs (Fig. 5B), was also characterized by the highest
proportion of Ruminococcaceae (mainly Faecalibacterium), with substantial contribu-
tions of Bacteroidaceae and Lachnospiraceae. FCT Ba was essentially driven by Bacte-
roidaceae. FCT Pr was the most homogeneous cluster at 12 months (Fig. 5C), with a
clear dominance of Prevotellaceae. FCT In was the most heterogeneous cluster at
12 months (Fig. 5C), with the lowest phylogenetic diversity (Fig. 5B), the highest
proportion of Bifidobacteriaceae, and remarkable contributions of two other dominant
taxa of the 3-month communities (Enterobacteriaceae and Lachnospiraceae). Although
samples from both FCT Fi and FCT In showed similar levels of Lachnospiraceae, the
members of this family were more diverse in FCT Fi (with the highest proportion of
Faecalibacterium), whereas FCT In contained mainly Ruminococcus and Blautia (Fig. 4).
In RDA, FCT In appeared as an intermediate state between the 3-month FCTs and the
other 12-month FCTs, with FCT Pr clearly separated from the others (Fig. 5C) (P �

0.001).
Although the frequency of FCT Fi and FCT In positions the test group as interme-

diate between the BF and control groups at 12 months of age, we did not observe a
significant association between the formula types and the FCT distribution (Fig. 6).
Stratification by delivery mode showed that the slight increase of FCT In in the test
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FIG 4 Bubble plot of the 26 most dominant bacterial genera in stool samples (at 3 and 12 months of age) clustered in seven FCTs. Each column describes one
sample. The size of the squares depicts the relative abundance (bottom left code). Taxa are shown for each row at the right with family level color-coded boxes.
n, number of samples.
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group was essentially driven by the Caesarean-delivered infants (57% compared to 25%
among the vaginally delivered infants).

When we investigated the microbiota progression in each infant, the 3-month FCTs
were not predictive of the 12-month FCTs (Fig. 5A).
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Modest differences of species relative abundances within the bifidobacterial
population between FCT BiH and FCT Bi. Although the FCTs were defined at the
genus level, we investigated if the Bifidobacterium species distribution could underlie
the difference in total bifidobacterial abundance observed between FCT BiH and FCT Bi.
To control for the potential impact of other components of breast milk, we focused our
analysis on the formula groups. Relative to the bifidobacterial population, differences of
proportion between the FCT BiH and FCT Bi were only observed for Bifidobacterium
adolescentis (means: 4% versus 3% of bifidobacteria, respectively; P � 0.03, false-
discovery rate [FDR] � 0.15) and the B. catenulatum group (B. catenulatum, B. pseudo-
catenulatum, B. angulatum, B. catenulatum, and B. catenulatum subsp. kashiwanohense;
means: 26% versus 14% of bifidobacteria, respectively; P � 0.04; FDR � 0.15). Notably,
B. longum subsp. infantis was not differently abundant between FCT BiH and FCT Bi
(means: 9% versus 4% of bifidobacteria, respectively; P � 0.16; FDR � 0.29).

Difference of total bacterial loads between FCTs but not between feeding
groups. Since 16S rRNA sequencing only indicates relative proportions of stool bacte-
ria, we complemented this information by measuring by quantitative PCR (qPCR) the
total bacterial 16S rRNA gene content per gram of feces. No difference was observed
between samples from the three feeding groups at either 3 or 12 months of age. In
contrast, significant differences were observed between FCTs (Fig. 7), with FCT BiH and
FCT Pr showing a higher 16S rRNA gene content, and FCT En and FCT In showing a
lower one. Moreover, the differences in 16S rRNA contents may underestimate the
difference of the bacterial count per gram of feces between FCTs, due to dominant taxa
harboring very different 16S rRNA copy numbers (33; database at https://rrndb.umms
.med.umich.edu/). For example, FCT BiH was mainly composed of Bifidobacterium
harboring 3.4 (mean) copies per chromosome, whereas Enterobacteriaceae and Lach-
nospiraceae, harboring 6.9 copies and 5.9 copies, respectively, dominated the FCT En.
Therefore, the difference of bacterial counts per gram of feces between these two FCTs
is likely even more pronounced. Similar corrections increasing the difference of bacte-
rial counts apply when comparing FCT Pr dominated by Prevotellaceae (3.8 copies) with
the Bacteroidaceae-dominated (5.6 copies) FCT Ba.

Association of the fecal community types with clinical parameters. We further
explored whether the FCTs at 3 months were predictive of the reported infection-
related illnesses and medications until 12 months of age (30). We restricted the analysis
to the randomized formula-fed population and tested 42 associations with reported
clinical parameters (see Materials and Methods).

FCTs at 3 months associated prospectively with any antibiotic treatment up to
12 months. Infants with FCT BiH microbiota at 3 months were less likely to require
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antibiotics up to 12 months (odds ratio [OR], 0.4; 95% confidence interval [CI], 0.17 to
0.93; P � 0.033) than infants with FCT En or FCT Bi microbiota. On the other hand,
infants with FCT Bi microbiota were more likely to require antibiotics during the first
12 months of life (OR, 3.3; 95% CI, 1.54 to 7.02; P � 0.0025) than those with FCT En or
FCT BiH. No significant association was observed when comparing infants with FCT En
to infants with FCT BiH or FCT Bi. We investigated this association further by stratifying
the formula-fed infants by FCTs at 3 months and asking whether they differ with
respect to time to first antibiotic use (Fig. 8). We observed that infants with FCT Bi
microbiota had a 2 times higher hazard ratio (likelihood) to use antibiotics during the
first year of life than the formula-fed infants with FCT BiH microbiota (delta � 2.077
[95% CI, 1.103 to 3.908]; P � 0.02). We did not observe any significant association
between other reported clinical parameters and the 3-month FCTs.

DISCUSSION

In this study, we characterized the effect of supplementation of an infant formula
with two HMOs on the microbiota of healthy infants during the intervention and its
persistence after cessation of the 6-month intervention (samples at 3 and 12 months,
respectively).

Using a classical clades-based analytical approach, the microbiota of formula-fed
3-month-old infants was different if they received HMOs and closer to the microbiota
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of BF infants. This was observed for the microbial diversity, the global composition at
the genus level, and the abundance of several major genera typical of that age period.
Among these taxa, we observed an increase of bifidobacteria, which are believed to
exert positive health benefits on their host (34). We also observed a decrease of
Escherichia and unclassified Peptostreptococcaceae, a family to which Clostridium difficile
belongs (35). This is potentially a beneficial effect of the two-HMO supplementation,
considering that a high abundance of Escherichia coli or C. difficile has been associated
with the development of eczema or atopy, respectively (36).

In general, the Caesarean-delivered infants showed more differences between
formula groups than the vaginally delivered infants. Since the early gut microbiota of
infants is altered by Cesarean compared to that by vaginal delivery (5, 6, 9), these results
suggest a stronger normalization effect of the two HMOs on altered or dysbiotic
microbiota. Similarly, breastfeeding was previously shown to better correct the dysbi-
otic gut microbiota of C-section delivered infants (9), especially when containing
2=-fucosyl-HMOs such as 2=FL (37).

At 12 months, the microbiota profiles changed from those observed at 3 months
and no longer significantly differed between the formula groups, although several
trends may persist. On the other hand, the BF group still significantly differed from the
formula groups, but to a lesser extent.

The strategy that we used to annotate the short 16S rRNA reads (15) accurately
distinguishes between most of the species and subspecies of bifidobacteria commonly
found in infants. Therefore, we were able to establish by 16S rRNA sequencing that the
distributions of the different Bifidobacterium species and subspecies abundances were
not significantly different between the feeding groups at 3 months of age. Notably, and
despite high levels of bifidobacteria in most 3-month samples, B. longum subsp. infantis
was, in most infants, a minor component of the stool microbiota in our study. This
subspecies showed no significant difference of distribution between feeding groups
and, therefore, was not the most favored bifidobacterial species in the presence of
HMOs, contrary to what was previously suggested (38). Similarly, the association
between the secretory status of mothers (affecting the abundance of 2=-fucosylated
HMOs) and the abundance of B. longum subsp. infantis in breastfed infants, as originally
observed in a U.S. cohort (39), could not be replicated in a study performed in Armenia
and Georgia (40). Adding to our results obtained in two European countries, this
observation suggests geography-related specificities of the infant gut bifidobacterial
population in its ability to utilize HMOs. Recent literature indeed showed the metabolic
capacity of strains from various bifidobacterial species (e.g., B. breve, B. longum subsp.
longum, or B. pseudocatenulatum) efficiently utilizing HMOs (41–43). Noteworthy, the
potential health benefits provided by distinct bifidobacterial species (and strains)
remain to be established.

Using a modeling approach on the 3- and 12-month infant gut microbiota data set,
we defined 7 clusters of samples showing similar taxon compositions at the genus level,
dubbed fecal community types (FCTs). The distribution of these FCTs matched the
sampling age, with three FCTs found exclusively at 3 months and four other FCTs
essentially at 12 months.

At 3 months, approximately 20% of infants harbored an FCT En microbiota, whose
frequencies were not different between feeding groups. In the succession of microbiota
communities in infants, this Enterobacteriaceae-dominated community likely takes
place before the bifidobacterium-dominated profiles (5, 41). Therefore, at 3 months, it
may represent a small proportion of infants with a less mature microbiota. Both FCT BiH
and FCT Bi were dominated by bifidobacteria. However, the FCT BiH, which was found
in most BF infants and significantly more in the test than in the control group, showed
a lower proportion of other bacteria than the FCT Bi. The latter FCT was significantly
associated with the control formula group, while the proportion of infants with FCT BiH
increased in the test formula group. FCT BiH and FCT Bi, with 92% and 76% of
bifidobacteria, respectively, look very similar to the breastfed infant gut microbiota
clusters B1 and B2 previously identified at 1 month using a completely different
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approach (41). In that study, they defined cluster E by its high level of Enterobacteri-
aceae, similarly to our FCT En. Then, they subdivided the Bifidobacteriaceae-dominated
cluster B into clusters B1 and B2 based on the dominance of fucosyllactose-utilizing
Bifidobacterium strains (as defined by the presence of a corresponding genetic factor in
isolates). The coexistence of FCT BiH and FCT Bi in our test group fed the HMO formula
may be linked to similar mechanisms.

Interestingly, we defined the FCTs at the genus level, similarly to the adult entero-
types previously reported (44). At 12 months, the FCTs seem to evolve toward the adult
enterotypes: FCT Ba toward enterotype 1 (Bacteroides), FCT Pr toward enterotype 2
(Prevotella), and FCT Fi toward the more controversial (45, 46) and less defined
enterotype 3 (Ruminococcus/Blautia/Lachnospiraceae). Although not as complex as the
adult microbiota, these precursors indicate that the enterotype establishment occurs as
early as 12 months for most infants, earlier than previously observed (47). Microbial
communities in infant stool at 12 months were recently associated with cognitive
development at 2 years of age (48). Using a different methodology (partitioning around
medoids instead of DMM), three clusters were obtained showing little similarity with
our FCTs and only “modest support” based on statistical scoring (as stated by the
authors). In our study, FCT In seems to correspond to none of the known adult
enterotypes and seems to represent an intermediate situation between the 3-month
FCTs and the other 12-month FCTs. Recently, a study showed that the mothers’ secretor
status affects the microbiota of their 2- to 3-year-old children (49). In children exclu-
sively breastfed for at least 4 months of life, bifidobacteria were increased if the
mothers were secretor positive, meaning they express functional fucosyltransferase 2
responsible for the synthesis of 2=-flucosyl-HMOs such as 2=FL in breastmilk. Similarly,
FCT In (the highest in bifidobacteria at 12 months) was likely favored by our 6-month
intervention with two HMOs, including 2=FL.

As recently observed in adult gut microbiota (50), the infant FCTs showed marked
differences in total bacterial abundances. The higher relative abundance of bifidobac-
teria in FCT BiH was accompanied and amplified by a higher microbial load. Recently,
it was shown that the bacterial cell amounts were decreased in the 6-month feces of
infants with atopic dermatitis (51). In a follow-up study of Estonian and Swedish
children who were sampled over the first year of life, a consistent lower level of
Bifidobacterium in stools was associated with the development of allergy (52). These
observations suggest a lower risk of allergy for infants carrying a FCT BiH. In our study,
FCTs at 3 months associated prospectively with any antibiotic treatment in the first year
of life. Infants showing at 3 months a stool microbiota of the type characterized by the
highest abundance of bifidobacteria and the highest density of bacteria per gram of
feces (FCT BiH) were less likely to require antibiotics up to 12 months. This also
translated into a shorter time to first antibiotics use for infants with FCT Bi than with
FCT BiH. Considering that antibiotics require physician prescriptions in Europe, the
measure of their usage is a surrogate marker of infections. Therefore, this association is
consistent with the observation that bifidobacteria confer protection against entero-
pathogenic infections through the production of acetate (53). The gut-lung axis is
gaining credibility in the literature (54), with the gut microbiota impacting respiratory
disease through the modulation of the immune response by short-chain fatty acids
(SCFAs) (55, 56). Considering that the central metabolic pathway of bifidobacteria yields
lactate and acetate as primary products of carbohydrate fermentation and that colonic
acetate is efficiently absorbed (57), the modulation of the gut microbiota observed in
our study may therefore explain the reported associations of two-HMO supplementa-
tion in infant formula with lower respiratory tract infection and medication use (30).

Our study shows some limitations, essentially depending on the original clinical trial
powered for safety (30). Only two visits (3 and 12 months) were used for the collection
of fecal samples, but the choice of the time points was informed to lower the burden
for the parents, the risk of slowing down the recruitment, and the risk of increasing the
dropout rate. Sampling stools at 3 months of age guaranteed that the infants (inclusion
to study �14 days of age) were in the randomized feeding groups sufficiently long to
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see dietary effects on the microbiota, while not being too close to the time when
feeding of complementary food (weaning) was allowed (4 months of age), as recom-
mended by the pediatric societies. The 12-month stool sampling was suitable to
explore any long-lasting effect of early-life HMO feeding. Missing data from the PP
population (Fig. 1) decreased the power of our analyses but were not expected to bias
the results, since they were the consequence of random processes: absence of sample
collection (more pronounced for the 12-month samples) and insufficient number of
sequences due to unequal pooling of PCR products before the multiplexed sequencing.
Presence of older siblings, introduction of solid food (weaning), and daycare atten-
dance are major determinants of exposure to infectious agents that might result in
antibiotic treatment. Even though the percentage of siblings was not different between
the treatment groups, the precise timing of the introduction of solid food (allowed after
4 months of age) and daycare attendance were not available for assessment and may
have introduced biases. However, randomization of the infants at recruitment should
have removed possible differences between groups. Using samples from a safety
clinical trial, the current analysis of microbiota is an exploratory work to formulate
hypotheses for future research and to inform future designs of clinical trials.

Overall, the addition of two individual structurally very specific HMOs to a starter
infant formula shifts the microbiota toward the microbiota observed with breastfeed-
ing, the standard in infant nutrition. This suggests that the risks for diseases linked to
gut ecology may be shifted toward the reduced risk level generally observed in
breastfed infants (58, 59). In our study, the association of the two-HMO-promoted FCT
BiH with an infection-related marker of positive health outcomes (less antibiotics usage)
provides arguments for this paradigm.

MATERIALS AND METHODS
Trial design and participants. The trial was conducted from October 2012 through July 2015 at the

Dipartimento Materno Infantile AOUP Paolo Giaccone Università di Palermo in Palermo, Italy, and the
Department of Paediatrics at Jessa Hospital in Hasselt, Belgium. Trial conduct complied with the Declara-
tion of Helsinki and the International Conference on Harmonization guidelines for good clinical practice.
Prior to enrollment, informed consent was obtained from the parent or the legal representative of the
infants. The study was approved by the Ethical Committees of Jessa Hospital (Belgium) and the University
of Palermo (Italy).

Healthy full-term (37 weeks � gestational age � 42 weeks) infants with a birth body weight between
2,500 g and 4,500 g, younger than 14 days, and exclusively formula fed at enrollment were eligible.
Before enrollment, mothers independently elected not to breastfeed. In the breastfed reference group,
infants exclusively breastfed since birth and whose mothers intended to exclusively breastfeed at least
to 4 months were screened for enrollment at 3 months (�5 days) of age. The target was to enroll 40
exclusively breastfed infants stratified to have equal numbers by sex and study site. Exclusion criteria
included (i) congenital illness or malformation that may affect growth, (ii) significant prenatal and/or
serious postnatal disease before enrollment (by medical decision), (iii) minor parent(s), (iv) newborn
whose parents/caregivers cannot be expected to comply with study procedures, and (v) concurrent
participation or prior participation in another clinical trial since birth, except for BF group, where vaccine
studies were allowed. Infants were randomly assigned to one of two study formulas using mode of
delivery (vaginal or Caesarean) and sex as stratification factors. Randomization was carried out using a
permuted block algorithm with Medidata Balance (New York, NY, USA). Randomized infants received
exclusive feedings with the test or control formulas from enrollment through 4 months of age, in
amounts suitable for their weight, age, and appetite. Introduction of weaning (solid) food was allowed
from 4 months, with continuation of the control or test formula until 6 months of age. Then, both groups
received the same intact protein cow’s milk-based follow-up formula until 12 months of age. Parents/
caregivers, investigators, and study support staff were blinded to the identity of the study formulas. The
study formulas were coded by the Nestlé Product Technology Center (Konolfingen, Switzerland) with
nonspeaking codes. The study flow chart is depicted in Fig. 1.

Interventions. The control formula was an intact protein cow’s milk-based whey-predominant infant
formula with long-chain polyunsaturated fatty acids (LC-PUFA; 66.9 kcal/100 ml reconstituted formula,
1.889 g protein/100 kcal powder with a whey:casein ratio of 71.6:28.4). The test formula was the same
recipe and ingredients as the control formula, supplemented with 2 HMOs (2=-fucosyllactose and
lacto-N-neotetraose) at target minimum and maximum concentrations of 1.0 to 1.2 g/liter of reconsti-
tuted formula for 2=FL and 0.5 to 0.6 g/liter of reconstituted formula for LNnT, replacing an equivalent
amount of lactose.

Clinical parameters. The measured parameters included antibiotics use, antipyretics use, gastro-
esophageal reflux disease (GORD) treatments, system organ class (SOC) gastrointestinal disorder, SOC
respiratory disorder, SOC infection, preferred-term (PT) bronchiolitis, PT bronchitis, PT gastrointestinal
disorder, PT rhinitis, PT upper respiratory tract infection, PT viral respiratory tract infection, adverse events
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(AE) cluster grouping for lower respiratory tract illnesses, and otitis, cumulatively assessed at 4, 6, and
12 months (the detailed list of variables is described elsewhere [30]).

Stool collection. Within 48 h preceding the 3- and 12-month visits, stool samples were collected by
parents and stored at home in their �20°C freezer. To this end, parents were supplied a kit (insulated
bag, ice pack, spatula pots, sealable plastic bags, and instruction sheet). Stool samples were transported
within insulated bags containing an ice pack to the site of the visit where they were kept frozen at �80°C.
Samples were then shipped to the Nestlé Research Center, Switzerland, on dry ice and kept frozen at
�80°C until analysis.

Fecal DNA extraction and microbiota composition analysis. Total DNA was extracted from fecal
samples using the QIAamp DNA Stool minikit (Qiagen) according to the manufacturer’s instructions,
except for the addition of a series of mechanical disruption steps (4 � 60 s) using a FastPrep apparatus
and Lysing Matrix B tubes (MP Biochemicals). Notably, this protocol is very similar to the protocol
recommended by the International Human Microbiome Standards (60). Microbiota composition was
analyzed by sequencing of the V3 and V4 regions of the 16S rRNA gene using a recently described
approach (15). In short (see Fig. S4 in the supplemental material), paired-end sequences were assembled
into contigs and quality filtered using Mothur (61). Then, chimera filtering was performed using QIIME
(62). After a taxonomic annotation at the genus level of each contig using Mothur, sequences belonging
to the genera Bifidobacterium and Lactobacillus were extracted and annotated to the species or
subspecies level based on signature sequences of the 16S rRNA genes (15). The other contigs were
clustered into OTUs and annotated using QIIME. All sequences were combined into one final OTU table
using QIIME’s open reference approach. After quality filtering of the OTUs (63), diversity analyses were
performed using QIIME and the website Calypso (64) at http://cgenome.net/calypso. Dirichlet multino-
mial mixture analysis was performed using Mothur. The optimal number of clusters to describe our data
set was assessed 10 times using the Laplace approximation to the negative log model evidence. The
clustering with the lowest Laplace value was selected. Taxon abundance comparisons between feeding
groups at the genus level were performed with nonparametric Mann-Whitney U tests or Kruskal-Wallis
tests and controlled for the error rate (65). Only results with uncorrected P values of �0.05, false-
discovery rates of �0.25, and for taxa showing medians of more than 0.1% in the formula groups were
reported. GraphPad Prism version 6.07 for Windows (GraphPad Software, La Jolla California USA) was
used for data in some figures.

Statistical analysis of the fecal community types distributions. For the analysis of microbiota
FCTs, descriptive statistics was performed by cross tabulation of FCT and feeding groups. The treatment
differences of each FCT between two feeding groups were analyzed by �2 tests. The P values were
derived from an approximated null distribution estimated by bootstrapping (independence_test library
[coin]). This method is expected to give reliable P values even when zero cell counts are present. The time
to first antibiotic use was analyzed by a Cox-proportional hazard model with explanatory variable FCTs
at 3 months.

Quantification of total 16S rRNA gene load. The total number of 16S rRNA gene copies was
determined per gram of feces as previously described (66). Distributions in feeding groups or FCTs were
compared by Kruskal-Wallis and Dunn’s multiple-comparison tests.

Data availability. 16S rRNA gene sequencing raw data were deposited in SRA under accession
number SRP151522.
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