as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report.

AUTHOR CONTRIBUTIONS

Zhi-Hui Feng carried out experiments. Shu-Xian Jiao collected the peripheral blood of this volunteer donor for China Marrow Donor Program. Peng Chen analyzed sequencing data with the soft GENtle and Expasy for translate. Zhi-Hui Feng wrote the manuscript and developed the figure. Manuscript final version was approved by Shutao Pang.

CONFLICT OF INTEREST

The authors have declared no conflicting interests.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in IPD-IMGT/HLA at https://www.ebi. ac.uk/ipd/imgt/hla/, reference number HWS10061976.

ORCID

Zhi-Hui Feng D https://orcid.org/0000-0003-1281-766X

REFERENCES

- Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA Database. *Nucleic Acids Res.* 2020; 48:D948-D955.
- Hei AL, Li W, Liu N, et al. Analysis of HLA-A-B-C-DRB1-DQB1 high-resolution haplotype frequencies in Chinese marrow donor program registry. *Chin J Blood Transfusion*. 2009;22(5):363-367.
- 3. Marsh SGE, Albert ED, Bodmer WF, et al. Nomenclature for factors of the HLA system, 2010. *Tissue Antigens*. 2010;75:291-455.

How to cite this article: Feng Z-H, Jiao S-X, Chen P, Pang S. Identification of the novel *HLA-C*14:02:38* allele in a Chinese individual. *HLA*. 2022;100(6):645-646. doi:10.1111/tan.14786

Characterization of the novel *HLA-C*17:01:18* allele by sequencing-based typing

Marine Cargou¹ | Vincent Elsermans² | Isabelle Top² | Elodie Wojciechowski^{1,3} | Jonathan Visentin^{1,3}

¹CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
²CHU de Lille, Institut d'Immunologie-HLA, Bd du Professeur Jules Leclercq, Lille, France
³Univ. Bordeaux, CNRS, ImmunoConcEpT, Bordeaux, France

Correspondence

Marine Cargou, CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Hôpital Pellegrin, Place Amélie Raba Léon, 33076 Bordeaux Cedex, France. Email: marine.cargou@chu-bordeaux.fr HLA-C*17:01:18 differs from HLA-C*17:01:01:05 by one nucleotide substitution in codon 18 in exon 2.

K E Y W O R D S HLA, HLA-C*17:01:18, novel allele, sequencing-based typing

We report here a novel HLA- C^*17 allele, now named HLA- C^*17 :01:18 that carries one nucleotide substitution in exon 2 when compared to the HLA- C^*17 :01:01:05 allele, identified in a volunteer bone marrow donor. The HLA typing was performed using next-generation sequencing (AllType NGS, One Lambda, Canoga Park, CA) on the Ion S5 system platform (ThermoFisher Scientific, Waltham, MA),¹ from exons 1 to 8. The reads were analyzed using the TypeStream Visual Software version 2.1 (One Lambda). This patient was found to have a new *C**17 allele and was consequently typed *A**01:01, 11:01; *C**17:01:18, 17:03; *B**41:01, 41:02; *DRB1**07:01, 13:02; *DRB3**03:01; *DRB4**01:01; *DQA1**01:02, 02:01; *DQB1**03:03, 06:09; *DPA1**01:03, 01:03; and *DPB1**02:01, 104:01. Using the IPD-IMGT/HLA Database,² nucleotide sequence alignment with HLA-C alleles shows that this new allele has one nucleotide change from *C**17:01:01:05 in codon 18 in exon 2, where $A \rightarrow G$ (GGA \rightarrow GGG, Figure 1), not resulting in a coding change. This nucleotide change was confirmed using other NGS reagents

CARGOU ET AL.						Immune Response Genetics	WILEY 647
AA Codon		5		10	15	20	25
C*17:01:01:05	GC TCC CAC	TCC ATG AGG T	T TTC TAC	ACC GCC GTG	TCC CGG CCC	GGC CGC GGA GAG CCC	C CGC TTC ATC GCA GTG
C*17:01:18						G	
AA Codon		30		35	40	45	5 50
C*17:01:01:05	GGC TAC GTG	GAC GAC ACG C	G TTC GTG	CGG TTC GAC	AGC GAC GCC	GCG AGT CCG AGA GGG	GAG CCG CGG GCG CCG
C*17:01:18							
AA Codon		55		60	65	70) 75
C*17:01:01:05	TGG GTG GAG	CAG GAG GGG C	G GAG TAT	TGG GAC CGG	GAG ACA CAG	AAG TAC AAG CGC CAG	G GCA CAG GCT GAC CGA
C*17:01:18							
AA Codon		80		85	90		
C*17:01:01:05	GTG AAC CTG	CGG AAA CTG C	GC GGC TAC	TAC AAC CAG	AGC GAG GCC	G	
C*17:01:18						-	

FIGURE 1 Alignment of the sequence of exon 2 of *HLA-C*17:01:18* with the sequence of *C*17:01:01:05*. Dashes indicate nucleotide identity with the *HLA-C*17:01:01:05* allele. Numbers above the sequence indicate codon position

provided by Immucor (Mia Fora NGS Flex, Norcross, GA) run on the Illumina MiSeq system (San Diego, CA) and analyzed with the Mia Fora Flex software (Immucor, version 5.1). We were confident in the phasing as the sample displayed a mean read length of 312 base pairs over all the loci, the mismatched G base was attributed 144 times to the new HLA-C*17 allele. HLA typing by Luminex reverse sequence-specific oligonucleotide (SSO) was performed (One Lambda Labtype XR, Canoga Park, CA).³ With this assay (lot 002, catalog RSSOX1C 002 03 the HLA-typing of the HLA-C*17 allele was HLA-C*17:01, 17:03 without any bead modification. Indeed, the IPD-IMGT/HLA Database 3.48 0.0 release describe very few HLA-C alleles displaying a GGG sequence in codon 18, explaining why the manufacturer did not include probes targeting this codon. The coding nucleotide sequence of the new allele has been submitted to the Gen-Bank database (Accession No. ON185725) and to the IPD-IMGT/HLA Database (Submission No. HWS10061142). The name C*17:01:18 has been officially assigned by the WHO Nomenclature Committee for Factors of the HLA System in April 2022. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report,⁴ names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report.

AUTHOR CONTRIBUTIONS

Marine Cargou and Jonathan Visentin contributed to the design of the study. Marine Cargou and Jonathan Visentin participated in the writing of the paper. Marine Cargou, Vincent Elsermans, Isabelle Top, Elodie Wojciechowski and Jonathan Visentin participated in the performance of the research. Marine Cargou, Vincent Elsermans, Isabelle Top, Elodie Wojciechowski and Jonathan Visentin participated in data analysis. Vincent Elsermans, Isabelle Top and Elodie Wojciechowski were involved in critical revision of the manuscript.

ACKNOWLEDGMENTS

The authors thank the technicians of the Bordeaux and Lille Immunology Laboratories for their technical expertise.

CONFLICT OF INTEREST

The authors confirm that there are no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions. The sequence is freely available in the IPD-IMGT/ HLA Database.

ORCID

Marine Cargou ^b https://orcid.org/0000-0002-1141-1417 Vincent Elsermans ^b https://orcid.org/0000-0002-0881-0695

Jonathan Visentin D https://orcid.org/0000-0003-3795-8979

REFERENCES

- Cargou M, Ralazamahaleo M, Blouin L, et al. Evaluation of the AllType kit for HLA typing using the ion torrent S5 XL platform. *HLA*. 2020;95(1):30-39. doi:10.1111/tan.13708
- Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA Database. *Nucleic Acids Res.* 2020; 48(D1):D948-D955. doi:10.1093/nar/gkz950

 Marsh SGE, Albert ED, Bodmer WF, et al. Nomenclature for factors of the HLA system, 2010. *Tissue Antigens*. 2010;75(4):291-455. doi:10.1111/j.1399-0039.2010.01466.x **How to cite this article:** Cargou M, Elsermans V, Top I, Wojciechowski E, Visentin J. Characterization of the novel *HLA-C*17:01:18* allele by sequencing-based typing. *HLA*. 2022; 100(6):646-648. doi:10.1111/tan.14755

The novel *HLA-C*17:64Q* allele characterized by two different sequencing-based typing techniques

Magali Devriese^{1,2} | Cedric Usureau^{1,2} | Maryvonnick Carmagnat¹ | Juliette Villemonteix¹ | Jean-Luc Taupin^{1,2}

¹Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France ²INSERM UMR976, Institut de Recherche Saint-Louis, Université de Paris, Paris, France

Correspondence

Magali Devriese, Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, Paris, France. Email: magali.devriese@aphp.fr The novel allele *HLA-C*17:64Q* differs from *HLA-C*17:01:01:02* by insertion of a Lysine in exon 2.

KEYWORDS

HLA, HLA-C*17, nanotype sequencing, novel allele, sequencing-based typing

We report a novel allele HLA-C*17:64Q identified in a recipient waiting for a renal transplant. It carries a three nucleotide insertion in exon 2 codon 67 when compared with the C*17:01:01:02 allele. The first HLA typing was performed by Next Generation Sequencing (NGSgo, GendX, Utrecht, NL) on the Illumina Miseq system platform (San Diego, CA). The fastQ files were analyzed using the NGSengine software version (2.23.1). The recipient was typed A*02:05, A*30:01, B*42:01, B*53:01, C*04:01, novel C*17 allele, DRB1*03:02, DRB3*01:62, DRB3*03:01, DQA1*04:01, DQB1*04:02, DPA1*01:03, DPA1*02:02, DPB1*01:01, and DPB1*104:01. Data metrics of the sample were excellent for all the loci, the mean read length was 138 base pairs, the lowest read depth was 392 and the maximum noise percentage was 5.8%. We observed a three nucleotide insertion AGA in the HLA-C sequence therefore the translation frame is maintained but shifted. This new allele was also confirmed by NanoTYPETM sequencing based on the Nanopore technology¹ (Omixon Biocomputing Ltd, Budapest, HUN). Using the IPD-IMGT/HLA Database,² sequence alignment of the two HLA-C*17 alleles display one difference which is an additional amino acid encoded by AAG

(Lysine) resulting in a new codon 67 (Figure 1). This is an important change, since it could result in a protein sequence variation at the core, leading to questionable expression of the HLA protein. We were unable to perform serological typing using micro-lymphocyte cytotoxicity assay because of the lack of reagents for HLA-C typing. The localization of this insertion and its antibody accessibility was analyzed with pHLA3D database.³ Residue 67 is not located at the protein surface, however, residue 66 is potentially surface accessible and close to the peptide binding groove. Thus changes at this position could have consequences in peptide presentation or in allogenic antibody triggering.

The nucleotide sequence of the exons 1 to 6 of this new allele was submitted to the GenBank database (Accession No. ON240061) and to the IPD-IMGT/HLA Database (Submission No. HWS10061164). The name HLA-C*17:64Q has been officially assigned by the WHO Nomenclature Committee for Factors of the HLA System⁴ in June 2022. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report, names will be assigned to new sequences as they are identified. Lists of such new names