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Abstract: Underlying pathophysiological mechanisms drive excessive clustering of cardiometabolic
risk factors, causing metabolic syndrome (MetS). MetS status may transform as adolescents transition
to young adulthood. This study investigated the latent clustering structure and its stability for MetS
during adolescence, and assessed the anthropometric and clinical metabolic determinants for MetS
transformation. A community-based representative adolescent cohort (n = 1516) was evaluated for
MetS using four diagnostic criteria, and was followed for 2.2 years to identify new-onset MetS. The
clustering structure underlying cardiometabolic parameters was stable across adolescence; both
comprised a fat—blood pressure (BP)—glucose three-factor structure (total variance explained: 68.8%
and 69.7% at baseline and follow-up, respectively). Among adolescents with MetS-negative at base-
line, 3.2–4.4% had incident MetS after 2.2 years. Among adolescents with MetS-positive at baseline,
52.0–61.9% experienced MetS remission, and 38.1–48.0% experienced MetS persistence. Increased
systolic BP (SBP) was associated with a high MetS incidence risk, while decreased levels of SBP and
glucose were associated with MetS remission. Compared with adolescents with a normal metabolic
status at baseline, those with an initial abdominal obesity and increased triglycerides level had a
15.0- and 5.7-fold greater risk for persistent abnormality, respectively. Abdominal obesity and low
high-density lipoprotein cholesterol are two abnormal MetS components that highly persist during
adolescence, and are the intervention targets for reducing the future risk of cardiometabolic disorders.

Keywords: metabolic syndrome; stability and transformation; cardiometabolic risk factor; anthropo-
metric risk factors; latent clustering structure; cardiovascular risk; adolescent
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1. Introduction

The pathogenesis of cardiovascular disease starts in childhood, when cardiometabolic
risk factors are first observed [1]. In adolescents, metabolic syndrome (MetS)—a syndrome
involving the clustering of abdominal obesity, increased triglycerides (TG), high fasting
plasma glucose (FPG), low high-density lipoprotein cholesterol (HDL-C), and elevated
blood pressure (BP)—is a vital risk marker for future cardiometabolic disease [2]. Longitu-
dinal studies have demonstrated that pediatric MetS is associated with a 2.0–2.9-fold risk
for subclinical atherosclerosis, 2.3–11.5-fold risk for type 2 diabetes mellitus (T2DM), and
14.6-fold risk for cardiovascular disease after 14–30 years [3–5].

The clustering of cardiometabolic risk factors exceeds what should be observed for
their accidental aggregation, indicating the presence of common underlying pathophys-
iological mechanisms [2,6,7]. Accordingly, the question of what cardiometabolic factor
clustering structure reflects the latent pathogenic mechanisms and whether the clusters
retain stable through growth stages in adolescents remains to be answered. An individual’s
MetS status may change from adolescence to young adulthood [8–10]. One longitudinal
study following adolescents up to adulthood revealed that 76.9% of the adolescents never
had MetS, 16.4% had incident MetS, 5.7% experienced unstable/remitted MetS, and 1.1%
had persistent MetS [9]. However, the change in MetS status and their stability during
adolescence remains unclear. A comparison of MetS transformation using diverse MetS
diagnostic criteria may help clarify this issue.

Prospective investigations have observed that 3.8–5.2% of MetS-negative adolescents
(i.e., individuals aged 12–19 years) developed new MetS after 3 years. In contrast, 48.6–
56.1% of MetS-positive adolescents achieved remission 3 years later, while MetS persisted
in 43.9–51.4% of MetS-positive adolescents [8]. If the structure of cardiometabolic pa-
rameter clustering for MetS is stable over adolescent growth, an investigation into the
effect of cardiometabolic risk determinants on the transformation of adolescent MetS is
warranted. In cross-sectional studies involving adolescents, cardiometabolic risk factors
have been observed to occur in childhood, but whether and to what extent they persist
is unknown [11–14]. Insights into the persistence of cardiometabolic risk factors and how
they contribute to the change of MetS can help create effective strategies for preventing
MetS, increasing remission, and managing persistent MetS.

In a nationwide survey conducted in 2010–2011 in Taiwan, the prevalence of adoles-
cent MetS, as defined by the Taiwan Pediatric Association (TPA) and International Diabetes
Federation (IDF) diagnostic criteria, was 4.1% and 3.0%, respectively, with 22.1%, 12.3–
19.3%, and 17.7–18.1% of adolescents having increased FPG, low HDL-C, and abdominal
obesity, respectively [15]. Continuously monitoring and assessing the clustering of MetS
risk factors and their impact on adolescent cardiometabolic health are warranted. This
community-based longitudinal study investigated the latent clustering structure and its
stability for MetS during adolescence, and evaluated the association of changes in anthro-
pometric and clinical metabolic risk factors with the transformation of MetS over two years
of follow-up.

2. Materials and Methods
2.1. Participants

The adiposity–cardiovascular disease axis (adi-Cars) investigation was a large repre-
sentative cohort study conducted to investigate multilevel determinants and biomolecular
risk profiles of cardiometabolic disease, prediabetes, and hyperuricemia among adolescents
aged 12–14 years from southern Taiwan. The adolescents lived in three regions with vary-
ing levels of urbanization: Kaohsiung City, Pingtung County, and Taitung County. At the
baseline survey, a three-stage procedure of random sampling of geographically stratified
clusters was introduced to recruit the study participants. In stage one, Kaohsiung City,
Pingtung County, and Taitung County were geographically stratified into nine, six, and
four divisions, respectively. In stage two, all junior high schools within each division were
compiled and listed, and 31 schools were randomly selected through computer-generated
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random numbers. In stage three, three classes (20–25 students per class) were randomly
selected from each chosen school. One class was considered a cluster, and all students in
the chosen classes were invited to participate in this study.

Baseline data were collected between September 2014 and June 2018, and follow-up
data were measured between September 2017 and June 2021. A total of 2046 adolescents
agreed to participate in the baseline anthropometric measurements and questionnaire
surveys (response rate of 94.9%). Of these students, 1516 adolescents (74.1%) participated
in the clinical biochemical examinations. In May 2021, a COVID-19 outbreak occurred in
Taiwan and prevented follow-up by participants from three schools (these participants
will be revisited after the outbreak). We excluded the students in these three schools in the
data analyses. Eventually, 1246 adolescents from 28 schools with complete anthropometric
and clinical blood data were followed. Of these, 1155 participated in the anthropometric
and questionnaire survey at follow-up (retention rate: 92.7%; mean length of follow-up:
2.2 years), but only 896 participated in the clinical biochemical examinations. This study
adhered to the principles expressed in the Declaration of Helsinki. The Institutional Review
Board of Kaohsiung Medical University Hospital reviewed and approved this research
project. Written assents from the adolescents and consents from their parents/guardians
were collected for both the baseline and follow-up surveys.

2.2. Demographic and Cardiometabolic Factors

Multilevel-structured questionnaires were developed to obtain information on sociode-
mographic factors and lifestyle behaviors from adolescent participants and their parents.
The urbanization of the township where each school is located was categorized into seven
levels according to a socioeconomic cluster analysis of 359 Taiwan townships, with level
1 denoting the most urbanized [16]. Anthropometric parameters, including height, weight,
hip circumference, waist circumference (WC), systolic BP (SBP), and diastolic BP (DBP),
were measured at baseline and follow-up by a research team trained according to the World
Health Organization guide for physical measurements [17]. Details of anthropometric
measurements have been described previously [11,18–21]. Body mass index (BMI) was
calculated as weight divided by height squared (kg/m2). Venous blood samples were
obtained from participants in school health centers in the morning after a >10-h overnight
fast. TG and HDL-C concentrations were enzymatically determined using a chemistry
autoanalyzer and commercially available reagents, and the FPG levels were assessed using
a glucose oxidase method (TBA-c16000, Toshiba, Tokyo, Japan) [22]. High-performance
liquid chromatography (Bio-Rad Variant Turbo II HbA1c analyzer, Hercules, CA, USA)
was used to measure the glycosylated hemoglobin (HbA1c) values.

2.3. MetS Diagnosis

MetS and MetS abnormal components were diagnosed using the IDF criteria for
adolescents aged 10–18 years, TPA criteria for adolescents aged 8–18 years, and the Joint
Interim Statement for adult MetS (JIS-Ad) [6,23,24]. Abdominal obesity was defined as
WC ≥90th percentile (or adult cutoff if lower) by IDF, as BMI >95th percentile of age–
sex-specific groups by TPA, and WC ≥90 cm in boys and WC ≥80 cm in girls by the
JIS-Ad. Low HDL-C was defined as HDL-C <40 mg/dL for adolescents aged 10–15 years
and HDL-C <40 mg/dL in adolescent boys and <50 mg/dL in adolescent girls aged 16–
18 years by IDF. However, TPA and JIS-Ad define low HDL-C as HDL-C <40 mg/dL in
boys and <50 mg/dL in girls. IDF, TPA, and JIS-Ad have the same criteria for increased TG
(≥150 mg/dL), high FPG (≥100 mg/dL or previously diagnosed T2DM), and elevated BP
(SBP ≥130 mmHg, DBP ≥85 mmHg, or antihypertensive drug treatment). Supplementary
Table S1 presents the complete definitions for the five abnormal components given by
IDF, TPA, and JIS-Ad. Because IDF and TPA have similar definitions for MetS abnormal
components, we combined them as the IDF–TPA criteria to accommodate any outlier
definitions of the IDF and TPA, and included all potential abnormal components. IDF-,
TPA-, and IDF–TPA-defined MetS were the presence of abdominal obesity and any two
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other abnormal components. JIS-Ad-defined MetS was the presence of any three abnormal
components.

2.4. Transformation of MetS Status

The IDF–TPA criteria for MetS and its abnormal components were used to investigate
the transformation of MetS status over two years of follow-up in the adi-Cars cohort.
Adolescents who were MetS-negative at both baseline and follow-up were defined as
the never MetS group. Those who were MetS-negative at baseline but MetS-positive at
follow-up were defined as the incident MetS group. Those who were MetS-positive at
baseline and MetS-negative at follow-up were defined as the remitted MetS group. Those
who were MetS-positive at both baseline and follow-up were defined as the persistent MetS
group. The four groups were used as the main outcome of this investigation.

2.5. Statistical Analysis

We applied six statistical procedures for the data analysis. First, the demographic and
cardiometabolic risk factors measured were analyzed as means ± standard deviation for
the continuous variables and percentages for the categorical variables. Second, exploratory
factor analysis (EFA) was employed to investigate the latent factor clustering structure
across the cardiometabolic parameters for baseline and follow-up surveys, similar to a prior
study [8]. Before performing EFA, all variables were assessed for Gaussian normality, and
nonnormally distributed variables were converted using the logarithm function. Next, we
performed Bartlett’s test of sphericity to examine whether cardiometabolic risk factors had a
significant correlation structure. The Kaiser–Meyer–Olkin (KMO) measure of the sampling
adequacy was used to evaluate the suitability of study data for structure detection. A KMO
value of >0.50 was considered appropriate for the factor analysis. In EFA, we used principal
component analysis as the factor extraction approach and applied the eigenvalue >1 rule,
surpassing the break in scree plots to extract factors [25,26]. Varimax rotation was applied
to obtain more interpretable factor loadings. The parameters with loadings >0.4 were used
for interpreting the factors.

Third, Cohen’s Kappa coefficient (k) was calculated to evaluate the agreement of
MetS (i.e., prevalence) defined by the four MetS criteria between baseline and follow-up
surveys [27]. The k values of 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–1.00 were interpreted
as fair, moderate, substantial, and almost perfect agreement, respectively [28]. Fourth,
stratified by the group of MetS transformation, we applied a linear mixed model to assess
within-person changes in the levels of cardiometabolic risk factors measured at baseline
and follow-up [29]. Fifth, because quaternary outcomes (i.e., never, incident, remitted,
and persistent MetS) were investigated, we used a multinomial logistic regression model
to assess the association of changes in cardiometabolic risk factors with changes in MetS
status over two years of follow-up. This modeling technique enables the simultaneous com-
parison of an outcome variable with >2 categories, and has been verified to have a higher
precision and statistical power compared with simple binary outcome analysis [30,31].
An adjusted p value was calculated in order to correct for multiple testing using the false
discovery rate controlling method [32]. Finally, incidence density was used to assess the
status of new-onset MetS components in the follow-up survey. Multivariable Cox propor-
tional hazards models and adjusted hazard ratios (aHRs) were applied to evaluate the
association between initial abnormal status and subsequent abnormal occurrence for each
MetS component. All of the multivariable models were adjusted for sex, age, urbanization
level, and cardiometabolic risk factors, as appropriate. Statistical analyses were executed
using statistical package Stata (StataCorp., College Station, TX, USA), version 17.
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3. Results

Table 1 presents the distributions of demographic and cardiometabolic risk factors
measured at baseline and follow-up for the adolescent cohort. The distributions of the sex
and urbanization level for the participants were similar between the two time-points; age
was obviously increased by two years. Compared with baseline, the adolescents had higher
SBP, DBP, and weight-related variables and lower HDL-C and FPG at follow-up.

Table 1. Demographic and cardiometabolic risk factors of the adolescent cohort measured at baseline
and follow-up.

Baseline Follow-Up

Factors (n = 1246) (n = 1155) p Value a

Age, Mean ± SD 12.6 ± 0.7 14.6 ± 0.7 <0.001
Sex, %

Boy 49.0 49.1 0.979
Girl 51.0 50.9

Urbanization level b, %
Level 1–2 49.9 49.3 0.946
Level 3–4 28.3 28.7
Level 5–7 21.8 22.0

Cardiometabolic risk factors, Mean ± SD
Anthropometric parameters

Waist circumference, cm 71.6 ± 11.4 74.9 ± 11.9 <0.001
Hip circumference, cm 87.6 ± 9.8 93.5 ± 9.4 <0.001
Body mass index, Kg/m2 20.7 ± 4.5 21.9 ± 4.8 <0.001

Clinical parameters c

Systolic blood pressure, mmHg 111.8 ± 13.1 114.1 ± 14.0 <0.001
Diastolic blood pressure, mmHg 64.0 ± 9.2 65.3 ± 9.0 0.001
HDL-cholesterol, mg/dL 54.1 ± 11.2 50.3 ± 10.9 <0.001
Triglyceride, mg/dL 78.1 ± 39.2 76.7 ± 36.1 0.408
Fasting plasma glucose, mg/dL 89.8 ± 11.0 88.2 ± 16.2 0.006
Glycated hemoglobin, % 5.3 ± 0.4 5.3 ± 0.6 0.650

HDL-C, high-density lipoprotein cholesterol. a p value for the difference in study parameters between baseline
and follow-up. b The urbanization level 1 denotes the most urbanized. c Blood parameters were measured for
896 adolescents at follow-up.

The study data on nine cardiometabolic risk factors collected at both baseline and
follow-up had a significant correlation structure (Table 2; p for Bartlett’s test <0.001) and
qualified for factor analysis (KMO; 0.782 and 0.794, both >0.5). EFA extracted three cluster-
ing factors from the study variables measured at both time-points (all factors, eigenvalues
>1, and surpassing the break in scree plots; Supplementary Figure S1). The factor structures
were similar at baseline and follow-up. Both comprised a fat factor (consisting of BMI,
WC, hip circumference, HDL-C, and TG), a BP factor (consisting of SBP and DBP), and a
glucose factor (consisting of FPG and HbA1c). The factor loadings for each factor and the
proportion of variance explained by the three factors (68.8% and 69.7%, respectively) were
very comparable between the data for the two time-points. All cardiometabolic risk factors
used to interpret each factor structure had a factor loading of ≥0.508.
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Table 2. Exploratory factor analysis-derived factors, factor loadings, and proportions of variance
explained for cardiometabolic risk factors measured at baseline and follow-up in adolescents.

Cardiometabolic Risk Factors

Baseline Follow-Up

Factor Loadings
(n = 1246)

Factor Loadings
(n = 896)

Fat BP Glucose Fat BP Glucose

[Log] Body mass index, kg/m2 0.901 a 0.220 0.066 0.907 a 0.206 0.064
[Log] Waist circumference, cm 0.899 a 0.191 0.118 0.927 a 0.161 0.051

Hip circumference, cm 0.875 a 0.235 0.079 0.902 a 0.181 0.083
[Log] Serum HDL-C level, mg/dL −0.655 a 0.175 0.058 −0.590 a 0.072 −0.056
[Log] Serum triglyceride level, mg/dL 0.538 a −0.240 −0.055 0.508 a 0.069 0.018

Systolic blood pressure, mmHg 0.324 0.804 a 0.037 0.386 0.762 a 0.091
[Log] Diastolic blood pressure, mmHg 0.142 0.835 a −0.018 0.121 0.905 a 0.018
[Log] Fasting plasma glucose level, mg/dL 0.059 −0.057 0.822 a 0.080 0.097 0.846 a

[Log] Glycated hemoglobin, % 0.117 0.077 0.812 a 0.067 −0.008 0.858 a

Eigenvalue 3.563 1.324 1.306 3.736 1.399 1.137
Proportion of variance explained 36.1% 17.6% 15.2% 36.4% 16.9% 16.4%
Cumulative proportion 36.1% 53.6% 68.8% 36.4% 53.3% 69.7%
Bartlett’s sphericity test, χ2 (p value) 5687.9 (<0.001) 4458.0 (<0.001)
Kaiser−Meyer−Olkin (KMO) measure b 0.782 0.794

BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; KMO, Kaiser−Meyer−Olkin. a Cardiometabolic
risk factors with factor loadings >0.4 were used to interpret each factor structure. Factor loadings denote the
associations between latent and observed variables. b The KMO measure >0.50 indicated that study sample was
adequacy for factor analysis.

Table 3 displays the criterion-specific prevalence and transformations of adolescent
MetS defined by four criteria over the two years of follow-up. The prevalence of MetS
was 2.8–6.0% at baseline and 4.5–6.5% at follow-up, with a “fair level” of agreement (k,
0.313–0.367), indicating that MetS status changed with time (in this case, two years) in
adolescents. Among the adolescents who were MetS-negative at baseline, 3.2–4.4% had
incident MetS after two years. Among the adolescents who were MetS-positive at baseline,
52.0–61.9% experienced MetS remission and 38.1–48.0% experienced MetS persistence.

Table 3. Baseline and follow-up prevalences and proportions of metabolic syndrome transformation
in adolescents over the 2 years of follow-up.

Prevalence
at Baseline
(n = 896) a

Incident
MetS

(n = 871)a

Remitted
MetS

(n = 25) a

Persistent
MetS

(n = 25) a

Prevalence
at Follow-Up

(n = 896) a
MetS

Kappa
(p Value) b

%
(95% CI)

%
(95% CI)

%
(95% CI)

%
(95% CI)

%
(95% CI)

IDF 2.8 3.2 52.0 48.0 4.5 0.347
(1.9–4.1) (2.2–4.6) (32.2–71.2) (28.8–67.8) (3.3–6.0) (<0.001)

TPA 5.8 3.7 59.6 40.4 5.8 0.367
(4.4–7.5) (2.6–5.2) (45.6–72.2) (27.8–54.4) (4.4–7.5) (<0.001)

JIS-Adult 4.7 4.0 61.9 38.1 5.6 0.313
(3.5–6.3) (2.9–5.5) (46.1–75.5) (24.5–53.9) (4.3–7.3) (<0.001)

IDF–TPA 6.0 4.4 61.1 38.9 6.5 0.333
(4.6–7.8) (3.2–6.0) (47.3–73.3) (26.7–52.7) (5.0–8.3) (<0.001)

MetS, metabolic syndrome; IDF, International Diabetes Federation; TPA, Taiwan Pediatric Association; JIS-Adult,
Joint Interim Statement of MetS for adults; IDF–TPA, the combined criteria of IDF-MetS and TPA-MetS criteria for
adolescents. a At baseline, the total participants were 896; of those, 871 were MetS-negative (the candidates for
incident MetS) and 25 were MetS-positive (the candidates for remitted and persistent MetS). At follow-up, the
total participants were 896. b Kappa coefficient was used to examine the agreement of MetS prevalence between
baseline and follow-up.
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Table 4 presents within-person changes in cardiometabolic risk factors between base-
line and follow-up, stratified by MetS typology per the IDF–TPA criteria. In the never
group, BMI and WC at follow-up were higher and HDL-C and FPG were lower than the
corresponding values at baseline. In the incident group, the within-person changes in BMI,
WC, SBP, DBP, and HDL-C were significant and greater than those in the never group. In
the remission group, the TG and FPG levels were noticeably reduced at follow-up. In the
persistent group, the values of cardiometabolic risk factors were relatively high at baseline,
and SBP also increased at the 2-year follow-up.

Table 4. Distributions and changes of cardiometabolic risk factors between baseline and follow-up
for never, incident, remitted, and persistent metabolic syndrome a in adolescents.

Never (n = 805) Incident (n = 37) Remitted (n = 33) Persistent (n = 21)

Fac-
tors

Baseline
Mean

Follow-
Up

Mean

WP
Change b p c Baseline

Mean

Follow-
Up

Mean

WP
Change b p c Baseline

Mean

Follow-
Up

Mean

WP
Change b p c Baseline

Mean

Follow-
Up

Mean

WP
Change b p c

BMI 19.93 21.09 1.16 * <0.001 26.76 28.59 1.83 * <0.001 27.21 28.12 0.91 0.187 30.80 31.91 1.12 0.151
WC 69.90 72.96 3.06 * <0.001 85.51 91.06 5.55 * <0.001 87.43 90.06 2.63 0.187 95.30 98.46 3.16 0.151
SBP 111.04 111.97 0.94 0.065 119.38 132.57 13.19 * <0.001 121.85 122.06 0.21 0.932 126.90 137.76 10.86 * 0.039
DBP 63.68 64.43 0.75 0.065 67.24 72.62 5.38 * <0.001 70.97 69.06 −1.91 0.532 71.47 76.19 4.72 0.159
HDL-
C 55.00 51.33 −3.67

* <0.001 47.03 41.08 −5.95
* <0.001 42.43 43.04 0.61 0.774 39.88 37.71 −2.16 0.151

TG 73.38 73.03 −0.35 0.763 99.78 109.22 9.43 0.315 123.39 95.27 −28.12
* <0.001 128.71 131.43 2.71 0.807

FPG 89.48 87.20 −2.29
* <0.001 89.68 89.43 −0.24 0.872 95.97 87.03 −8.94

* <0.001 104.48 126.52 22.05 0.151

HbA1c 5.29 5.28 −0.004 0.763 5.31 5.28 −0.03 0.689 5.30 5.31 0.02 0.887 5.75 6.42 0.67 0.151

WP, within-person; BMI, body mass index; WC, waist circumference; HDL-C, high-density lipoprotein cholesterol;
TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c,
glycated hemoglobin. a IDF–TPA criteria were used to determine adolescent metabolic syndrome. b The mean level
for within-person change in the cardiometabolic risk factors between baseline and follow-up. Here, * denoting
p < 0.05 for the pair difference between baseline and follow-up. c p value for WP change was obtained from the
linear mixed model adjusted for sex, age, and urbanization level and was adjusted for false discovery rate.

Table 5 displays the association of changes in cardiometabolic risk factors with changes
in MetS status at follow-up. After adjustment for covariates, adolescents with a 1 mmHg
increase in ∆SBP had a 1.07-fold risk of incident MetS at follow-up. Compared with the
never group, the remission group had a greater elevation in HDL-C (∆HDL-C, 0.61 vs.
−3.67 mg/dL) and a greater decrease in TG and FPG (∆TG, −28.12 vs. −0.35 mg/dL and
∆FPG, −8.94 vs. −2.29 mg/dL). Compared with those with persistent MetS, participants
with a 1 unit increase in ∆SBP and ∆FPG had a 0.95 and 0.94-fold, respectively, lower
likelihood of MetS remission after two years.

Table 5. Adjusted associations of the changes in cardiometabolic risk factors over 2 years of follow-up
with incident, remitted, and persistent metabolic syndrome a in adolescents.

Within Person
Change b

Never (n = 805) Incident (n = 37) Remitted (n = 33) Persistent (n = 21) Remitted vs.
Persistent

Mean
(SD)

aOR
(Ref.)

Mean
(SD)

aOR c

(p Value d)
Mean
(SD)

OR c

(p Value d)
Mean
(SD)

OR c

(p Value d)
aOR ratio c

(p Value d)

∆BMI, Kg/m2 1.16
(1.71) 1.0 1.83

(1.90)
0.98

(0.949)
0.91

(2.98)
1.08

(0.949)
1.12

(3.31)
1.09

(0.949)
0.99

(0.949)

∆WC, cm 3.06
(6.11) 1.0 5.55

(6.67)
1.05

(0.784)
2.63

(9.15)
0.99

(0.784)
3.16

(9.03)
1.02

(0.784)
0.97

(0.784)

∆SBP, mmHg 0.94
(13.47) 1.0 13.19

(13.65)
1.07 *

(<0.001)
0.21

(14.54)
1.01

(0.680)
10.86

(18.09)
1.07 *

(0.004)
0.95 *

(0.039)

∆DBP, mmHg 0.75
(10.80) 1.0 5.38

(9.16)
0.99

(0.751)
−1.91
(11.50)

0.97
(0.751)

4.72
(14.98)

0.99
(0.751)

0.98
(0.751)

∆HDL-C, mg/dL −3.67
(7.86) 1.0 −5.95

(6.45)
0.97

(0.310)
0.61

(6.43)
1.08 *

(0.013)
−2.16
(6.41)

1.03
(0.365)

1.05
(0.310)
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Table 5. Cont.

Within Person
Change b

Never (n = 805) Incident (n = 37) Remitted (n = 33) Persistent (n = 21) Remitted vs.
Persistent

Mean
(SD)

aOR
(Ref.)

Mean
(SD)

aOR c

(p Value d)
Mean
(SD)

OR c

(p Value d)
Mean
(SD)

OR c

(p Value d)
aOR ratio c

(p Value d)

∆TG, mg/dL −0.35
(33.12) 1.0 9.43

(49.13)
1.01

(0.253)
−28.12
(41.89)

0.98 *
(<0.001)

2.71
(52.18)

0.99
(0.427)

0.98
(0.095)

∆FPG, mg/dL −2.29
(10.39) 1.0 −0.24

(9.33)
1.02

(0.209)
−8.94
(10.80)

0.96 *
(0.014)

22.05
(65.38)

1.02
(0.173)

0.94 *
(0.011)

∆HbA1c, % −0.004
(0.29) 1.0 −0.03

(0.32)
0.98

(0.968)
0.02

(0.31)
0.77

(0.935)
0.67

(1.97)
2.21

(0.474)
0.35

(0.474)

SD, standard deviation; Ref., reference group; aOR, adjusted odds ratio; BMI, body mass index; WC, waist
circumference; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; SBP, systolic blood pressure; DBP,
diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; *, p < 0.05. a IDF–TPA criteria
were used to determine adolescent metabolic syndrome. b The within-person differences in the cardiometabolic
risk factors (follow-up values minus baseline values, denoted as ∆). c aORs were obtained from polytomous
logistic regression models adjusted for sex, age, urbanization level, and covariates in the Table. d p values were
adjusted for false discovery rate.

Table 6 displays the baseline prevalence, follow-up incidence density, and aHR of
MetS abnormal components associated with their original status. The baseline prevalence
was 24.9%, 10.6%, 21.1%, 5.5%, and 11.4% for abdominal obesity, elevated BP, low HDL-C,
increased TG, and high FPG, respectively. Among the five abnormal components, low HDL-
C had the highest incidence density (9.6% per year) in adolescents with an initial normal
status. Abdominal obesity and low HDL-C had a greater persistent incidence density
(34.3% and 36.5% per year, respectively) in participants with an original positive status.
Compared with a normal status at baseline in the five MetS components, an abnormal
status at baseline was associated with a higher risk of the abnormal status persisting at
follow-up, with abdominal obesity and increased TG rendering a >5.0-fold risk each (aHR,
15.0 and 5.7, respectively).

Table 6. Baseline prevalences, follow-up incidence densities, and adjusted hazard ratios of abnor-
mal components of metabolic syndrome associated with initial status over 2 years of follow-up in
adolescents.

Abnormal Components of MetS a

Factors Abdominal
Obesity

Elevated
BP

Low
HDL-C

Increased
TG

High
FPG

Baseline
No. of positive 310 132 263 69 142
Prevalence 24.9% 10.6% 21.1% 5.5% 11.4%

Follow-up No Yes No Yes No Yes No Yes No Yes

Participants at follow-up, no. b 862 293 1026 129 696 200 851 45 777 119
Person-year, year 1886.7 634.8 2242.6 279.0 1484.8 430.2 1814.9 100.0 1657.3 257.7
Abnormal component

No 808 75 918 68 553 43 823 35 736 97
Yes 54 218 108 61 143 157 28 10 41 22

Incident density, per year c 2.9% 34.3% 4.8% 21.9% 9.6% 36.5% 1.5% 10.0% 2.5% 8.5%
aHR (95% CI) d 1.0 15.0 1.0 4.0 1.0 3.4 1.0 5.7 1.0 3.8

(11.0–20.3) (2.9–5.5) (2.7–4.3) (2.6–12.2) (2.1–6.7)

BP, blood pressure; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; FPG, fasting plasma glucose;
MetS, metabolic syndrome; aHR, adjusted hazard ratio. a IDF–TPA criteria were used to determine the abnormal
components for MetS. b Participants who were evaluated for obesity and BP were 1155 adolescents and for HDL-C,
TG, and FPG were 896 adolescents at follow-up. c Incidence density was used to assess the status of new-onset
MetS components in the follow-up survey. d aHRs were adjusted for sex, age, and urbanization level.
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4. Discussion

This study presents findings that demonstrate that the structure of cardiometabolic
parameter clustering for adolescent MetS at baseline and follow-up were comparable.
Changes in anthropometric and clinical metabolic risk factors were associated with the
transformation in MetS status of adolescents after two years. Adolescents who had an
abnormal MetS component at baseline were more likely to have the component be abnormal
at follow-up than those who were normal for each MetS component.

MetS reflects a clustering of cardiometabolic risk parameters, which are believed to
originate from the common pathophysiological mechanisms of insulin resistance [33]. In
this study, a fat–BP–glucose three-factor structure for MetS was observed both in ado-
lescents aged 12–14 years (baseline survey) and 15–17 years (follow-up survey), with
analogous factor loadings and proportions of total variance explained (68.8% vs. 69.7%). In
one school-based longitudinal investigation of adolescents aged 12–19 years, the overall
parameter clustering structure of cardiometabolic risks did not change significantly after
3-years of follow-up [8]. These findings strengthen the argument that the mechanistic
underpinning for MetS is stable during adolescence. Alternatively, the verification of a
multifactor structure highlights the necessity of evaluating multisystem dysregulation in
MetS using factor analysis. A risk score for MetS derived from the confirmatory factor
analysis has been applied to measure the effect of the spectrum of MetS severity on T2DM
and cardiometabolic disease [34–36].

Using four criteria to diagnose MetS in adolescents, we identified that 3.2–4.4% of
adolescents in the adi-Cars cohort had incident MetS, and 52.0–61.9% of those with MetS
experienced remission. Consistent with our findings, one longitudinal study that employed
three MetS definitions for adolescents revealed an incident MetS rate of 3.8–5.2% and
MetS remission rate of 48.6–56.1% after 2.7 years [8]. Although the four criteria for MetS
abnormal components had different cutoff values, the agreement of MetS diagnosis be-
tween baseline and follow-up was similar across these criteria (k, 0.313–0.367), illustrating
the stability of the longitudinal transformation pattern in MetS status during adolescent
development. Recent prospective investigations among youth aged 9–18 years indicated
that incident MetS and persistent MetS assessed by follow-up survey at two time points can
substantially predict the risk of subclinical atherosclerosis (3.4-fold) and T2DM (12.2-fold)
after 14–27 years [37]. The findings from a large cohort study of adults aged 40–69 years
demonstrated that participants with incident MetS and persistent MetS had a 1.8- and
2.0-fold risk of developing T2DM 10 years later, respectively [38]. Thus, determining trans-
formations in MetS status over time is a promising approach for estimating its influence on
cardiometabolic disorders.

Our data revealed that intraindividual changes between baseline and follow-up in
weight-related variables, HDL-C, and FPG were significant in the never MetS group,
demonstrating the variability of cardiometabolic risk parameters in childhood development.
After adjustment for all covariates, a high SBP increase (∆SBP) was associated with an
elevated risk of new-onset MetS (aOR, 1.07 for 1 mmHg increase; Table 5), implying that
SBP elevation is critical for MetS occurrence in this population. Compared with adolescents
with persistent MetS, decreases in the SBP and FPG levels were associated with an increased
likelihood of MetS remission (aOR, 1.05 and 1.06, respectively, for 1 unit decrease; Table 5).
Clinical studies have revealed that patients who received a short-term intensive drug
treatment to lower blood glucose, BP, and cholesterol levels had a long-term reduction
in the risk of T2DM and cardiovascular disorders, even after treatment cessation (known
as the cardiometabolic memory phenomenon) [39]. In a community-based prospective
study, adolescents in the intervention group of a triweekly exercise program and nutritional
counselling were found to have a 3.0%, 18.0%, and 26.0% decrease in BMI, LDL-C, and TG
levels, respectively, and a 17.0% increase in HDL-C levels, as compared with the control
group [40]. Our findings underline the need for interventions among adolescents with
MetS, such as dietary improvement and exercise promotion, with the aim of reducing SBP,
TG, and FPG levels.
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Surveillance and monitoring of the incidence and persistence of five MetS components
are vital tasks in adolescent cardiometabolic health [2,15,41,42]. In our cohort, among the
five MetS components, low HDL-C had the highest incidence rate (9.6% per year), whereas
abdominal obesity and low LDL-C had the greatest persistence rate (34.3% and 36.5%
per year, respectively). These data indicate specific risk factors that need enhanced moni-
toring. A combined assessment involving two longitudinal investigations demonstrated
that incident MetS and persistent MetS during the transition from adolescence to young
adulthood were associated with a 1.7- and 3.4-fold risk, respectively, of high carotid artery
intima-media thickness, and a 4.4- and 12.2-fold of T2DM in adulthood [37]. Because the
likelihood of persistence of each MetS component was higher than that for new onset (aHR,
3.4–15.0, Table 6), screening for existing abnormal MetS components can be more beneficial
than preventing new-onset abnormal components.

This study had several strengths. First, a large-scale representative community-based
cohort was used to prospectively assess the stability and transformation of adolescent MetS
and their relation to the change of cardiometabolic risk factors. Second, our investigative
framework and methodology can be adopted to other countries that wish to evaluate their
own transformations in MetS status and attendant influences on cardiometabolic disorders
among adolescents and adults. Third, several criteria with specific cutoff points for MetS
diagnosis were simultaneously used to determine the agreement and stability for changes
in MetS status over two years.

This study also had a few limitations. First, adolescents from three schools could not
be followed due to the COVID-19 outbreak in Taiwan, and their data were excluded from
this evaluation. However, the distributions of sex, age, urbanization level, and weight
variables were comparable between the participants in the excluded and remaining schools.
Second, the number of adolescents with incident, remitted, and persistent MetS was low,
resulting in a wide 95% CI when polytomous logistic regression models were fitted. Larger
studies are needed to confirm these results. Third, our cohort included only Taiwanese
adolescents. Our findings may not be generalizable to other adolescent populations.

5. Conclusions

A fat−BP−glucose clustering structure underlying MetS is stable across adolescence.
Increased SBP affects MetS incidence and persistence, and decreased SBP and FPG influence
MetS remission after two years. Abdominal obesity and low HDL-C are two MetS compo-
nents that highly persist during adolescence and are intervention targets for reducing the
future risk of cardiometabolic disorders.
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