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Abstract

Directional network interactions underpin normative brain function in key domains

including associative learning. Schizophrenia (SCZ) is characterized by altered learning

dynamics, yet dysfunctional directional functional connectivity (dFC) evoked during

learning is rarely assessed. Here, nonlinear learning dynamics were induced using a

paradigm alternating between conditions (Encoding and Retrieval). Evoked fMRI time

series data were modeled using multivariate autoregressive (MVAR) models, to dis-

cover dysfunctional direction interactions between brain network constituents during

learning stages (Early vs. Late), and conditions. A functionally derived subnetwork of

coactivated (healthy controls [HC] \ SCZ] nodes was identified. MVAR models quan-

tified directional interactions between pairs of nodes, and coefficients were evalu-

ated for intergroup differences (HC 6¼ SCZ). In exploratory analyses, we quantified

statistical effects of neuroleptic dosage on performance and MVAR measures. During

Early Encoding, SCZ showed reduced dFC within a frontal–hippocampal–fusiform

network, though during Late Encoding reduced dFC was associated with pathways

toward the dorsolateral prefrontal cortex (dlPFC). During Early Retrieval, SCZ showed

increased dFC in pathways to and from the dorsal anterior cingulate cortex, though

during Late Retrieval, patients showed increased dFC in pathways toward the dlPFC,

but decreased dFC in pathways from the dlPFC. These discoveries constitute novel

extensions of our understanding of task-evoked dysconnection in schizophrenia and

motivate understanding of the directional aspect of the dysconnection in schizophre-

nia. Disordered directionality should be investigated using computational psychiatric

approaches that complement the MVAR method used in our work.
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1 | INTRODUCTION

Schizophrenia (SCZ) (Saha, Chant, Welham, & McGrath, 2005;

Schultz & Andreasen, 1999) is characterized by prominent deficits in

cognitive domains including learning and memory (Aleman, Hijman, de

Haan, & Kahn, 1999; Brambilla et al., 2011), that are central to its

core (Ragland et al., 2012). These deficits are associated with dysfunc-

tion of brain regions including the hippocampus, the dorsolateral

prefrontal cortex (dlPFC), and the dorsal anterior cingulate cortex

(dACC) (Diwadkar et al., 2008; Heckers et al., 1998; Konradi &

Heckers, 2003; Ragland et al., 2009; Ragland et al., 2017; Woodcock,

Wadehra, & Diwadkar, 2016), and interactions between them. The

cumulative effects are consistent with the “dysconnection” hypothesis

(Friston, Brown, Siemerkus, & Stephan, 2016; Robison, Thakkar, &

Diwadkar, 2019; Rolls et al., 2019). By inference, deficits in learning

and memory are related to dysfunction in the integrative tone of

selected networks, or the inability of reentrant functional connections

to interact within the system (Érdi, Ujfalussy, & Diwadkar, 2009).

Functional network transactions are fundamentally directional

in nature (Friston, 2011; Park & Friston, 2013). Yet, a preponderance

of studies investigating task-related dysconnection during learning

and memory rely on undirected functional connectivity (uFC)

(Silverstein, Bressler, & Diwadkar, 2016; Wadehra, Pruitt, Murphy, &

Diwadkar, 2013). uFC seeks to capture statistical relationships

between fluctuations in BOLD activity between different brain areas,

and is typically represented by zero-lag bivariate correlations between

pairs of regions (A, B). uFC models are agnostic with respect to any

directionality of effects (A à B vs. B à A). Several studies have inves-

tigated statistical relationships between resting-state FC (Samudra

et al., 2015) and psychological performance on tasks of relational

memory (Avery, Rogers, & Heckers, 2018). The resultant discoveries

from fMRI signals have been largely agnostic regarding plausible direc-

tional interactions between constituents of learning related networks.

Analyses of brain-wide resting-state fMRI data suggest that the

dysconnectome in SCZ, is pervasive and global (Ji et al., 2019; Rolls

et al., 2019). These compelling results motivate the search for specific

task-induced dysfunction, because resting-state connectomics do

not predict task-evoked dysfunction in “linear” ways (Hermundstad

et al., 2013; Park & Friston, 2013); indeed, in SCZ, changes in uFC

during task-based processing are not straightforwardly predicted

by differences in resting-state FC in the same patients (Salomon

et al., 2011).

To address this lacuna, here fMRI time series data acquired during

an associative learning paradigm were submitted to directional func-

tional connectivity (dFC) analyses based on the application of multi-

variate autoregressive (MVAR) models (Asemi, Ramaseshan, Burgess,

Diwadkar, & Bressler, 2015; Diwadkar, Asemi, Burgess, Chowdury, &

Bressler, 2017). These models are well suited for assessing such inter-

actions between any nodes in any class of network with quantifiable

dynamics (Bressler & Seth, 2011). The employed task was notable for

its reliance on both relational memory (Avery et al., 2019) and the

resultant nonlinear learning dynamics induced by having to learn asso-

ciations over time (Stephan, Baldeweg, & Friston, 2006).

Associative learning is driven by the long-term potentiation (LTP)

of synaptic strengths, modified in regions including the hippocampus,

the prefrontal cortex and subcortical structures including the basal gang-

lia (Gruart, Leal-Campanario, Lopez-Ramos, & Delgado-Garcia, 2015;

Izquierdo & Medina, 1997), and is controlled by the excitatory role of the

N-methyl-D-aspartate (NMDA) receptor which drives LTP (Silva, 2003).

How the molecular mechanisms of learning (primarily derived from

rodent models) cascade “upward” to the mesoscopic and macroscopic

scales is unclear (Singh, 2012). Nevertheless, fMRI studies and pharma-

cologic challenges (using ketamine, an NMDA receptor antagonist)

repeatedly (a) confirm the role of frontal and hippocampal regions in

learning (Woodcock, White, & Diwadkar, 2015) and learning dynamics

(Banyai, Diwadkar, & Érdi, 2011), and (b) the role of NMDA in sub serv-

ing learning proficiency (Krystal et al., 1994; Krystal et al., 1999).

As has been lucidly noted in many discussions on the neuroscience

of brain networks (Park & Friston, 2013; Singh, 2012), any class of “neu-

ral” activity relating to any domain unfolds at multiple spatial, temporal,

and mechanistic scales. In no domain is this aspect truer than in the

study of the molecular, neurochemical and computational bases of

learning and memory (Banyai et al., 2011; Chen & Tonegawa, 1997;

Diwadkar et al., 2008; Ranganath, Minzenberg, & Ragland, 2008;

Silva, 2003). Notably, both SCZ and deficits in learning and memory

are associated with NMDA receptor hypofunction (Brambilla, Riva,

Melcangi, & Diwadkar, 2007; Harrison, Law, & Eastwood, 2003;

Stephan et al., 2006). More fundamentally, in SCZ, glutamatergic

dysfunction may be a pathological bridge between core clinical symp-

tomatology and behavioral deficits (Limongi et al., In press). Indeed,

the glutamate, along with the dopaminergic hypothesis (Howes &

Kapur, 2009) represents one of the core theories of the molecular path-

ophysiology of SCZ (Coyle, 1996), and suggests that the full expression

of illness dysfunction is at once, neurochemical (molecular), network

(macroscopic), and “computational” (or behavioral). The last level is

most proximate to the manifestation of the illness because psychosis

is proposed to result from a decreased precision in the encoding of

prior beliefs relative to the sensory data, thereby driving maladaptive

inferences or “prediction errors” (Friston, Stephan, Montague, &

Dolan, 2014; Sterzer et al., 2018). The resultant effects on perceptual,

decision and sensorimotor domains are widely documented (Limongi,

Bohaterewicz, Nowicka, Plewka, & Friston, 2018; Thakkar, Diwadkar, &

Rolfs, 2017), but may generalize to higher level cognitive domains

such as learning that frequently rely on frontal–striatal–hippocampal

interactions, and are “downstream” from perceptual processing (Heinz

et al., 2019). In this vein, SCZ is notably both a neuropsychiatric condi-

tion and a “model” of pathological brain network interactions (Silverstein

et al., 2016; Stephan et al., 2016).

Here, we used an established associative learning paradigm

(Diwadkar et al., 2016) to induce classic negatively accelerated learning

(Buchel, Coull, & Friston, 1999) characterized by rapid rates of improve-

ments in trial-on-trial performance during initial phases, but diminished

rates during later phases. These nonlinear behavioral dynamics are nota-

ble for distinguishing between early (linear regime) and later stages

of learning (an asymptotic regime) (Ravishankar et al., 2019; Stanley

et al., 2017). To avoid activation-related biases from confounding
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intergroup differences in connectivity, a functionally derived network

was employed to identify common activated loci across groups

(HC \ SCZ) and task conditions (Morris et al., 2018). From this network,

times series' were submitted to analyses using MVAR models (Bressler,

Richter, Chen, & Ding, 2007; Tang, Bressler, Sylvester, Shulman, &

Corbetta, 2012). MVAR models (analogous to Granger causality) rely

on principles of temporal precedence in time series data to estimate

“causality” between system constituents (we use the weaker term

“directionality” in referring to these effects) (Deshpande & Hu, 2012;

Roebroeck, Formisano, & Goebel, 2005). Our analyses separately esti-

mate dFC relating to memory Encoding and Retrieval, (see Section 2)

and the previously motivated Early and Late phases of learning.

2 | METHODS AND MATERIALS

2.1 | Participants

Wayne State University's IRB approved all procedures. Participants

(N = 55) provided informed consent and were compensated for their

participation. HC participants were (by definition) free of psychiatric or

neurological conditions (n = 24; mean age: 28 years; range: 18–45; nine

females; mean full-scale IQ [FSIQ]: 101.29 [±10.55]; mean PANSS com-

posite score: −0.09 [±1.04]; mean PANSS general score: 16.74 [±1.79];

mean PANSS negative score: 7.74 [±0.86]; mean PANSS positive score:

7.65 [±1.03]). SCZ patients were identified by the treating physicians

(A. A. and L. H.) and the diagnosis was confirmed by a research psychol-

ogist (U. R.) using the DSM-V criteria for SCZ (American Psychiatric

Association, 2013) (SCZ; n = 31; mean age: 29 years; range: 18–50;

10 females; mean FSIQ: 87.74 [±6.06]; mean PANSS composite score:

0.19 [±3.81]; mean PANSS general score: 23.52 [±4.95]; mean PANSS

negative score: 12.65 [±3.52]; mean PANSS positive score: 12.84

[±3.13]). All patients were stabilized on a regimen of atypical antipsy-

chotics (Risperidone, Olanzapine, or Aripiprazole). Groups did not differ

in age (p > .10, see Table 1).

2.2 | MRI acquisition

Data (3 T Siemens Verio scanner, 32-channel volume head coil) were

acquired using a multiband gradient EPI sequence (TR = 3 s, TE = 24.6 s,

multiband factor = 3, FOV = 192 × 192 mm2, matrix = 96 × 96, 64 axial

slices, resolution = 2 mm3). T1-weighted MRI images were collected for

normalization and coregistration with the EPI scan (3D Magnetization

Prepared Rapid Gradient Echo sequence, TR = 2,150 ms, TE = 3.5 ms,

TI = 1,100 ms, flip angle = 8�, FOV = 256 × 256 × 160 mm3, 160 axial

slices, resolution = 1 mm3).

2.3 | Data processing

Image processing was undertaken in SPM 12 using established methods

for temporal (slice timing correction) and spatial preprocessing. EPI

images were manually oriented to the AC-PC line with the reorientation

vector applied across the EPI image set, realigned to a reference image

to correct for head movement, and coregistered to the anatomical high-

resolution T1 image. The T1 image was normalized to the MNI template,

with the resultant deformations applied to the coregistered EPI images.

Low frequency components were removed (low-pass filter: 128 s) and

images were smoothed using a Gaussian filter (8 mm full-width half

maximum). An autoregressive AR(1) model was used to account for

serial correlation.

2.4 | Associative learning

Network dynamics were induced using an object-location associative

learning paradigm (Ravishankar et al., 2019; Stanley et al., 2017;

Wadehra et al., 2013; Woodcock et al., 2015), alternating between

Encoding, Rest, and Retrieval epochs (27 s each). During encoding

epochs, nine objects were presented in their associated locations

for naming (3 s/object). Following a brief instruction-free retention

interval (27 s), retrieval was induced by randomly cuing locations

and requiring participants to name the associated object. Following

another instruction-free rest interval (27 s), the cycle of epochs was

repeated. Eight cycles were used to promote asymptotic performance.

The paradigm strongly elicits frontal–hippocampal mechanisms of

memory formation, consolidation, and recall (Simons & Spiers, 2003)

and is characterized by negatively accelerated learning, which in turn

permits the assessment of task-related dynamics that may differ

between linear and asymptotic regimes (Stanley et al., 2017).

TABLE 1 The demographic characteristics for each group are
shown. We also show the medication profiles for SCZ patients. All
patients (n = 31) were stabilized on a regimen of atypical
antipsychotics at the time of data acquisition. HC were free of all
medications except for antihistamines (n = 1)

SCZ (n = 31) HC (n = 24)

Demographics

Age (years) 29.36 (±7.99) 27.72 (±6.33)

Sex (% female) 10 (32%) 9 (38%)

IQ 84.74 (±6.06) 101.29 (±10.55)

Medication

Medicated (%) 31 (100%)

Antidepressant 6 (19%)

Antipsychotic 31 (100%)

Anxiolytic 7 (23%)

Mood stabilizer 7 (23%)

CNS stimulant 1 (3%)

Antihistamines 3 (10%)

Hypnotics and sedatives 3 (10%)

Anticholinergic 3 (10%)

Antihypertensives 3 (10%)

Abbreviations: HC, healthy controls; SCZ, schizophrenia.

3596 BAAJOUR ET AL.



To model behavioral performance, two statistical approaches

were employed:

1. Performance (fraction correct performance for each retrieval

epoch) was entered into a mixed-model analysis of variance

(ANOVA) with group (HC vs. SCZ) as the independent variable, and

memory block/time (1–8) as the within-subjects (dependent)

variable.

2. Fraction correct performance in each participant was modeled

using the nonlinear least-square fitting Gompertz function, which

ideally characterizes negatively accelerated learning, represented

in Equation (1):

Fraction correct = a× e −e b−c× timeð Þð Þ ð1Þ

where a represents the asymptote (considered to reveal learning

capacity), b represents the learning rate time constant, and c repre-

sents the inflection point (time at which the performance transi-

tions from linear to asymptotic). Modeling was conducted using

the lsqnonlin function in MATLAB (MathWorks, Inc.).

2.5 | Time series and dFC analysis

Coactivated nodes were identified using a conjunction analyses

(HC \ SCZ) (Nichols, Brett, Andersson, Wager, & Poline, 2005) to

identify a common functionally derived network across groups and

epochs (ensuring that subsequent differences in dFC were not con-

founded by activation-based differences) (Figure 1). Coactivated

clusters were identified based on cluster-level thresholding

(p < .05, cluster level) (Ward, 2000) and centroids (radius = 5 mm)

were established at the resultant significance peaks. Time series

across participants (n = 55) from nodes in this functional network

were forwarded for dFC analyses.

dFC was investigated within the MVAR statistical framework

(Bressler & Seth, 2011; Diwadkar, Asemi, et al., 2017) (implemented

in MATLAB) for using time series data from pairs of nodes (A, B), to

estimate the strength of the directional effects between them

(A à B, B à A).

Given two time series X and Y (representing dynamic state

changes in nodes j and i), with n time points in each, the relationship

between X and Y across all n, can be represented in the form of an

MVAR model with the general representation:

Zt =
Xp

k =1

BkZt−k + Et ð2Þ

Here, Zt is the dependent variable in vector form, representing

the BOLD data values at arbitrary time t of all voxels in X and Y; Zt-k

represents the values of the Z vector at and arbitrary earlier time point

t-k; lag k ranges from 1 to p, the model order; Bk is the corresponding

coefficient matrix at lag k; and Et is the residual vector.

F IGURE 1 (a) The results of a conjunction analysis (SCZ \ HC) are projected to bilateral lateral and medial cortical surfaces. The significance
peaks (insets) constitute a common substrate of activation across groups and conditions. These were harvested for subsequent dFC analyses, to
avoid connectivity estimates from being confounded by activation differences, and to base dFC estimates on statistically filtered fMRI data. The
harvested peaks represented the dorsolateral prefrontal cortex (dlPFC), the dorsal anterior cingulate (dACC), the hippocampus (HPC), the superior
parietal cortex (SPC), the fusiform gyrus (FG), and the inferior temporal gyrus (ITG). (b) The schematic connectomic ring provides the framework
for subsequent depiction of dFC results (Figures 3–5). The nodes are color coded by functional clusters; frontal/executive function (dlPFC, dACC;
light purple), medial temporal lobe (HPC; gray), and unimodal function (FG, ITG, SP; teal). dFC, directional functional connectivity; HC, healthy
controls; SCZ, schizophrenia
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The product term in Equation (2), BkZt-k, is expanded into a matrix

where each element of the Zt-kth vector is a predictor, and each ele-

ment (bkij) of the Bk matrix is a coefficient representing the degree of

prediction of the ith element of Zt by the jth predictor. If a value of bkij

significantly differs from zero, then significant “causality” is said to

exist from node j to node i. The magnitude of the strength of the

effect is represented in the model coefficient b (Morris et al., 2018;

Tang et al., 2012),represents the degree of the causal relationship

between the time series of nodal pairs, and is equivalent to GC

(Granger, 1980). The significance of the effect can be assessed by the

magnitude of the t statistic used to measure the difference of the

b value from zero. Here, the MVAR model order (i.e., the number of

previous time points in the model used to estimate a current time

point), was one (Tang et al., 2012), consistent with our objectives,

and with known limits of the temporal resolution of the fMRI signal

in estimating network interactions (Logothetis, 2008). The method

employed is made available online (https://github.com/WSUBRAINS/

fMRI_MVAR_ANALYSIS).

To harness the dynamics of how dFC (and differences;

HC 6¼ SCZ) evolved over the course of the study, analyses were orga-

nized by phases of learning. This division separated the first four

epochs of the task (linear increases in learning proficiency, henceforth

“Early” learning) from the last four epochs of the task (when learning

proficiency reached approximate asymptomatic performance, hence-

forth “Late” learning).

For each participant, MVAR coefficients were estimated for each

of four conditions from a factorial combination of Epoch (Encoding

vs. Retrieval) and Time (Early vs. Late), and for each direction. The

resultant adjacency matrix for each participant in each condition con-

sisted of 30 coefficients (6 nodes; 30 pairs, including both directions:

A ! B & B ! A, and excluding on-diagonal elements) providing a

detailed picture of how directionality in network interactions during

each phase of the task (Encoding vs. Retrieval) was dys-modulated

during the Early and the Late stages of learning.

MVAR coefficients were submitted for analyses of intergroup dif-

ferences (HC 6¼ SCZ, qFDR < 0.05) (Benjamini & Hochberg, 1995). This

comprehensive analytic framework provided estimates of time affected

intergroup differences in dFC in each network pair (A, B) and direction

(Aà B, Bà A), for each epoch type.

3 | RESULTS

The results are organized as follows: (a) First (Figure 2), we present

behavioral effects, with observed data, and patient-control differ-

ences in learning parameter estimates; (b) Next (Figure 3), we present

relative differences in the magnitude of dFC estimates (|dFC(HC)–

dFC(SCZ)| for Encoding epochs (Figure 3a), represented as weighted

edges in the underlying connectomic ring (carried forward from

Figure 1b). From the dFC data, we derived significant differences

between groups, represented as binary edges on the connectomic

ring (Figure 3b). (c) Next (Figure 4), we present differences in dFC

estimates (|dFC(HC)–dFC(SCZ)| and significant intergroup effects for

the Retrieval epochs (Figure 4). (d) Finally (Figure 5), we report the

results of exploratory analyses investigating the medication dosage

effects on SCZ patients' behavioral performance as well as dFC

estimates.

3.1 | Behavioral results

The mixed-model ANOVA resulted in a significant main effect of

time (F(1,41) = 133.82, p < .001, MSe = 0.070) with a large effect size

(partial η2 = .77), evidence that behavioral performance robustly

improved (regardless of group). A significant main effect of group

(F(1,41) = 13.05, p < .01, MSe = 0.21) with a moderate effect size (par-

tial η2 = .24) was observed, indicating impaired overall memory perfor-

mance in SCZ compared to HC. Figure 2a shows the average

performance data for HC (blue) and SCZ (red). The curves represent

Gompertz functions fit to the average HC and SCZ data. The shaded

portions of the learning functions clearly delineate differences

between Early (Linear) and Late (Asymptotic) learning, which moti-

vated understanding of the network correlates of learning dynamics.

The bar graphs depict the mean estimates of performance param-

eters ([b] asymptote, [c] learning rate time constant, and [d] inflection

point) for healthy controls compared to SCZ (±SEM) derived from

Gompertz functions fit to individual participants' data. As shown, on

average, SCZ reached lower asymptotic proficiency than healthy con-

trols (p < .05; Figure 2b) with a moderate effect size (Cohen's d = .63),

evidence for a reduction in learning capacity (Diwadkar et al., 2008).

Patients transitioned from linear to asymptotic learning later, (p < .05;

Figure 2c) with a large effect size (Cohen's d = 1.04). The increase in

learning rate time constant (Figure 2d) was not statistically significant

(p > .05) but is suggestive of slower learning rates in SCZ.

3.2 | Exploratory analysis of age and FSIQ effects

We also assessed the statistical effects of FSIQ (Wechsler, 2011) and

age on multiple dependent variables including both (a) behavioral met-

rics and (b) MVAR coefficients. Age and FSIQ data were submitted to

regression models to examine their statistical effects on, (a) fraction cor-

rect data (that is the average ratio of correctly recalled items to total

items across Early and Late epochs), (b) the modeled performance

parameters for learning rate and inflection point, and (c) MVAR coeffi-

cients for all subnetwork pairs and directions. For the MVAR coeffi-

cients, the analyses were conducted for coefficients associated with

each task condition (Encoding, Retrieval) and each Phase (Early, Late)

(i.e., 30 directional interactions between the six-node network). Signifi-

cant correlations were identified using statistical thresholds (qFDR < 0.05).

In these exploratory analyses, age did not exert any significant effect on

any of the behavioral performance parameters. However, consistent

with previous studies (Mohn, Sundet, & Rund, 2014), FSIQ predicted

behavioral metrics. An increase in FSIQ was predictive of increased

learning proficiency during both Early (r = .52) and Late periods (r = .31).

FSIQ did not predict any of the dFC parameter values. With the absence
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of behavioral proficiency, it appears that neither participant Age nor

FSIQ were predictive of the observed connectivity measures.

3.3 | Directional functional connectivity

3.3.1 | Memory encoding

In each connectomic ring (Figure 3a,b), we depict relative differences

in dFC values during each of the Encoding phases. In the color scheme

(maintained going forward), warm colors indicate reduced dFC in SCZ

(i.e., an increase in HC compared to SCZ), whereas cool colors indi-

cated the converse.

As indicated by the relative dFC effects, during Early Encoding,

SCZ were characterized by reduced dFC within a network of regions

that included the dlPFC, the Hippocampus and the FG. By compari-

son, SCZ appeared to be characterized by increased dFC into the

SP. Significance rings (Figure 3c) confirmed these effects: Significantly

reduced dFC was observed in SCZ for: dlPFC à hippocampus,

FG à hippocampus, and bidirectionally between the dlPFC and the

FG. By comparison, SCZ were characterized by increased dFC for

FG à SP and ITG à SP.

During Late Encoding, the dFC differences became more evident in

pathways leading to and from frontal regions, specifically the dlPFC and

the dACC (Figure 3d). As seen, in SCZ, dFC was reduced for:

HPC à dlPFC, FG à dlPFC, SP à dlPFC, and dACC à FG. In compari-

son, in SCZ there was increased dFC in the ITGà dlPFC and FGà dACC

pathways. These effects were confirmed in the significance rings below.

3.3.2 | Memory retrieval

As shown in Figure 4c, during Early Retrieval, contrasting patterns of

dFC were observed. SCZ were characterized by decreased dFC on the

HPD à FG pathway. By comparison, statistically significant increases

in dFC in SCZ were observed on: dlPFC à dACC, HPC à dACC,

SP à dACC, FG çà dACC (bidirectionally).

During Late Retrieval, SCZ were characterized by significantly

reduced dFC (Figure 4d) on: dlPFC à SP, dlPFC à dACC, HPC à FG,

FG à ITG, but increased dFC for the pathways leading to the dlPFC

from the HPC and SP (HPC à dlPFC; SP à dlPFC).

3.4 | Exploratory analysis of medication effects in
the SCZ group

Because exposure to psychotropic medication can exert effects on acti-

vation and connectivity metrics (Abbott et al., 2011; Abbott, Jaramillo,

F IGURE 2 (a) The points represent recall performance at each of the eight retrieval epochs for healthy controls (HC, orange) and
schizophrenia (SCZ, green) patients (error bars are ±SEM). The overlaid curves represent the Gompertz function fit to the average performance for
each group. As evident from the shaded windows, the Early and Late phases of learning are characterized, respectively, by linear and asymptotic
performance regimes. Subsequent figures represent the mean parameter estimates from fitting Gompertz functions to data from each individual
participant. The data are presented for (b) asymptote, (c) learning rate time constant, and (d) inflection point (error bars are ±SEM). As seen, on
average, SCZ patients reached lower asymptotic proficiency than HC (p < .05), and transitioned from linear to asymptotic learning later, (p < .05).
The increase in the learning rate time constant was not statistically significant (p > 0.05) but is indicative of slower learning rates in SCZ patients
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Wilcox, & Hamilton, 2013), we explored potential effects of medication

dosage on learning performance and MVAR coefficients. To achieve

this, we quantified dosage-related effects on both (a) behavioral perfor-

mance, and (b) MVAR coefficients for each of the 30 directional interac-

tions between the six-node network. Analyses were conducted for each

of the task conditions (Encoding, Retrieval) and Phases (Early, Late). Sig-

nificant correlations were thresholded (qFDR < 0.05).

Dosage was quantified based on the ratio of the prescribed daily

dose (PDD) and defined daily dose (DDD) (Nose & Barbui, 2008). The

PDD/DDD ratios for each SCZ patient were submitted to separate

regression models against: (a) fraction correct data: average ratio of

correctly recalled items to total items across Early and Late epochs,

(b) performance parameters: learning rate and inflection point, and

(c) MVAR coefficients for all subnetwork pairs and directions.

Whereas psychotropic dosage had no significant effect on any of

the parameters for behavioral performance (ps: .23–.75), significant

effects of dosage were observed on a subset of MVAR coefficients

(Figure 5). Blue colors indicate a significant negative correlation between

MVAR coefficients and psychotic dosage, while red colors indicate a sig-

nificant positive correlation between MVAR coefficients and psychotic

dosage. The effects are distinguished based on whether the pathway

was significantly different in the intergroup analyses (HC 6¼ SCZ,

Figures 3 and 4, solid lines), or not (dotted lines).

As seen, the set of significant pathways in which antipsychotic

dosage in patients predicted MVAR coefficients largely nonover-

lapping with the set of significant intergroup (HC 6¼ SCZ) differences

(Figures 2 and 3). A notable exception was the dlPFC à HPC pathway

(r = .29). Thus, within patients, medication predicted connectivity

changes on pathways that (but for the single noted exception) were

not different between patients and controls. The import of these

effects is visited in Section 4.

4 | DISCUSSION

We explored patient—control differences in dFC (estimated using

MVAR models) induced by associative learning with negatively accel-

erated learning dynamics (Figure 2). Our salient results were as

follows:

1. During Early Encoding (Figure 3a,c), SCZ were characterized by

reduced dFC within a frontal–hippocampal–FG network, though

F IGURE 3 Using the connectomic ring (see Figure 1), for each of the pairwise subnetworks, we depict absolute relative differences (|dFC
(HC)–dFC(SCZ)|) in the dFC values between groups (top row), and the significant differences (dFC(HC) 6¼ dFC(SCZ); pFDR < .05) between groups
(bottom row). (a) Early Encoding: schizophrenia (SCZ) are characterized by relatively reduced dFC (warm/orange arrows) in the frontal (dlPFC)—
hippocampal—FG network, with relatively increased dFC (cool/green arrows) from the FG and ITG to the SP. These effects are confirmed in the
significance dysconnectome in (c). (b) Late Encoding: During Late Encoding, relative reductions in dFC in SCZ patients shifted to directional
connections into the dlPFC from the SPC, FG and SP, and from the dACC to the FG (confirmed in the significance dysconnectome in (d). By
comparison, in patients, relative increases in dFC were observed into frontal regions (dlPFC and dACC) from the ITG and FG, respectively
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during Late Encoding (Figure 3b,d) reduced dFC was associated

with pathways toward the dlPFC.

2. During Early Retrieval (Figure 4a,c), SCZ were characterized

by increased dFC in pathways mainly associated with the dACC,

though during Late Retrieval (Figure 4b,d), patients were character-

ized by increased dFC in pathways directed toward the dlPFC, but

decreased dFC in the pathways from the dlPFC.

3. These effects were largely unrelated to FSIQ, age, and medication

(Figure 5), though neuroleptic dosage exerted some effects on dFC.

Recent SCZ studies have used Granger causality to investigate

network interactions associated with resting-state fMRI signals

(Huang et al., 2018; Iwabuchi & Palaniyappan, 2017), working memory

(Pu et al., 2016), and during episodic memory retrieval (Hutcheson

et al., 2015). However, our results are singular in depicting dysfunc-

tional directionality induced during associative memory encoding,

retrieval and their temporal dynamics. The results highlight the salience

of frontal–hippocampal interactions during early memory acquisition

(Raynal, Schnider, & Manuel, 2019), and of the importance of

hippocampal–neocortical interactions in the initial stages of (the even-

tually prolonged process of) memory consolidation (Haist, Bowden

Gore, & Mao, 2001). Moreover, they provide a directional framework

to underpin hippocampal functional deficits in SCZ (Ragland et al.,

2017). These themes, and potential mechanisms discovered by our

analyses are visited in the remainder of Section 4.

4.1 | Memory dynamics and dysfunctional
directional interactions during encoding

Memory consolidation emerges through dynamics involving the

medial temporal lobe and the neocortex (Wiltgen & Tanaka, 2013).

Although consolidation generally encompasses encoding and

retrieval, each subprocess is expected to induce distinct effects dur-

ing learning (Simons & Spiers, 2003). The in-task evolution of patient-

control differences during Encoding (Figure 3) is revealing for

reflecting the time dependence of circuit deficits in SCZ (Bontempi,

Laurent-Demir, Destrade, & Jaffard, 1999; Mishkin, Vargha-

Khadem, & Gadian, 1998). Early encoding induced reductions in inter-

actions for dlPFC à HPC, and bidirectional interactions between

dlPFC and the FG. The former effects can be related to (a) recent

studies in mice showing that (optogenetic) inhibition of excitatory

F IGURE 4 Absolute relative differences (|dFC(HC)–dFC(SCZ)|) in the dFC values between groups (top row), and the significant differences
(dFC(HC) 6¼ dFC(SCZ); pFDR < .05) between groups (bottom row) are depicted during Retrieval. (a) Early Retrieval: schizophrenia (SCZ) are
characterized by relatively increase dFC (cool/green arrows) into the dACC from multiple sources (dlPFC, HPC, FG, SP), and from the dACC to
the FG. The only pathway with decreased dFC was the HPC à FG. These effects are confirmed in the significance dysconnectome (c).
(b) Late Retrieval: During Late Retrieval, relative increases in dFC in SCZ patients shifted to pathways to the dlPFC (from the HPC and the
SP). Decreased dFC was observed on the HPC à FG, FG à ITG, dlPFC à SP and dlPFC à dACC pathways
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medial prefrontal cortical neurons inhibits activation of the

entorhinal–hippocampal circuit, in turn inhibiting long term memory

formation (Bero et al., 2014), and (b) fMRI studies at the macroscopic

scale that have reaffirmed the role of disrupted cognitive control dur-

ing episodic memory formation (Ragland et al., 2015) and learning in

SCZ (Woodcock et al., 2016).

Thus, loss of directional interactions of dlPFC à HPC (and the

FG) during early memory encoding suggests a disruption of “top-

down” mechanisms of frontal control material at early stages of mem-

ory formation (Crane & Milner, 2005). Loss of bidirectional causality

between the dlPFC and FG pathway confirms previously documented

deficits in ventral-stream processing (Sehatpour et al., 2010), that also

reflect structural and “connectivity” deficits of the FG (Abrol, Rashid,

Rachakonda, Damaraju, & Calhoun, 2017).

Activation-based meta-analyses suggest that SCZ patients are

characterized by “overactivation” in network nodes deemed peripheral

rather than central in the connectome (Crossley et al., 2016). These

studies moderately inform the interpretation of our connectivity ana-

lyses, because increases in connectivity for FG à SP and ITG à SP

pathways suggest that the early phase of encoding associations is

associated with relatively inefficient transactions between ventral

(FG and ITG) and dorsal (SP) visual stream nodes which are associated

with the processing of object identity and spatial location, respectively

(Mishkin, Ungerleider, & Macko, 1983).

Later stages of encoding were characterized by reduced direc-

tional interactions into the dlPFC from the HPC, FG, and SP. Thus,

during asymptotic memory performance, there is a reduced “flow”

of information into the dlPFC from ventral and dorsal stream areas,

and from the hippocampus. These effects emphasize the central role

of the dlPFC (and hippocampus) during later stages of memory con-

solidation (Zhan, Guo, Chen, & Yang, 2018) when hippocampal

traces are redistributed into the neocortex (Remondes &

Schuman, 2004). Moreover, patients were also characterized by

reduced directional interactions from the dACC to the FG, con-

firming that mechanisms of “memory control” that are part of the

repertoire of the anterior cingulate (Bubb, Metzler-Baddeley, &

Aggleton, 2018), are impacted during late phases of encoding. Sig-

nificantly increased directional interactions were also observed for

the ITG à dlPFC and the FG à dACC. The pathways and targets

are unique, but both effects are in the “bottom up” direction,

suggesting inefficient unidirectional information flow in the late

stages of learning in SCZ.

4.2 | Memory dynamics and dysfunctional
directional interactions during retrieval

Functional connectivity analyses link the retrieval of memories to

network-wide interactions between the hippocampus, dlPFC, and

the dorsal anterior cingulate (Geib, Stanley, Dennis, Woldorff, &

Cabeza, 2017), independent of the content of memoranda, and other

content specific regions (Rugg & Vilberg, 2013). In this context, pat-

terns of hypo- and hyper-directionality, and how these patterns relate

to dysfunctional dynamics in SCZ are revealing. Explicit memory

F IGURE 5 We investigated if
in schizophrenia (SCZ) patients,
medication dosage (see Methods)
were positively (red) or
negatively (blue) correlated with
directional functional
connectivity (dFC) parameters for
each of the two learning phases
associated with (a) Encoding and

(b) Retrieval. These analyses
identified an admixture of
correlations across conditions
and phases (identified in dashed
lines: red—significant positive
correlations; blue—significant
negative correlations). However,
the majority of effects were on
pathways not implicated in
patient-control differences
(Figures 3 and 4). A notable
exception was a significant
positive correlation on the
dlPFC à HPC during the early
phase of encoding (denoted by a
solid red line). The import of
these effects is visited in
Section 4
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retrieval is resource intensive and demanding (Reas & Brewer, 2013),

and is unsurprisingly associated with performance declines in condi-

tions such as aging (Clark, Hazeltine, Freedberg, & Voss, 2018;

Diwadkar et al., 2016). As seen, patients were characterized by

increased directional interactions on multiple pathways converging on

the dACC (from the hippocampus, dlPFC, FG, and SP), and from

the dACC to the FG. These effects during embryonic stages of the task

(when the relative immaturity of memory traces results in demanding

retrieval), complement the hypo-directional effects observed in

patients during early encoding. Impaired integrity of directional net-

work interactions during the early phases of Encoding appear to have

to be compensated for by hyper-directional interactions during the

corresponding early phases of Retrieval. Clearly, the dACC plays a cen-

tral role in the context of memory control (Diwadkar, Re, et al., 2017;

Woodcock et al., 2015) (see Rajasethupathy et al., 2015 for evidence

of an anatomical basis for top-down, i.e., cingulate à hippocampus

mediation).

In the final phase of Retrieval, patients were marked by reduced bidi-

rectional interactions between the dlPFC and the SP and the dlPFC and

the dACC,reduced directional interactions for the HPC à FG, and

FG à ITG, but increased directional interactions converging into the

dlPFC from the SP and the HPC. The hypo-directionality from the

dLPFC, may reflect a loss of effective cueing of retrieval from the frontal

lobe, consistent with a hypothesized role for the frontal cortex in

memory retrieval (Simons & Spiers, 2003), and the effects of frontal–

hippocampal asynchrony during working memory in SCZ (Kupferschmidt

& Gordon, 2018; Schneider et al., 2017).

4.3 | Medication effects

Antipsychotic dosage exerted an admixture of effects on dFC, but on

pathways orthogonal to patient-control differences. During Encoding,

negative correlations between dosage and dFC estimates were

observed for dACCà HPC (Early) and ITGà dACC (Late), but positive

correlations for FG à ITG (Early) and dlPFC à HPC (Early). Only the

last pathway was represented in the patient-control dysconnectome. It

is tempting to overinterpret this final effect given that Hutcheson et al.

have shown that a week of antipsychotic treatment (risperidone)

increases bidirectional effects (also estimated using GC) during the

retrieval of episodic memories (Hutcheson et al., 2015). However, our

results are a naturalistic finding (dosing was uncontrolled), and in the

context of a task with demands different from one-shot episodic mem-

ory and retrieval. Nevertheless, that two independent studies (using

substantively different paradigms) should reveal medication-related

effects on a frontal - hippocampal pathway motivates further inquiry

on the general nature of this effect.

Medication generally predicted significant increases in estimated

connectivity during retrieval (Early and Late), notably emanating from

the dACC (Early and Late) and the dlPFC (Late). These results confirm

the sporadic effects that psychotropic medication exerts on general

connectivity measures in fMRI data collected in SCZ patients (Cadena

et al., 2019; Lottman et al., 2017).

4.4 | What do these revelations contribute to the
state of the dysconnection hypothesis?

The dysconnection hypothesis attempts to link the symptoms of

SCZ, with the brain's molecular and neuronal pathophysiology (Friston

et al., 2016), a rational approach consistent with modern scientific

approaches to the study of multiple branches of medicine. The explicit

idea is that psychosis is best understood as a systemic rather than a

local dysfunction, that results from aberrant neuromodulation of syn-

aptic efficacy which in turn mediates context-sensitive influences on

“connectivity.” It proposes that a key aspect of the illness' pathophysi-

ology lies in the interactions between NMDA receptor function and

modulatory neurotransmitter systems (Stephan, Friston, & Frith, 2009).

The dysconnection hypothesis, or more specifically the syndrome, can-

not be captured in any single study; after all, the brain is both a “statis-

tical” organ (Dayan, Hinton, Neal, & Zemel, 1995) and a “contextual”

organ (Park & Friston, 2013). As the former, it has evolved to actively

model the environment while simultaneously evaluating sensory evi-

dence against a set of internal formal representations, an idea that

found its earliest expression in linguistics (Chomsky, 1957). As the lat-

ter, its functional expressions are only loosely constrained by its under-

lying structure (Batista-Garcia-Ramo & Fernandez-Verdecia, 2018;

Pernice, Staude, Cardanobile, & Rotter, 2011). Brain function and dys-

function are inherently dynamic constructs, just as psychosis is itself a

dynamic expression of an underlying trait that emerges from a cluster

of disease properties (Kendler, Zachar, & Craver, 2011). Indeed, our

results imply that even within the context of a time-limited experimen-

tal manipulation, directional network interactions in SCZ change in

meaningful ways. Thus, the dysconnection hypothesis must endeavor

to reveal the how task-induced effects evoke dysfunctional brain

dynamics in SCZ. At its core, the “dysconnection syndrome” is not “a

thing” but a set of emergent properties that are dynamic expressions

of ingrained pathological processes in the brain.

4.5 | Conclusions

We infer that in SCZ the early stages of memory formation are char-

acterized by a loss of directional consistency between subnetworks

crucial in processes of memory formation and consolidation (Rusu &

Pennartz, 2019). During complementary periods of Early Retrieval,

this loss appears to be “compensated” for by interactions from and to

the dACC, a region the dysfunction of which is heavily implicated in

SCZ (Bubb et al., 2018). Specific pathways (FG à dlPFC, Encoding;

HPC à FG, Retrieval) showed reduced dFC across both phases, but

learning dynamics induced largely nonoverlapping patterns of dys-

function during both Encoding and Retrieval.

MVAR models have been considered controversial for fMRI ana-

lyses (Smith et al., 2012). Challenges to interpretation include hemody-

namic variation across regions, challenges of using temporal precedence

in estimating causal interactions (Friston, Moran, & Seth, 2013), and lim-

itations in the statistical model itself (Silverstein et al., 2016). However,

extensive evidence based on experimental and simulated BOLD data
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(Deshpande & Hu, 2012; Deshpande, Sathian, & Hu, 2010; Duggento,

Passamonti, Guerrisi, & Toschi, 2018; Rodrigues & Andrade, 2014) have

affirmed the robustness of Granger causality in estimating directional

relationships (or neuronal “causality”), particularly in task-constrained

data. Moreover, as has been recently shown, the recovered information

is complementary in meaningful ways, to what is recovered with non-

directional models (Morris et al., 2018). Finally, MVAR models lie within

a class of “weak” models of directional functional interactions between

nodes in brain networks, and lack the power of approaches such

as dynamic causal modeling (DCM) (Friston et al., 2019). DCM relies

on a well-validated neural mass model of fMRI time series data to

target effective connectivity (and perturbation-induced changes) in a

system. Thus, MVAR models can provide useful insights into any sys-

tem's dynamical behavior under different conditions albeit in a piece-

meal (node-to-node) manner, but subsequent investigations can be

underpinned by stronger “mechanistic” approaches like DCM, that per-

mit assessment of changes within a finite system. This remains a central

ambition of our ongoing work in this area.

Understanding “causality” in brain networks is a nontrivial challenge,

the complexities of which are frequently not contemplated (Mannino &

Bressler, 2015). However, the application of directed connectivity

methods of which MVAR models are a class, should be an essential tool

in the service of elucidating new vistas for the dysconnection syndrome

that is SCZ (Friston et al., 2016).
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