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Abstract
Graphs are widespread in many real-life practical applications. One of a graph’s fundamental and popular researches is

investigating the relations between two given vertices. The relationship between nodes in the graph can be measured by the

shortest distance. Moreover, the number of paths is also a popular metric to assess the relationship of different nodes. In

many location-based services, users make decisions on the basis of both the two metrics. To address this problem, we

propose a new hybrid-metric based on the number of paths with a distance constraint for road networks, which are special

graphs. Based on it, a most relevant node query on road networks is identified. To handle this problem, we first propose a

Shortest-Distance Constrained DFS, which uses the shortest distance to prune unqualified nodes. To further improve query

efficiency, we present Batch Query DFS algorithm, which only needs only one DFS search. Our experiments on four real-

life road networks demonstrate the performance of the proposed algorithms.

Keywords Graph � Path enumeration � Relevant vertices � Road networks

1 Introduction

Graphs are used in many practical applications, such as

social networks [1], information networks, gene networks,

protein interaction networks, and road networks. It is a fun-

damental problem in graph data management to analyze the

relationship between given two vertices; the relationship is

popularly measured by the shortest distance [2, 3] or

k-shortest paths [4, 5]. Based on them, two variants such as

KNN [6, 7] and k-closest pairs [8, 9] are presented. We can

make decisions, forecasts or classifications by analyzing the

relationship between different vertices. For example, the

applications of medicine include tracking infectious dis-

eases, predicting drug side effects and calculating the effect

of public health interventions. Recently, it has been applied

to COVID 19 outbreak prediction. KNN is also used for

classification in machine learning. In the field of medical

image, people can judge whether patients have a dis ease,

classify benign and malignant, and predict whether there are

precursors of disease through machine learning.

Recently, path enumeration problem is proposed to

assess how one vertex affects another vertex and attracts

growing attention [10]. For example, in biological net-

works, it can gain the interaction chain by enumerating the

paths between two substances [11]. In e-commerce net-

works, illegal acts such as money laundering can be

checked by enumerating the paths of two entities and

detecting whether there is a circle when a new edge is

inserted [12]. Recently, [13, 14] research the path enu-

meration problem with a hop constraint, which is efficient

to obtain limited essential paths.
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In many real-life applications, especially location-based

services, it requires to compute the shortest paths. For

example, we can select the nearest restaurant by calculating

the shortest path between two locations in the road network.

However, in many scenarios only determining the shortest

path is not enough. Users may be interested in alternative

paths which own some attributes but are longer than the

shortest path. There have been many works about the shortest

path with constraints [15]. For example, when we go to a

restaurant within a few kilometers, we usually choose the

nearest restaurant. However, some roads will be closed in

real life because of accidents. The distance from other routes

to the destination is much longer, so we will choose another

restaurant. Inspired by this, we present a new metric to

estimate the correlation between two points. Here, the

number of paths under a distance constraint is utilized to

measure the selectivity of destinations. The candidate node

with more paths is more likely to be chosen.

As shown in Fig. 1, assume that s is the source point; t1
and t2 are target points. It needs to choose one of the points

of interest as our target. There are two paths p1 ¼
ðs; v1; v4; t1Þ and p2 ¼ ðs; v2; t1Þ from the original point to t1
whose lengths are 3.5 km and 4.2 km, respectively.

Besides, there are two paths p3 ¼ ðs; v1; v4; t2Þ and p4 ¼
ðs; v1; v3; t2Þ to t2 with lengths 3.2 km and 5.1 km,

respectively. Among these paths, path p3 is the shortest,

and we can choose t2 as a final result.

However, all kinds of situations may occur on the road

network. If the path ðv1; v4Þ is blocked for some reason, we

cannot reach t1 and t2 through the path ðv1; v4Þ. As a result,

we can only reach t1 through path p2 and reach t2 through

path p4. If we need reach the point of interest within a

distance constraint 5 km in order to prevent the cost from

being too high, path p4 is not a good choice since it cannot

reach t2 within 5 km. But we can go through path p2 to t1
within 5 km. Finally, t1 will be selected as the result instead

of t2. Motivated by the above scenario, the number of paths

can be utilized to measure the relevance between points on

road networks.

In this paper, we present a new metric to measure the

relevant of two nodes on road networks based on the

number of paths within a distance constraint d. The more

paths whose lengths do not exceed d, the stronger the

correlation between the two nodes. In this way, it can

ensure that the number of candidate paths to destination t is

the largest under the condition of constraint d. Based on

this new metric, the most relevant point query on road

networks is formulated.

To process the most relevant point query effectively, it

faces the following challenges. Firstly, the main obstacle is

to calculate the number of paths satisfying the distance

constraint from the source point to all destination points.

The path enumeration problem is complex, and its time-

consuming increases exponentially. Secondly, similar to

the work in [14], with a small value of distance constraint

d, it also involves a vast search space because the number

of paths increases exponentially w.r.t d.

In this paper, to reduce redundant computation cost, we

uses DFS to check the number of paths of all target points

in a search process. In addition, unqualified nodes are

pruned as early as possible by a lower bound of distance of

each point in the search process. This contributes to

accelerating the query procedure. Our principal contribu-

tion in this paper is summarized as follows.

• We analyze the limitation of the existing way of

measuring the relevance of two points and propose a

new metric, and formulate the most relevant point query

on road network for the first time.

• We use the shortest distance to prune and use BC-DFS

of [14] as the basic algorithm. At the same time, we

prove that all results can be found in one search in

Sect. 4.4, so we propose an optimization algorithm.

• We conducted experiments on four real road networks.

Our optimization algorithm performs better when d is

small than the basic algorithm. Moreover, because of

some deficiencies in the experiment, we pointed out the

direction of our future work.

1.1 Organization

The rest of this paper is organized as follows. We give

related work in Sect. 2, and we introduce relevant concepts

and formally define the problem in Sect. 3. In Sect. 4, we

propose the basic scheme of the solution and the opti-

mization algorithm. In Sect. 5, we conduct experimental

research. This paper is summarized in Sect. 6.

Fig. 1 An illustration of choosing the restaurant in a road network
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2 Related work

In Sect. 2, we discuss some existing algorithms related to

our problem.

2.1 KNN and K-closet pairs

KNN finds k-nearest neighbors from source point to target

set. It is closely related to our life. We can use it to find

nearby restaurants, close people and so on. Most of the

existing algorithms are designed based on divide and

conquer. They search and prune through partitions. [6]

proposed an efficient index for KNN Search on road net-

works, called G-Tree. G-Tree adds two functions to adapt

to KNN search on road networks compared with R-Tree.

The first is the balanced tree structure, which can help

prune the subtree. The road network is recursively divided

into subnetworks using a multi-level graph partition algo-

rithm [16]. Each subnetwork corresponds to a node of the

G-Tree. The algorithm ensures that the number of bound-

ary points is as few as possible but also that the size of each

subgraph is almost the same. The second is to effectively

calculate the minimum distance from the query location to

the tree node for the best first search. Save the shortest

distance from all vertices to boundary points in the leaf

node. Save the distance of all boundary points of child

nodes in non-leaf nodes. The minimum distance from the

point to the tree node is calculated by dynamic program-

ming. The tree node is added to the priority queue for the

best priority search if the minimum distance of the tree

node is greater than the distance of the k-th neighbor.

Recently many different methods have been applied to

solve these problems. For example, [17] extended their

algorithm to GPU, which greatly accelerated the process.

When we solve these problems in a higher-dimensional

space, the complexity increases dramatically. Machine

learning, which is very popular right now, is used for

solving KNN (e.g., [18, 19]).

K-Closet Pairs is extended from KNN. K-Closet Pairs

finds k-pairs from source set to target set. [20] proposed a

pruning heuristic and two updating strategies for mini-

mizing the pruning distance and use them in the design of

three non-incremental branch-and-bound algorithms for K-

CPQ between spatial objects stored in two R-trees. [21]

studied the problem of processing KCPQs between RAM-

based point sets, using plane-sweep (PS) algorithms. [9]

proposed G�-Tree solve the K-Closet Pairs problem based

on G-Tree. The goal is to maximize the minimum network

distance between subgraphs. Therefore, it uses LEM [22] to

select two subgraphs with the shortest distance for folding

iteratively. Another difference is that it saves the minimum

network distance between each pair of boundary nodes of

any two different leaf nodes of the G�-Tree. [23] proposed

a branch-and-bound framework associated with effective

lower and upper bound pruning techniques and early

stopping conditions for efficiently retrieving relevant top-k

closet pairs.

2.2 Shortest path enumeration

The ‘‘shortest path’’ is the shortest of all paths between two

points. To enumerate all paths within d, we can keep on

using the k-shortest paths algorithm by increasing k until

the shortest path detected exceeds the distance constraint

d where k is the number of paths. There are many classic

algorithms (e.g., [4, 22, 24–26]). The most representative

work is Yen’s algorithm [27]. Yen finds the next shortest

path by continuously deviating from the current shortest

path. Many existing algorithms are optimized on this basis.

For example, [4] abstracts the shortest distance into a point.

Moreover, they use the Yen algorithm and landmark index

to find the lower bound; they can then use the best-first

search algorithm to prune. Theodoros Chondrogiannis

studied an interesting problem in [5]. They aim to find

k-shortest paths that are sufficiently dissimilar and as short

as possible. To compute kSPwLO (k-shortest paths with

limited overlap) queries, they proposed two exact algo-

rithms: one-pass and multi-pass. They also study two

classes of heuristic algorithms: (a) performance-oriented

heuristic algorithms that trade shortness for performance.

(b) Completeness-oriented heuristic algorithms that trade

dissimilarity for completeness. Their performance is not

ideal when used in the road network and multi-target

points.

2.3 Simple path enumeration

There are some existing works on the problem of enu-

merating s-t simple paths [13, 14, 28–33]. In [28], their

focus is how to construct a succinct presentation of simple

paths. [30, 31] have proposed polynomial delay algorithms

for the s-t path enumeration problem, but the actual effect

is not ideal.

In recent years, You Peng et al. have done many studies.

[14] studies the Hop-constrained s-t simple path enumer-

ating. So that people pay attention to the limited important

paths. They proposed BC-DFS and JOIN to solve this

problem.The idea of BC-DFS is ‘‘do not fall into the same

trap twice by learning from mistakes.’’ JOIN searches from

source vertex and target vertex to find the middle vertices

cut. Then they will join it based on the middle vertices cut.

JOIN has a good performance. The time complexity is

OðkmaÞ, and the space is bounded by OðaÞ where a is the

number of hop-constrained s-t paths, m is the number of

edges, and k is the hop constraint. However, JOIN has used
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an unweighted graph. We cannot find the middle vertices

cut in the weighted graph. Then [32] proposed the first

FPGA-based algorithm PEFP to solve the problem. On the

host side, they reduce the graph size and search space by a

preprocessing algorithm, Pre-BFS. On the FPGA side in

PEFP, they proposed a novel DFS-based batching tech-

nique to save on-chip memory efficiently. Thanks to

hardware acceleration, the performance is better than

JOIN. The latest research on their work is [33]. In addition

to the existing JOIN and BC-DFS, they also proposed the

SCB algorithm. The main idea of SCB is that when we find

a result using DFS method, we need to go back to at most k

steps to get a new valid sub-paths with blocking some

vertices. Many invalid vertices could be avoided during the

process if they violate the diversity constraints.

3 Preliminary

In this section, we introduce relevant definitions. We

mainly study the situation in the road network. Firstly, the

road network is transformed into a graph, and then the

related concepts and problem definitions are introduced.

3.1 Road networks

A road network is modeled as an undirected weighted

graph G ¼ ðV;E;WÞ, where V is a vertex set and E �
fðvi; vjÞ j vi; vj 2 V ^ vi 6¼ vjg is an edge set. A vertex vi 2
V is either a road intersection or an end of a road, and an

edge ek ¼ ðvi; vjÞ 2 E represents a road segment that

enables travel between vertices vi and vj. W assigns a real-

valued weight w(e) to an edge e that represents the corre-

sponding road segment’s length.

3.2 Distance-constrained s-t path

A path p from the vertex v to the vertex vh is a sequence of

vertices p ¼ ðv0; v1; . . .; vhÞ such that ðvi�1; viÞ2E for every

i2½1; h�. In this paper, we denote a path from u to v by

p(u, v). A simple path is a loop-free path where there are no

repetitions of vertices and edges. By len(p), we denote the

length of the path p (i.e., the sum of the weights of each

edge of the path p). If lenðpÞ� d where d is the pre-defined

distance constraint, we say a path p is a distance-con-

strained s� t path. For simplicity, we use dc� s� t path

to denote distance-constrained s� t simple path.

3.3 Problem definition

Given two vertices u and v, let num(u, v) denote the

number of dc� s� t paths from u to v. The more paths

between u and v, the more relevant they are. Given a graph

G, a distance d, the source vertex s and the target set T, a

most relevant point query returns a point t where t satisfies

the following conditions.

t 2 T

8v 2 T; numðs; tÞ > numðs; vÞ

�
ð1Þ

4 Search algorithm

4.1 Basic idea

To solve the problem in this paper, we introduce two

solutions.

4.2 Shortest-distance constrained DFS

A simple solution is to start the DFS search from the source

point. We stop the search when the target point is found or

the length exceeds d. When the current point’s qualified

paths have been found, we continue to search the number

path of the following target point. It is worth noting that the

search does not touch the existing vertices in the visited set

to avoid loops. After all branches of the current vertex have

been accessed, it needs to be cleared from the visited set.

To reduce the amount of computation, we use simple

pruning to reduce the unnecessary search. We can calculate

the shortest distance from the target point to all points in

the search process. Our scene is under the condition of

distance constraint d. When we apply Dijkstra to calculate

the shortest distance, if the shortest distance is greater than

d, we set sd[u] infinite means unreachable with distance

d. When the existing length plus the shortest distance (i.e.,

sd[u]) is greater than d, it can be pruned directly, because

sd[u] represents the minimum length required from u to the

endpoint.

Fig. 2 An example by using SC-DFS
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Figure 2 shows an example of the basic method. Given a

graph G, the source vertex v0, the target set T ¼ v7; v11; v12,

the distance constraint d ¼ 5km. The number on the edge

represents the actual distance between two vertices. First,

we compute the shortest distance from target vertices. The

shortest distance sd½v1� is 3.3 km for v7, so if we explore v1

through v2, the distance used plus the sd½v1� is

2:3km þ 3:3km[ 5km. We do not need to continue

exploring. The same as the v4. We can find two paths

within 5 km. Path p1 ¼ ðv0; v1; v3; v5; v6; v7Þ, path

p2 ¼ ðv0; v1; v3; v6; v7Þ. Their lengths are 4.4 km and 4.3

km The shortest distance sd½v1� is 5.6 km and sd½v2� is 5.8

km for v12. So the vertex v12 does not need to explore.

Similarly, we can find three paths within 5 km for v11. Path

p3 ¼ ðv0; v2; v4; v9; v11Þ, path p4 ¼ ðv0; v2; v4; v8; v9; v11Þ.
Path p5 ¼ ðv0; v1; v3; v4; v9; v11Þ. Their lengths are 4.8 km,

5 km and 5 km. The numðv0; v11Þ ¼ 3, the shortest path is

p3 ¼ 4:8km. Although the shortest path is p2 ¼ 4:3km, the

numðv0; v11Þ[ numðv0; v7Þ. We will choose the point v11

as result.

The pseudocode of SC-DFS is shown in Algorithm 1.

We calculate the num(s, t) of each pair by Calcu-

lateNum(lines 4). Before that, we compute the shortest

distance by applying Dijkstra (lines 3). Then we choose the

point t whose path number is maximal (lines 5-7). Finally,

t is returned as the most relevant point.

As shown in Algorithm 2, we invoke CalculateNum()

to compute the number of paths between two points. Ini-

tially, a set visited[u] is initialized to false, and the current

path distance dis is initialized to 0. If the target node is

visited at current, we increase the number of paths by one

(lines 2-4). Besides visited[u] is utilized to check whether

u has been accessed (lines 8). Lines 9-10 check whether the

current path satisfies the distance constraint.

4.3 Barrier-based constrained DFS

The second baseline algorithm draws on the idea of [14],

namely BC-DFS. The idea of BC-DFS is ‘‘do not fall in the

same trap twice by learning from mistakes.’’ BC-DFS will

explore wrong branches, but it also learns from the mis-

takes. For each outgoing neighbor v of u to be visited in
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BC-DFS, BC-DFS will set a barrier for v. If

‘‘jSj þ 1 þ barrier½v�[ k’’, the search will not continue.

There is an example in Fig. 3a. In this example, the hop

constraint k ¼ 3 and search stack S ¼ fs; ug. We will

explore the outgoing neighbor ðv1; v2; v3Þ of u. But we

cannot reach t with the hop constraint k ¼ 3. So we set the

barrier of u is 2. It represents at least 2 hop from u to t.

Then when we are searching another path p ¼ fs; dg, we

will not continue to explore u. Because the length of stack

S plus the barrier of u is 4, jSj þ 1 þ 2 ¼ 4[ 3.

BC-DFS is a polynomial delay algorithm with O(km)

time per output where k is the hop constraint, and m is the

number of edges. We can extend it to the road network.

However, the performance of BC-DFS is not good in some

cases. As shown in Fig. 3b, the barrier of u does not affect

the vertices on the left. We set the barrier of u to 2 after we

search the path p ¼ fs; ug. However, when we explore v4

on the left, it will not reach u again. The setting of some

obstacles does not affect other parts. Secondly, for our

problem, it still needs one to one search and needs to set a

different barrier for source vertices.

4.4 Batch query DFS

As discussed in Sect. 4.2, SC-DFS uses the shortest dis-

tance to prune unqualified nodes. BC-DFS cannot be uti-

lized to our problem in this paper. It is since its inspection

cost is too high and it is not easy to set the barrier for multi-

target points. Inspired by the Dijkstra algorithm, we can

share the paths searched. The subpath of the shortest path is

also the shortest path, so that the Dijkstra algorithm can

find all shortest paths in one search from one point. We

also prove that it can gain the number of paths for all nodes

only in one search. Accordingly, we will not stop the

search procedure when we explore a target.

Theorem 1 The number of paths for all target points can

be found in BQ-DFS.

Proof As shown in Fig. 4, suppose that the target points

are t1 and t2. There are two ways from the source point s to

the target point t2. One is to reach t2 through t1(i.e.,

s� [ t1 � [ t2), and the other is not to reach t2 through

t1(i.e., s� [ t2). For the first case, when we reach t1 by

using BQ-DFS, we will record the path number of s� [ t1
and the paths from s to t1 have been explored. We will not

stop and continue to search downward. If the path’s length

from s to t1 is lengthðs; t1Þ, then we just need to explore the

path from t1 to t2 within d � lengthðs; t1Þ. d is the constraint

distance. The path from s to t1 can be shared. But in SC-

DFS, when we reach t1, we will stop and restart the search

from s. A large number of repeated searches can be

reduced because the paths before t1 can be shared in BQ-

DFS. For the second case, t1 does not affect these paths.

Similarly, when there are multiple target points, the paths

of other target points can also be searched by sharing the

explored paths in one search.

Fig. 3 An example by using BC-DFS

Fig. 4 Proof outline for BQ-DFS
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Considering the pruning strategy in SC-DFS is too

expensive for multiple vertices. We do not use the shortest

distance as the lower bound. In BQ-DFS, we find all paths

in one search. If we use the shortest distance to prune, we

must choose the minimum distance as the lower bound to

ensure that the resulting search space is not pruned. So the

points originally cut out in SC-DFS cannot be reduced

here.

4.5 Example

In BQ-DFS, since Dijkstra costs too much and has poor

pruning efficiency, we stop the BQ-DFS algorithm by the

constraint d. Figure 5 shows an example. The constraint is

d ¼ 5 km. When we reach t1, we will record the number of

the path from s to t1. Then we will continue to explore. The

next vertex is t3, and the current length is 4:5 km\d. We

can record the number of the path from s to t3. When we

search v, the current distance is 5:1 km[ d. We will stop

searching and backtrack.

Algorithm 3 shows BQ-DFS’s pseudocode. We just use

d to check whether continue search (lines 8-9). When we

search one target point, we record number of the path. And

we would not stop exploring (lines 2-3). Finally, we select

the point as a final result of the most relevant point query.

5 Experiments

In this section, we evaluate the efficiency of proposed

algorithms by comprehensive experiments.

5.1 Experimental setting

5.1.1 Datasets

We evaluate our algorithms on three real-world datasets,

namely Amsterdam, Berlin and Oslo, which are road net-

works [34], with a size of hundreds of thousands of vertices.

Besides, we use the real traffic network in Beijing, which the

number of vertices and edges is more than one hundred

thousand. In order to explore the influence of edge weight,

we also calculate the average weight of each road network.

The statistics of these datasets are illustrated in Table 1.

5.1.2 Query sets

To evaluate the search performance, we randomly choose

100 vertices as the query location, and for each query

location, we generate 50 groups of target objects. We set

d based on the average weight and report the average query

Fig. 5 An example by using BQ-DFS
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response time of the algorithms to evaluate their time

efficiency.

5.1.3 Algorithms

We evaluate the performance of three algorithms as

follows:

• SC-DFS: The distance-constrained DFS pruned by

shortest distance presented in Sect. 4.2.

• BC-DFS: The barrier-based constrained DFS intro-

duced in Sect. 4.3.

• BQ-DFS: The Batch Query DFS presented in Sect. 4.4.

5.1.4 Implementation

All algorithms were implemented in C?? and conducted

on an Intel(R) Core(TM) CPU i7-7700HQ@2.80GHz with

16GB RAM.

5.2 Evaluation of algorithms

Firstly, we compare the average running time of three

algorithms (SC-DFS, BC-DFS, BQ-DFS) on four road

networks. To achieve similar performance, the distance

constraint d is set to 1500 m in the Beijing road network,

while for the others, the d is set to 400 m.

As shown in Fig. 6, the average running time of these

three algorithms increases with the graph size grows. The

overall performance of BQ-DFS is the best, followed by

BC-DFS, and the performance of SC-DFS is the worst.

BQ-DFS can be regarded as an upgraded version of SC-

DFS, because it can effectively improve the query perfor-

mance by sharing the search cost. Although BC-DFS can

terminate the search early, the barrier is set for one target

point. For multi-target points, it becomes difficult to set the

barrier. Therefore, it can only search nodes one by one, and

its performance is worse than ours. SC-DFS has the worst

performance among four road networks, and its average

running time is dozens of times than that of other

algorithms.

5.3 Effect of distance-constraint d

In the experiments of [14], they tested the average running

time and the number of paths by varying the value of the

hop constraint k and found that these two parameters grow

exponentially with k. Therefore, we similarly evaluate the

running time of the algorithm on different road networks

by changing the distance constraint d. Differently, [14]

uses the unweighted graph, while we use the weighted

graph.

We set the distance constraint d according to their

experimental results. According to the average weight of

each road network in Table 1, we set d as 400 m, 500

m, 600 m, 700 m, 800 m, 900 m for AMS, BER and Oslo

and set d as 1500 m, 2000 m, 2500 m, 3000 m for Beijing.

As shown in Fig. 7, for d\700 m on Amsterdam,

OSLO, Berlin and for d\2500 m on Beijing road network,

we observe similar results as those in Fig. 6. For d[ ¼
700 m on Amsterdam, OSLO, Berlin and d[ ¼ 2500 m

on the Beijing road network, the performance of BQ-DFS

and BC-DFS becomes similar. In Sect. 5.4,we know that

when d increases, the number of paths will explode, which

makes the cost of searching very high. Since the average

weight is small relative to d, an edge may be accessed

many times. The number increased exponentially. In

addition, we find that the low growth rate of SC-DFS is due

to its utilization of the shortest distance for pruning, which

takes much time to find the shortest distance for each point.

Subsequently, it can be used for pruning, but the time still

increases when d grows.

Table 1 Datasets
Data Number of vertices Number of edges Average weight

Amsterdam 106, 600 130, 091 28

Berlin 428, 769 504, 229 31

Oslo 305, 175 330, 633 16

Beijing 165, 990 225, 998 343

Fig. 6 Average runtime comparison
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5.4 Number of d-constrained paths

In this subsection, we report the average number of dc�
s� t paths on all datasets with different distance con-

straints values in Fig. 8. As expected, the number of dc�
s� t paths grows exponentially with d. The number of

dc� s� t paths increases rapidly because the weight of

edges is too small; thus, the number of edges visited

increases and the same edges will be visited repeatedly.

However, these paths with large repetition are of little

significance. We discussed it in our future work.

6 Conclusion

In this paper, firstly, we define a new relationship model

with constraints used to evaluate the relationship between

two points in the graph. Secondly, we propose a basic

algorithm named SC-DFS. SC-DFS uses the shortest

Fig. 7 Effect of distance-constraint d

Fig. 8 Number of d-constrained paths
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distance to prune. To improve efficiency, we propose a

better algorithm called BQ-DFS. Specifically, BQ-DFS

reduces the repeated searches because the paths explored

can be shared. On the practical side, an extensive empirical

study on four real-life graphs shows that BQ-DFS signifi-

cantly outperformed BC-DFS when the distance constraint

is small. In the future, we will boost the query performance

by an index. Besides, it is also an interesting work to

investigate parallel algorithms for the most relevant point

query.
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