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SUMMARY

An ODE model integrating metabolic mechanisms with clinical data reveals an
Ohm’s law governing lifetime body mass dynamics, where fat and lean tissues are
analogous to a parallel nonlinear capacitor and resistor, respectively. The law unex-
pectedly decouples weight stability (a cell-autonomous property of adipocytes) and
weight change (aparabolic trajectorygovernedbyOhm’s law). Inmiddle age, insulin
resistance causes fat accumulation to avoid excessive body shrinkage in old age.
Moderatemiddle-age spread is thus natural, not an anomaly caused by hypothalam-
ic defects, as proposed by lipostatic theory. These discoveries provide valuable in-
sights into health care practices such as weight control and health assessment,
explain certain observed phenomena, make testable predictions, and may help to
resolve major conundrums in the field. The ODE model, which is more comprehen-
sive thanOhm’s law, is useful to studymetabolismat thedetailedmicroscopic levels.

INTRODUCTION

Our knowledge of metabolism is highly detailed, with fine mechanisms delineated at all biological levels

and with large amounts of data being generated every day. However, even commonplace phenomena

are still difficult to explain. Why does a middle-aged person gain weight much more easily than a younger

person? What drives ‘‘middle-age spread?’’ Why is middle-age spread often followed by ‘‘old-age

shrinkage?’’ Does the obvious change in weight defy the concept of weight stability? If not, what underlies

weight stability? The existing answers to such questions are largely unclear or wrong, not because the mo-

lecular details are insufficient but because of the lack of physical laws that abstract away non-essentials.

Such a law could be very powerful (West et al., 1997, 2002; Scott and Hwa, 2011).

We aimed to establish a law governing body weight dynamics. Note that the change in body weight is pri-

marily due to the change in fat mass (FM) because the change in lean mass (LM) is much smaller, and weight

stability is essentially related to fat mass homeostasis. To avoid proposing too simplistic a law, we studied

metabolism at multiple biological levels from molecules to the organism (Wang, 2010, 2012, 2014; Li and

Wang, 2014). In this paper, an ordinary differential equation (ODE) model was first developed to integrate

the complexities. By using the model to analyze clinical data, we distilled a metabolic Ohm’s law, which

enables clear and quantifiable answers to the above questions. In particular, it reveals the parabolic trajec-

tory of the weight change of an average sedentary adult (Figure 1E).

Despite the clear pattern of weight change over the lifespan, on a shorter (but still long) timescale our

weight appears to be very constant (as shown in Figure 1F, the weight is nearly flat for 2 years). Neumann

noted constancy of his weight over more than a year, without conscious efforts to control food intake or

expenditure (Neumann, 1902). The remarkable weight constancy was explained by Chow and Hall, who

demonstrated the very slow dynamics of weight change, which effectively buffers fluctuations in bodily ac-

tivity and food consumption (Chow and Hall, 2014). However, constancy is not the same as stability. To be

stable, the weight has to return to the original value after a transient perturbation to a new value. If the new

value is maintained without returning to the old, then the weight is not stable, even if it is very constant.

Figure 1F gives an example of weight stability. Following an upward deflection (the red arrow), the weight

returns to the original value (the first green arrow). Following a downward deflection (the blue arrow), the

weight also returns to the original value (the second green arrow). In recent decades, many perturbation

experiments have been performed, which all demonstrated weight stability (Sims and Horton, 1968;
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Figure 1. Body Mass Dynamics Governed by the Metabolic Ohm’s Law

(A) From middle-age spread to old-age shrinkage.

(B) Electric circuit as an analogy to energy metabolism, where the lean (fat) tissue is analogous to a resistor (capacitor).

(C) The functions LM(Age) and IR(Age) are presented by the green and blue curves, respectively. LM(Age) is a decreasing

function (Equation 13), analogous to the decreasing electric current in (B); IR(Age) is an increasing function (Equation 14),

analogous to the increasing electric resistance in (B).

(D) FM(Age) was obtained by Equation 7 with LM(Age) and IR(Age) as input. Note that FM is analogous to the electric

charge stored in the capacitor.

(E) BW(Age) obtained by Equation 8. The arrows indicate the stability of the trajectory.
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Passmore, 1971; Salans et al., 1971; Mitchel and Keesey, 1977; Rothwell and Stock, 1979; Leibel and Hirsch,

1984; Leibel et al., 1995; Leibel, 2008; Ravussin et al., 2014; Rosenbaum and Leibel, 2016). Although the

weight value can be perturbed away by persistent overfeeding or underfeeding, it always returns to its orig-

inal value once normal feeding is reinstated. Our weight is therefore truly stable.

To explain weight stability, Kennedy proposed the lipostatic set-point theory (Kennedy, 1953), which has

become a central tenet in metabolism: our body fat is under active regulation by the central nervous system

(CNS). As a hormone secreted by adipocytes, leptin carries fat level information to the brain (Zhang et al.,

1994). The signal is compared with a hypothetical ‘‘set-point’’ in the hypothalamus; and the difference acts as

a feedback signal to modulate food intake and energy expenditure, thereby maintaining weight stability (Fig-

ure S2). Despite being textbook knowledge (Müller et al., 2018), the theory has serious problems: the nature

of the neuronal set-point, including its existence, is unclear, and the roles played by leptin have been questioned

(Leibel, 2008; Ravussin et al., 2018; Speakman, 2018a, 2018b; Zenget al., 2015). See Supplemental Information for

more information. We believe the lipostatic theory is afflicted by two misconceptions. The first misconception is

thatweight change is a sign of destabilization, i.e., weight change andweight stability aremutually exclusive. The

secondmisconception is that weight stability is regulated by the CNS through leptin signaling. The twomiscon-

ceptions together provoked the concept of leptin resistance, a putative pathologic condition of the brain (Fred-

erich et al., 1995), to explain the mysterious middle-age spread. Unfortunately, the existence of leptin resistance

has not been verified. In contrast, perturbation experiments have demonstrated strong weight stability under all

the tested conditions—weight destabilization simply does not exist.

In this paper, we found that weight value change and weight stability are independent. On the one hand,

body weight changes naturally, and the trajectory of weight change is governed by a metabolic Ohm’s law

(which will be summarized later by Equation 11). On the other hand, we found that the changing weight is

actually stable, and the stability arises from each adipocyte’s intrinsic self-tuning, which confers inertia on

the body against deviating from the trajectory (Figure 1E, the gray arrows). Therefore, the weight is already

stable even without regulation from the CNS. In summary, weight change and weight stability co-exist

peacefully, just as the movement of a planet does not contradict the stability of the whole orbit. With

this important decoupling, the main conundrums in the field would vanish when the fundamental assump-

tions of the present model are tested true. Middle-age spread is perhaps not a sign of destabilization but

part of the natural trajectory of weight change, which conforms with all the perturbation experiments.

Because weight stability is a peripheral autonomous and requires no central regulation, the applicability

of the lipostatic theory, including the concept of leptin resistance, should be reconsidered.

If the brain has no intention to fix the fat storage, what is the biological function of the fat-leptin-hypothalamus

axis? Itmight be simply toensure aminimal fuel reserve for the lean tissues, as implied by the finding that leptin is

physiologically important only at low concentrations and unimportant at normal to high concentrations (Perry

et al., 2019). In addition to fat, whose level is conveyed by leptin, the other energy substrates are alsomonitored,

including plasma glucose (whose level is conveyed by insulin) and even food in the stomach (whose amount is

conveyed by the hormone ghrelin) (Figure S3B). Integration of these signals allows the hypothalamus to holisti-

cally perceive the body’s total energy status and to evaluate a suitable appetite so that the lean tissues’ energy

demand can be met in a timely manner. A new paradigm, called leanocentrism, is formed.

Figure S1 presents a road map connecting different parts of this paper.

RESULTS

The Leanocentric Energy Balance

Because the body’s energy expenditure is essentially for lean tissues, we have

EintoLean = TEE; (Equation 1)

where EintoLean is the daily energy entry into the lean tissues and TEE is the total energy expenditure per day

(Figure 2A). The energy is ultimately from food intake (EI), which enters both lean and fat tissues (Dulloo,

Figure 1. Continued

(F) Extended view of BW(Age) with age ranging from 40 to 42 years (to scale). The trajectory is so flat that the slow weight

gain may not be noticed. The spikes indicate perturbations that demonstrate weight stability.

(G) If peripheral insulin resistance remains constant (IR(Age) h 1.60), fat is lost consistently.
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2017). The fat tissues also release free fatty acids (FFAs) to nourish the lean tissues. If the energy flowing into

the fat tissues equals that flowing out, then the conventional energy balance is established:

EintoFat = EoutFat; (Equation 2)

which is equivalent to (see Figure 2A)

EI = EintoLean =TEE (Equation 3)

In addition to Equations 2 and 3, the conventional energy balance can also be expressed by

FMhconst: (Equation 4)

Note that conventional energy balance does not always hold. Energy imbalance (EI > TEE or EI < TEE) does

occur occasionally.

We primarily consider a condition called necessary feeding; namely, EI is just sufficient for TEE. Note that this

does not necessarilymean EI = TEEbecause under some conditions, EI has tobegreater than TEE. For example,

consider a man who has experienced prolonged starvation and is now allowed to eat freely. As a result of star-

vation, the adipocytes are very small and thus very insulin sensitive (see below); they thus preempt nutrient intake

(EintoFat overly large), making EintoLeanmuch smaller than EI. To fund the required TEE, EImust be far greater than

TEE to make EintoLean equal TEE. This ‘‘overeating’’ necessity lasts for some days, during which FM gradually in-

creases and EI gradually decreases, until finally FM returns to the prestarvation value and EI approaches TEE,

signifying restorationof the conventional energy balance. This adaptive change in EI according to the prescribed

TEE is called necessary feeding. By using necessary feeding with a suitable value of TEE, overnutrition is ruled

out, whereby the natural tendency of weight gain can be highlighted.

The ODE Model

We developed an ODE model (Transparent Methods) to simulate the dynamics of plasma glucose (GLU),

FFA, amino acids (AA), insulin (INS) concentrations, and the adipocyte massesmi (i = 1, 2,.,Nadipo), where

Figure 2. Leanocentric Energy Balance

(A) Leanocentric energy balance (EintoLean = TEE) is an overarching principle dominating body mass dynamics, including

the conventional energy balance (EintoFat = EoutFat, or equivalently, EI = EintoLean = TEE).

(B) The insulin response curve u(INS). It is characterized by the threshold INSon. As INSon increases, the response shifts to

the right.

(C) The distribution of myocytes and adipocytes over the lg(INSon) axis.

(D) Explanation of middle-age spread. During aging, MD naturally shifts to the right, representing increased insulin

resistance, which drags AD (being locked) in turn to the right, manifesting as a consistent increase in adipocyte size. (D1)

explains a new mechanism of weight stability (fat mass homeostasis). AD can be perturbed to the right (left) by

overfeeding (underfeeding). However, once normal feeding is reinstituted, it will gradually return to the locking point,

indicated by the leftward (rightward) arrows.
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Nadipo is the number of in silico adipocytes (Figures S4–S9). The model thus comprises (Nadipo + 4) ODEs

and some algebraic equations. The value of Nadipo is chosen sufficiently small to make numerical simula-

tions practical; thus, an in silico adipocyte represents a collection of many real adipocytes but not a single

real adipocyte. In addition to the Nadipo in silico adipocytes, there are Nmyo in silico myocytes (j = 1, 2, .,

Nmyo) in the model. Unlike in silico adipocytes, which are variables of the model, in silico myocytes are pa-

rameters of the model. Note that the subscripts i and j are used to number adipocytes and myocytes,

respectively.

In the model, EI is in the form of meal ingestion, which prompts extensive changes in the concentration of

the plasma nutrients and finally leads to their absorption by the body tissues, completing one meal cycle.

By performing the simulation for three successive meal cycles, a day’s system dynamics can be obtained. By

performing the simulation for many days, a long-term system dynamics can be obtained.

For the parameter values of the model, most of them were obtained by fitting clinical data on plasma

nutrient dynamics (Polonsky et al., 1988a, 1988b; Bonadonna et al., 1990, 1993; Havel et al., 1963; Stumvoll

et al., 2000). These canonical values, presented in Table S1, were used by default in the simulations. That is,

if a parameter’s value is not mentioned for a simulation, then the canonical value was used. The two most

important parameters, IR and TEE, being case dependent, were not assigned canonical values.

The validity of the computational model is suggested by the following: it is based on well-established prin-

ciples; most of the canonical parameter values are taken from experimental measurements; and it can accu-

rately predict the amount of weight change due to the change in TEE (Figure S10 and Table S4).

Cell Insulin Responses and Threshold Distributions

Insulin stimulus elicits a variety of responses in a cell (Quek et al., 2020), such as nutrient intake, suppression

of proteolysis or lipolysis, and de novo lipogenesis. In this paper, insulin response refers specifically to

nutrient intake. The response curve is denoted by u(INS) (Figure 2B), where u represents the cell’s rate

of nutrient intake and INS represents the plasma insulin concentration. The Nmyo myocytes and Nadipo ad-

ipocytes compete for nutrients. That is, the growth of adipocyte i depends not only on its own insulin

response ui(INS) but also on the myocytes’ insulin response: uj(INS) (j = 1, 2, ., Nmyo), as well as the re-

sponses of other adipocytes.

Biochemical responses often follow a threshold mechanism (Goldbeter and Wolpert, 1990), which applies

to insulin response (Wang, 2010, 2012; Li and Wang, 2014). In this paper, the insulin response u(INS) is a

sigmoidal curve characterized by a response threshold INSon (Figure 2B), which can be used to quantify

the cell’s insulin resistance. Indeed, the larger the threshold, the more difficult it is for the cell to respond,

that is, the more resistant the cell is to insulin. In this paper, we used lg(INSon) to quantify a cell’s insulin

resistance because the biochemical dose response is conventionally plotted on the log scale, including

the insulin dose response (Bonadonna et al., 1990; Bedinger et al., 2015; Cieniewicz et al., 2017). Each in-

sulin-responsive cell has its own lg(INSon) value. By fitting the clinical data in (Bonadonna et al., 1990), we

found that the cell lg(INSon) values form a roughly normal distribution (Wang, 2014). The mean of the dis-

tribution, denoted by IR, is used to quantify the overall peripheral insulin resistance. Here, the myocyte and

adipocyte distributions are considered separately, as a myocyte distribution (MD) and an adipocyte distri-

bution (AD) (Figure 2C). Because muscle is the main insulin-responsive tissue, the mean of MD should be

very close to IR. Therefore, the MD is simply denoted by (IR, smyo), where smyo is the standard deviation. AD

is denoted by (madipo, sadipo).

A simulation result can be partly represented by the evolution of AD. In Figure 3A3, for example, the AD

evolves as a part of the whole system’s dynamics, starting from the initial blue distribution (arbitrarily given)

and finally stabilizing at the yellow distribution. It will turn out that the location of the yellow distribution is

largely determined by the MD (the brown distribution). In other words, the AD is finally locked by the MD,

and the ‘‘blue to yellow’’ evolution can be regarded as the return of AD to the locking point. See also the

rightward arrow in Figure 2D1. Similarly, if AD is initially perturbed to the right, then the subsequent evo-

lution will be toward the left, indicated by the leftward arrow in Figure 2D1. Regardless of how AD is per-

turbed, it will finally return to the locking point, demonstrating weight stability. The above scenarios are

under the condition that MD is fixed. In reality, MD shifts to the right very slowly (see below), which drags

AD to the right very slowly (Figures 2D1–D3). Because adipocyte insulin resistance positively correlates with
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Figure 3. Stabilization of Adipocytes

(A1) TheMD (1.80, smyo), indicated by brown, was fixed. The initial AD (1.65, 0.05) is indicated by blue. The AD evolved and

finally stabilized at lg(INSon) = 1.7947 (the yellow spike). (B1) Eleven FM(t), corresponding to 11 initial ADs as indicated by

the 11 dots in the inset. (C1) The magnitude of meal supply A (see Equation S13) as a function of time. Each color

corresponds to the same color in B1. (A2) The MD (2.00, smyo) was fixed. The initial AD (1.65, 0.05) evolved and finally

stabilized at an elevated value lg(INSon) = 1.9681 (the yellow spike). (B2) Eleven FM(t), corresponding to IR = 2.00, and 11

initial ADs as indicated by the 11 dots in the inset. (D) Indication of the initial and final sizes of adipocytes. (A3) Same as A1

(IR = 1.80) but with randomized umax. That is, the maximum rate of nutrient intake umax is different for different cells. (A4)

Same as A3 except IR = 2.00.
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adipocyte size (Salans et al., 1968; Engfeldt and Arner, 1987; Guilherme et al., 2008; Yang et al., 2012), the

right-shift of AD manifests as persistent weight gain, namely, middle-age spread.

Weight Is Stable in the Absence of Central Regulation

To test weight stability using the ODE model, one can start with adipocytes of arbitrary masses, which

would evolve as a part of the whole system’s dynamics. If the masses finally stabilize, then weight stability

is demonstrated. The following simulations reproduce weight stability. The stability is independent of lipo-

static regulation because the model does not have such a component.

Consider a subject with TEE = 2,400 kcal/day and MD of (IR, smyo) = (1.80, 0.35) (Figure 3A1, brown). Let the

simulation start with an initial AD of (madipo, sadipo) = (1.65, 0.05) (Figure 3A1, blue), corresponding to an

initial FM of 13.4 kg. The AD shifted to the right and narrowed at the same time until all the adipocytes sta-

bilized at the same lg(INSon) value of 1.7947 (the yellow spike) or at the same mass mi = 0.00935 kg. There-

fore, FM increased over time and finally stabilized at 0.009353Nadipo = 18.7 kg (Figure 3B1, the blue curve).

Meanwhile, the food amount decreased over time and finally stabilized (Figure 3C1, the blue curve). This

was an expected result under necessary feeding. The adipocytes were very small initially, signifying the

body’s energy deficit; thus, the initial ‘‘overeating’’ (EI > TEE) was necessary.

The simulation was repeated ten times, each with a new initial AD. The 11 initial ADs are represented by the

11 dots of (madipo, sadipo) in the inset of Figure 3B1. The colored dots correspond to the curves of the same

color in Figures 3B1 and 3C1. The final FMwas always 18.7 kg, corresponding to lg(INSon) = 1.7947 for every

adipocyte (the yellow spike in Figure 3A1).

Peripheral Insulin Resistance Is a Determinant of Weight

To learn muscles’ influence on FM, we started the simulation with the same 11 initial ADs but with MD

shifted to the right (IR, smyo) = (2.00, 0.35) (Figure 3A2, brown), which means that the muscle is more insulin

resistant. The resultant functions FM(t) are presented in Figure 3B2. Compared with their IR = 1.80 coun-

terparts, the primary difference was that the steady FM rose from 18.7 to 27.9. That is, every adipocyte’s

lg(INSon) increased from 1.7947 to 1.9681 (Figure 3A2, the yellow spike). Together with Figures 3A3 and

3A4 (see below), the results demonstrate that insulin resistance is a determinant of the weight value: AD

is ‘‘locked’’ by MD. As MDmoves to the right, AD moves concomitantly, and the adipocytes become larger

(weight gain). This new mechanism is called the leanocentric locking-point model.

The model can explain the ‘‘environment-dictated adipocyte growth’’ phenomenon revealed by Ashwell

et al., who transplanted adipocytes into recipient mice and found that the donor adipocytes always tune

their size to that of the recipient adipocytes (Ashwell et al., 1977). They concluded that the local environ-

ment of the transplantation site is important, but they did not know the determinant. Now, the puzzle is

solved. As the yellow spikes in Figures 3A1 and 3A2 demonstrate, the final adipocyte sizes are determined

by the recipient’s peripheral insulin resistance, which is indeed an environmental factor around the graft.

Therefore, the data of Ashwell et al. are consistent with the locking-point model, which in turn provides

unique insights into the interpretation of the data.

Weight Stability Is a Cell-Autonomous Property of Adipocytes

In the absence of lipostatic regulation, what causes FM homeostasis? A clue to the answer is that the ad-

ipocytes always grew to the same size eventually, no matter how different they had been to start with. This

phenomenon suggests the adaptive growth of adipocytes: smaller (larger) ones grow faster (slower); thus,

all the cells eventually reach the same size. Adaptive growth might be rooted in the positive correlation be-

tween an adipocyte’s insulin resistance and its mass (Salans et al., 1968; Engfeldt and Arner, 1987; Guil-

herme et al., 2008; Yang et al., 2012). A large adipocyte is insulin resistant; thus, it usually absorbs too

few nutrients to sustain itself, and the cell gradually shrinks. A small adipocyte is insulin sensitive; thus, it

usually absorbs more nutrients than it actually needs, and the cell grows. Therefore, an adipocyte settles

at a medium mass due to the self-tuning of insulin resistance.

The homogeneity of adipocytes, although a great indicator of self-tuning, is not quite realistic, because ad-

ipocytes should have certain heterogeneity in size (Stecco, 2014). The heterogeneity may originate from

differential growth conditions. For example, cells in the vicinity of arteries are exposed to higher concen-

trations of nutrients and insulin and thus grow more than those in the vicinity of distal capillaries. The
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differential growth may counteract adaptivity and lead to a certain degree of heterogeneity. To test this

idea, the maximal rate of nutrient intake umax, which had been a constant, was randomized with a normal

distribution (mumax, sumax). With this change, AD evolved and finally stabilized at the yellow distribution (Fig-

ures 3A3 or 3A4 for IR = 1.80 or 2.00, respectively). The distributions were wide, corresponding to relatively

heterogeneous adipocytes. The total FM was only slightly different from the case of constant umax (17.86

versus 18.7 and 26.16 versus 27.9).

With heterogeneity now taken into account, FM homeostasis can be understood as the fixation of AD by

MD. In Figure 2D1, themiddle AD corresponds to the locked FM. It can be transiently perturbed to the right

by overfeeding (the corresponding adipocytes become larger). However, once normal feeding is reinsti-

tuted, it will gradually return to the original position, as indicated by the leftward arrow. On the other

hand, the middle AD can be transiently perturbed to the left by underfeeding (the corresponding adipo-

cytes become smaller). However, once normal feeding is reinstituted, it will gradually return to the original

position, as indicated by the rightward arrow. By adaptively tuning their insulin resistance, the adipocytes

have acquired some inertia against deviation from the locking point. Because the CNS is not involved,

weight stability is a cell-autonomous property of adipocytes.

The following simulations were all based on the randomized umax with the normal distribution (mumax,

sumax).

Middle-Age Spread Is Almost Irresistible

The simulations have demonstrated that insulin resistance promotes weight gain. The reverse, namely,

weight gain promotes insulin resistance, has long been known (Guilherme et al., 2008; Kim et al., 2018b;

Kita et al., 2019). As body fat increases, insulin signaling is more blunted by increased FFA levels, exacer-

bating insulin resistance. Therefore, weight gain and insulin resistance aggravate each other, forming a

self-perpetuating circle (positive feedback loop). The loop does not define the direction of change: both

automatic weight gain and automatic weight loss are possible consequences of the positive feedback.

Indeed, fat loss enhances insulin sensitivity, and the enhanced insulin sensitivity reduces fat further; thus,

the positive feedback can also lead to automatic weight loss. Why, then, is only weight gain automatic

in reality? The reason might be that IR tends to increase during aging for many reasons, including ag-

ing-related increase of S-nitrosation in the insulin signaling pathway (Ropelle et al., 2013; Pearson et al.,

2015). This natural tendency causes the direction of weight change (Figure 2D). Although measures such

as exercises may reduce insulin resistance, the effects are temporary and die out rapidly. Middle-age

spread is thus a natural manifestation of aging.

The aging-related IR aggravation is obviously a hypothesis of fundamental importance. The hypothesis is

supported by some early studies. Ropelle et al. found that aging increases inducible nitric oxide synthase

expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensi-

tivity in mouse skeletal muscle (Ropelle et al., 2013). Fink et al. measured the degree of insulin resistance of

27 non-elderly (mean age 37 G 2) and 17 elderly (mean age 69 G 1) subjects, who were all healthy, non-

obese, and leading active lives (Fink et al., 1983). Although the difference in body adiposity was small be-

tween the non-elderly and elderly groups (body mass index [BMI]: 23 versus 24; relative body weight [RBW]:

0.94 versus 0.93), their difference in insulin resistance, quantified by glucose disposal rate, was striking

(247 G 12 versus 151 G 17 mg3m�23min�1). Having these evidences notwithstanding, the hypothesis

needs to be further tested by more rigorous experiments. Indeed, the latter evidence can be questioned

because BMI and RBW may not be good indicators of adiposity. The experiment can be re-performed in

the future by using bioimpedance analysis (BIA) or dual energy X-ray absorptiometry (DXA) to obtain

more accurate adiposity measurement.

The LM-IR-FM Equation

In the ODE modeling, the parameters are fixed at their canonical values except TEE and IR, which do not

have canonical values. Therefore, given a (TEE, IR) pair, the ODE model computes the corresponding

steady FM. This raises the possibility of obtaining an algebraic relationship among the triad (TEE, IR,

FM) by integrating the ODE model with sufficient clinical data. We actually replaced TEE with LM because

the two are roughly proportional (see Equation (c) in Figure 6C and its explanation in the caption). LM is

better suited to the equation because it is intrinsic to the body, as are IR and FM, whereas TEE is extrinsic.

The equation is called the LM-IR-FM equation (LIFE).
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To derive LIFE, we started from a rough estimation of IR. Because MD and AD are interlocked, IR should be

close to the mean of AD (Figure 2C). Together with a further simplification that all the adipocytes are iden-

tical, we have

IRz lgðINSonÞi = lg
mi

x
zlg

FM

x3Nadipo
:

Note that we have used Equation S10, namely (INSon)i = mi/x, which models the positive correlation

between mi and (INSon)i (Salans et al., 1968; Engfeldt and Arner, 1987; Guilherme et al., 2008; Yang

et al., 2012). Substituting x = 1.5310�4 and Nadipo = 2000 (Table S1) into the above equation, we

obtain

IRz 0:523+ lgðFMÞ (Equation 5)

To bring LM into the equation, note that LM should negatively correlate with IR. Intuitively, a moremuscular

man (LM larger) should be more insulin sensitive (IR smaller), thus the negative correlation. The underlying

molecular mechanism is as follows: the more myocytes are in the body, the less ectopic fat deposition per

myocyte and the more insulin sensitive the myocyte. To embody the negative correlation and conform with

Equation 5, LIFE was designed as

IR = g0 +g1

lgðFMÞ
LM� g2

(Equation 6)

To estimate the unknown parameters g0, g1, and g2, we collected clinical data on 44 subjects from the liter-

ature (Table S3). Each subject actually represents a group of people whose data were averaged in the orig-

inal literature. By the estimation procedure described in Transparent Methods, we obtained g0 = 0.664,

g1 = 45.4, and g2 = 0, with which Equation 6 can be presented as the straight line in Figure 4A. LIFE is

also expressed in terms of the solution to FM:

FM = exp

�
ln 103 LM3 ðIR� g0Þ

g1

�
; (Equation 7)

whereby the body weight is determined:

BW = LM+ exp

�
ln 103 LM3 ðIR� g0Þ

g1

�
(Equation 8)

LIFE Is a Better Health Indicator Than Body Mass Index

The 44 subjects in Table S3 were diverse, spanning from very thin (FM = 6.6 kg) to very fat (FM = 68.0 kg).

Among them, 12 were athletes. They were classified according to BMI as normal weight, overweight, and

obese. Their lg(FM)/LM and IR values are presented as the x and y coordinates, respectively, of the 44 dots

in Figure 4A. There were six outliers whose data did not scatter around the regression line. In Transparent

Methods, we explain why they were outliers. Note that the six outliers were excluded from estimating g0, g1,

and g2.

For the 38 nonoutliers, those located toward the lower left should be healthier. The athletes’ IR values were

near or below 1.5, whereas those of nonathletes generally ranged from 1.5 to 2.2. The four obese subjects

were obviously unhealthy. The other weight categories were quite heterogeneous. The normal weight sub-

jects scatter widely along the regression line, suggesting that normal weight does not correspond to

normal health. For example, subject 18 (BMI = 24.9) might appear to be normal, but he or she was very

insulin resistant, with an IR as high as those of the obese subjects. Overweight subjects are also widely scat-

tered. Subject 39, although overweight, was actually healthy, with an IR value as small as those of some

athletes. These results demonstrated that BMI is not a good health indicator. Interestingly, comparative

analysis of FMmeasurement and BMI on the US 1999–2004 National Health and Nutrition Examination Sur-

vey (NHANES) data reached almost the same conclusion: a considerable proportion of subjects in the

healthy BMI range 20–25 were found to have excess adiposity, whereas BMI >30 reliably defines obesity

regardless of age and sex (Dybala et al., 2019).

Therefore, LIFE (Equation 6) provides a much better health indicator, namely, the body’s peripheral insulin

resistance computed from the body composition (LM and FM), which can be easily measured by methods

such as BIA and dual-energy DXA.
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LIFE Explains Forbes’ Data

LIFE can be expressed in terms of the solution to LM:

LM =
g1

IR� g0

lgðFMÞ (Equation 9)

It is similar to an empirical formula relating FM to LM, namely, Forbes’ formula:

LM = 23:9lgðFMÞ+ 14:2; (Equation 10)

which was discovered by the examination of FM and LM in six groups of subjects (Forbes, 2000, 2012). By

presenting every group’s average (FM, LM) as a dot in Figure 5A, Forbes found that these cross-sectional

data can be well fitted by the dashed curve in Figure 5A, namely, the Forbes formula. The formula implies a

positive correlation between LM and FM, which is unfortunately not applicable to the longitudinal body

change of an ordinary middle-aged person, who is losing LM (sarcopenia) and gaining FM, resulting in a

negative correlation between LM and FM. This puzzle is now resolved by Equation 9, which contains in

the denominator the critical factor IR, whose slow increase counteracts the increase in FM (which is in

the numerator) and allows the slight decrease in LM, thus enabling the longitudinal negative correlation

between FM and LM.

LIFE fits with the six data best at IR = 2.0061 (Figure 5A, the red curve). This good but imperfect fitting is

expected. With a fixed IR, LIFE describes a single person at a single time, which of course cannot fit

perfectly with the data of six subjects whose IRs were all different. IR = 2.0061 should be some medium

value among the six IRs, which is indeed the case (Figure 5B).

Figure 4. Discovery of LIFE

(A) A scatterplot of 44 subjects’ lg(FM)/LM (the x axis) and IR (the y axis). The latter was computed by the ODE model

based on the subjects’ clinical data, especially TEE and FM. Regression analysis revealed a linear relationship between

lg(FM)/LM and IR. The six subjects within the oval were outliers.

(B) The obtained IR values of the 44 subjects.
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The Metabolic Ohm’s Law

Equation 7 can be converted into

�
V = I3R
Q = eV (Equation 11)

by the substitutions I = ln103LM/g1, R = IR – g0, Q = FM, and using a new variable V. Equation 11 is

analogous to a resistor and capacitor connected in parallel, with I, R, V, and Q being the electric current,

resistance, voltage, and charge, respectively (Figure 1B). The analogy is pertinent. The lean tissue, which

primarily expends energy, is analogous to a power-dissipating resistor. The fat tissue, which primarily

stores energy, is analogous to a power-storing capacitor. Quantitatively, FM measures the stored energy

and is perfectly analogous to the stored electricity (Q = FM); the peripheral insulin resistance is naturally

analogous to the electric resistance (R = IR�g0); the analogy I = ln103LM/g1 is easy to understand because

LM is proportional to TEE, which, as the energy current through the lean tissue, is perfectly analogous to the

electric current through the resistor.

In Equation 11, the first equation V = I3 R is Ohm’s law of the body’s fuel metabolism; the second equation

Q = eV implies that the capacitor is not a regular one with a constant capacitance but a nonlinear one with a

capacitance equaling the stored charge:C = dQ/dV =Q. In other words, themore the capacitor is charged,

the larger its capacity of further charging. The self-perpetuating capacitor may originate from the self-

perpetuating circle between weight gain and insulin resistance. It has already explained why individuals

with higher body fat have higher fat gains. More importantly, it is easy to predict howmuchmore the person

with more fat will gain.

Ohm’s Law Predicts How Much More the Person with More Body Fat Gains

A middle-aged person gains weight much more easily than a younger person. As usual, the middle-aged

person has more body fat (Qy <Qm; or Cy < Cm) and higher insulin resistance (Ry < Rm). Here, the subscripts

y and m represent young and middle aged, respectively. Now let the two increase their regular EI by the

same small amount dEI, i.e., dIy = dIm (Figure 6A1). The same condition leads to different outcomes due

to two levels of differentiation. The resistance difference Ry < Rm makes dIy 3 Ry < dIm 3 Rm, namely,

dVy < dVm (Figure 6A2). The capacitance difference Cy < Cm further amplifies the effect CydVy << CmdVm,

namely, dQy << dQm (Figure 6A3), indicating that the person with more body fat gains much more fat.

The analytical expression of dQ was obtained in Transparent Methods:

dFM =
FM3 lnFM3dEI

s1 3PAL3 LM
; (Equation 12)

where s1 and PAL (physical activity level) are explained in the caption of Figure 6C. Equation 12 predicts

how much more the person with more body fat gains. It shows that dFM scales as FM3lnFM, even faster

than the linear scaling (Figure 6B). For example, a young person with 50 kg of LM and 10 kg of FM gains

only 0.64 kg fat by eating 50 kcal more every day, whereas a middle-aged person with 50 kg of LM and

Figure 5. LIFE Explains Forbes’ Data

(A) Forbes’ cross-sectional data reveal that LM is a logarithmic function of FM. The dots represent clinical data collected

by Forbes. The dashed curve is an empirical fitting by Forbes. The solid curve is a fitting by LIFE.

(B) The bars represent IR values of the six subjects, estimated by substituting their (FM, LM) into Equation 6.
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40 kg of FM gains 4.1 kg of fat, approximately 6.4-fold more than the young person. Importantly, the pre-

dictions are not difficult to test because the few parameters can be easily controlled or readily measured in

clinical practice. This will help to validate and optimize Ohm’s law.

Ohm’s Law Governs Weight Change

Middle-age spread does not usually continue into very old age. People in the last century mostly started to

lose weight at approximately 55–60 years of age (Williamson, 1993; Seidell and Visscher, 2000). Assume that

R is always increasing. Then, according to Ohm’s law, the only way to slow down weight gain is to decrease I

(i.e., the loss of LM, primarily due to sarcopenia), and the decrease has to accelerate to lead to weight loss.

Indeed, it was discovered that sarcopenia is a progressive process involving the accelerated loss of muscle

mass and function (Cruz-Jentoft and Sayer, 2019). According to the Baltimore Longitudinal Study of Aging

(BLSA) (Metter et al., 1999; Ferrucci et al., 2012), the annual rate of muscle loss is approximately 1%, 5%, and

more than 10% by ages 40, 60, and 90 years, respectively (Figure 1C, the green dots). Note that the LM loss

contributes to weight loss not only by itself but also by driving the reduction in FM (Equation 7). Therefore,

the transition from weight gain to weight loss will occur sooner or later, as long as the subject lives suffi-

ciently long (Figure 1A).

To test this idea, we first obtained LM as a function of age (Figure 1C, the green curve):

LMðAgeÞ = LM30

�
1� 0:00023ðAge� 30Þ1:5� (Equation 13)

by fitting the BLSA sarcopenia data. According to the locking-point theory, peripheral insulin resistance

increases consistently during aging; thus, IR(Age) is an increasing function. Here, we assumed that IR

has an upper bound IRmax; thus, the increase in IR slows down gradually, which can be readily modeled

by a simple ODE dIR/dAge = (IRmax – IR)/Thalf, where Thalf is the half-maximum time starting from age 30

years. That is, Thalf +30 is the age at which IR reaches (IRmax + IR30)/2, where IR30 is the IR at age 30 years.

The simple ODE has an explicit solution:

Figure 6. Metabolic Ohm’s Law

(A) A schematic diagram explaining why individuals with more body fat also gain more fat.

(B) The fat gain dFM as a function of FM resulting from a regular increase in food amount dEI = 50 kcal/day, with PAL = 1.5.

(C) Main equations of the metabolic-electric analogy, where REE represents ‘‘resting energy expenditure’’; PAL

represents ‘‘physical activity level,’’ which is the ratio of TEE and REE (Equation a). PAL is usually between 1.4 and 1.7 for a

sedentary adult. Equation b is taken from (Creasy et al., 2018), where s1 = 23.9 kcal/(day3kg) and s2 = 372 kcal/day.

Equation c is the combination of Equations a and b.
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IRðAgeÞ = IRmax � ðIRmax � IR30Þexp
�
30� Age

Thalf

�
(Equation 14)

We let IR30 = 1.60 and IRmax = 2.10. This choice was inspired by Figure 4A, which shows that IR < 1.50 and IR

> 2.20 are generally applicable to athletes and morbidly obese people, respectively; thus, the normal IR

range should be close to (1.60, 2.10). By using Thalf = 15 in Equation 14, the function IR(Age) was drawn

as the blue curve in Figure 1C. By Equations 7 and 8, the functions FM(Age) and BW(Age) were obtained

and presented in Figures 1D and 1E, respectively. The body weight peaks at age 61 years, which conforms

well with the statistics (Williamson, 1993; Seidell and Visscher, 2000). To see how the results vary with Thalf,

we repeated the computations with Thalf ranging from 10 to 25 years and found that the age of peak weight

ranges from 56 to 66 years, which are all reasonable ages of transition from weight gain to weight loss.

The Remarkable Energy Resistor

Wehave demonstrated the paramount importance of peripheral insulin resistance in energymetabolism. At the

least, it governs both aspects of body mass dynamics: weight stability is achieved by the adipocytes’ self-tuning

of their respective insulin resistance, and weight is dominated by the body’s overall insulin resistance. Although

the former (conferring stability) is certainly of merit, the biological significance of the latter is unclear.

We argue that the self-perpetuating circle of insulin resistance and weight gain is beneficial for long-term body

protection. If our insulin resistance remained constant throughout, thenourbody fatwoulddecline as sarcopenia

progresses (Figure 1G, obtained with IR(Age)h 1.6 and the LM(Age) expressed by Equation 13); body weight

would then decline evenmore. The diminishing bodymass wouldmake it increasingly difficult for elderly people

to deal with emergent situations such as acute diseases, accidents, and calamities, especially in ancient times.

The aggravation of insulin resistance allows automatic fat accumulationevenunder necessary feeding to address

the potential dangers in old age. Therefore,moderatemiddle-age spread is not rooted in hypothalamusdefects

that cause central leptin resistance (as proposed by the lipostatic theory) but is a healthy natural process.

In addition to this long-term protection, peripheral insulin resistance offers immediate and indispensable

life protection by sparing glucose for the brain while the plasma glucose level is low (Neel, 1962; Wang,

2014). Peripheral insulin resistance, despite being the molecular mechanism underlying type 2 diabetes

(Kahn, 1994), also plays critical roles in the body’s fuel metabolism.

DISCUSSION

From Lipocentrism to Leanocentrism

Bodymass dynamics are traditionally considered from a lipocentric perspective, which emphasizes leptin-medi-

ated central feedback regulationonbody fat (Figure S3A). Besides the lipostatic set-pointmodel, there are other

lipocentricmodels, such as the ‘‘two interventionpoint’’ (Herman andPolivy, 1983; Speakman, 2018a, 2018b) and

‘‘settling point’’ (Wirtshafter and Davis, 1977), which are less popular and have various problems (Supplemental

Information). Despite dominance of the lipocentric view, the strong influence of LMon FMhas long been recog-

nized (Edholm et al., 1955; Lissner et al., 1989; Dulloo et al., 2017; Blundell et al., 2015). These works advocated

the concept of LM homeostasis (protein-stasis), which works in parallel with FM homeostasis (lipostasis) tomain-

tain the stability of both LM and FM, thus demonstrating a broader view (MacLean et al., 2017). However, neither

of the two homeostatic mechanisms has been proven. Unlike the previous works that all focused on thematter

stored in the tissues, this work focused on the energy flowing through the tissues, which led to the leanocentric

locking-point model to compete with the existing models.

The Brain Only Has Limited Influence upon Body Weight

What afflicts the previous models is the rather intuitive perception that weight stability and weight value

change are mutually exclusive: the former (latter) is normal (abnormal). Here, Ohm’s law has led to the sur-

prising discovery that the two are independent and can thus be decoupled.

The weight value, as a steady state of the ODE model, is determined by the model parameters. Table S2

shows how FM changes with changes in TEE/EI, IR, sumax, and Nadipo. Because most of the parameters

change randomly without a bias, the resultant FM change is negligible because the slow dynamics can

effectively buffer fluctuations (Chow and Hall, 2014). Interestingly, only TEE (analogous to I) and IR (analo-

gous to R) change with a bias: the former (latter) generally decreases (increases), which generates a

parabolic trajectory of weight change. Because TEE and IR are analogous to I and R, respectively, and their
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combined effect is quantitatively their product (I3 R), Ohm’s law is clearly in action. Note that both param-

eters change so slowly that our weight value appears to be constant for years (Figure 1F).

Weight stability, in this view, is due to adipocytes’ adaptive tuning of their insulin resistance, which confers

some inertia against leaving the locking point; it is therefore a largely cell-autonomous property of adipo-

cytes. Because leptin is physiologically effective only at low concentrations and unimportant at normal to

high concentrations (Perry et al., 2019), leptin signaling just effects to avoid an extremely low adiposity;

thus, the central regulation does not intend to fix any weight value by conferring stability properties.

Insights on Thiazolidinedione Treatment

The above discussion on parameters helps to resolve a puzzle about thiazolidinedione (TZD), a class of insulin-

sensitizingdrugs. Thedrugs enhance insulin sensitivity; thus, according to thepresent theory, they should reduce

body weight, but they are well known as weight boosters. This puzzle is actually easy to resolve considering that

TZD ismultifactorial: it notonlyenhances insulin sensitivity butalso increases thenumberof adipocytes (Nadipo) by

promotingpreadipocytedifferentiation (Tang et al., 2011). Because the increase inNadipo causesweight gain (Ta-

ble S2), the concurrenceof insulin sensitization andweight gain canbeexplainedby the locking-pointmodelpro-

vided that the increase in thenumberofadipocytesmore thanbalances thedecrease in the sizeof theadipocytes.

Remarkably, starting from the leanocentric principle, one can correctly predict the scenarios induced by TZD. In

other words, TZD-induced adipose tissue remodeling, particularly preadipocyte differentiation, is largely an

inevitable consequence of the locking-point model. Figure 7A indicates the original MD and AD. After the

TZD treatment, the MD moves leftward (the blue arrow in Figure 7B) due to insulin sensitization. According to

the locking-point model, the AD, being locked, also shifts to the left (the green arrow), and the adipocytes

become smaller. Now that the adipocytes are shrinking, why does the weight increase instead? There must

be massive numbers of new adipocytes generated (preadipocyte differentiation). The new adipocytes grow

increasingly large (the red arrow); the original adipocytes become increasingly small (the green arrow); and

finally, the two groups become indistinguishable. Due to the left-shifted MD, the final adipocytes are generally

smaller than those before TZD treatment. Therefore, the increase inNadipo has to be large to cause weight gain;

Figure 7. Scenarios Induced by TZD Treatment

(A) MD and AD before TZD treatment.

(B) After TZD treatment, MDmoves to the left (the blue arrow), showing the insulin sensitization effect of TZD. The original

adipocytes also move to the left (the green arrow) to satisfy the leanocentric principle. However, new adipocytes must be

generated to account for the increased weight (the red arrow).
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otherwise, the weight may still decrease. These predictions conform well with experimental observations (de

Souza et al., 2001; Tang et al., 2011; Kim et al., 2018a). de Souza et al. (2001) found that TZD treatment led to

‘‘the shrinkage and/or disappearance of existing mature adipocytes,’’ which corresponds to the green arrow

in Figure 7B. On the other hand, the study by Tang et al. (2011) indicated that ‘‘TZDs roughly double the number

of adipocytes formed during treatment, compared with controls’’; Evans-Molina (2011) pointed out that ‘‘TZD-

associated weight gain has been mostly attributed to the formation of new fat cells.’’

Ignoring the leanocentric principlemay lead towrong conclusions. For example, amore direct and intuitive pos-

sibility is that the original adipocytes, by absorbing more nutrients in response to TZDs, can already explain the

weight gain. TZDs, through engaging PPAR-g, upregulate the expression of glucose transporter 4 (GLUT4) on

the plasma membrane of adipocytes (Wu et al., 1998). This would give the adipocytes an advantage in

competing with the muscles and thus favor the gain of weight. This view may well be wrong for the following

reasons. First, the TZDs enhance the body’s overall insulin sensitivity; thus, MD must shift to the left (the blue

arrow in Figure 7B). That is, myocyte nutrient intake is also enhanced, which compromises adipocyte improve-

ment. Second, even if an adipocyte has managed to grow larger, its nutrient intake capacity immediately de-

creases due to the increase in its individual insulin resistance (Equation S10), which cancels the effect of the

TZDs. Taken together, TZDs are unlikely to promote the growth of the original adipocytes. Indeed, experimental

observations have demonstrated the shrinkage but not growth of the existing mature adipocytes (de Souza

et al., 2001). In summary, leanocentrism can adequately explain why a likely scenario (the growth of the original

adipocytes) cannot actually happen. This, together with the correct prediction of what is actually happening (the

generation of new adipocytes), demonstrates the overarching role played by leanocentrism.

Furthermore, wepredict that TZDwould increase appetite during the early stage of its administration. In the early

stage, the newly generated adipocytes are very small and thus very insulin sensitive; they thus absorb large

amounts of nutrients, which necessitates large amounts of food intake (‘‘overfeeding’’). As the adipocytes grow

larger, the ‘‘overfeeding’’ becomes lesser necessary, and the appetite would gradually decrease, approaching

the pre-treatment level. This predication can be tested through ad libitum feeding of a mouse under continuous

TZDtreatment.Weexpect that themousedevelophyperphagia in theearlybutnot latedaysof theTZDtreatment.

Limitations of the Model

Although the leanocentric locking-point model has considerable explanation and prediction power, its

fundamental principles have not yet been firmly established. First, the leanocentric energy balance (Equa-

tion 1) depends on the assumption that LM commands energy intake, which, however, has no direct exper-

imental support. Second, the aging-related IR aggravation is critical to explain middle-age spread and is

thus the key to demonstrate the merits of the present theory over the lipostatic theory. Although having

some supportive data, the assumption needs further testing by more rigorous experiments.

The ODE model was designed to simulate a sedentary adult’s FM change during aging. It has to be modi-

fied before being used in the other circumstances. To simulate the athletes’ body energy metabolism, for

example, at least some parameter values need to be changed because the canonical parameter values

used by the model were estimated from data on sedentary people. Our theory can explain TZD-induced

adipose tissue remodeling, but the validation of the explanation necessitates an extension of the ODE

model by at least including new adipocyte recruitment. The extended model can then be used to validate

our explanation by fitting its simulation runs with some TZD experimental or clinical data.

Leanocentrism is valid under most conditions but may become irrelevant under some extreme conditions,

such as the leptin deficiency in ob/ob mice, which causes them to constantly overeat. The mice rapidly

develop obesity. As their adipocytes become increasingly large, the AD consistently moves toward the

right with no regard to the position of theMD.On the other hand, the ever-increasingmuscle fat deposition

continuously exacerbates insulin resistance and drives the MD toward the right. Because now AD com-

mands the movement of MD, it is clearly a case of adipocentrism instead of leanocentrism. Therefore, lean-

ocentrism is not a tenet, although it is applicable to most circumstances.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Guanyu Wang (wanggy@sustech.edu.cn).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Data and code are freely available (Mendeley Data: http://dx.doi.org/10.17632/ts2dzkpz8v.2 or https://

data.mendeley.com/datasets/ts2dzkpz8v/draft?a=8dd058ef-8d0c-42fa-8b59-cd99e0e5a9e2).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101176.
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Figure S1: Road map of the present paper. Related to Figures 1 and 2. (A) The consensus view is that body weight
is regulated by the brain through leptin signaling, although major conundrums remain unresolved. (B) We believe
that body weight is not regulated by the brain. Through ordinary differential equation (ODE) modeling of peripheral
dynamics, we formulated a leanocentric locking-point model, which resolves all the major conundrums, especially
middle-age spread. (C) The integration of the ODE model with clinical data leads to a coarse-grained model, namely,
the LM-IR-FM equation, which further leads to the metabolic Ohm’s law. (D) The metabolic Ohm’s law has a variety of
applications.
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Figure S2: The lipostatic theory of fat mass homeostasis. Related to Figure 2. It is believed that our body weight is
under active regulation by the CNS, which is well informed of the body’s fat level because it can sense the concentration
of leptin, a hormone secreted by adipose tissues. (A) When the fat mass is far below the set-point value, the leptin level
is reduced, and the brain responds by increasing appetite and decreasing metabolism, trying to increase weight. The
acquired nutrients are more than the body actually needs, and the fat mass increases towards the set-point value. (B)
When the fat mass becomes far above the set-point value, the circulating leptin level increases, and the brain responds
by decreasing appetite and increasing metabolism. Since the acquired nutrients are insufficient, the stored fat is utilized
for metabolism, and its mass decreases towards the set-point value.
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Figure S3: Paradigm shift from lipocentrism to leanocentrism. Related to Figures 1 and 2. (A) In the lipostatic
theory, body fat is the target of regulation, with the leptin concentration as the signal to be compared to a hypothetical
set-point in the hypothalamus. (B) In the leanocentric paradigm, the lean body mass is the target of energy surveillance.
Fat is only one of several energy substrates utilized by the lean tissues and monitored by the CNS.
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Figure S4: Peripheral dynamics. Related to Figures 2, 3, and 4. (A) Dynamical interplay among peripheral tissues,
plasma insulin, and plasma nutrients. Plasma glucose (purple) is from either the liver or the meal and is distributed
primarily among the brain, muscles, and adipose tissues. The glucose distribution of the latter two depends heavily on
the plasma insulin (the green dots), which is secreted by the pancreas upon glucose stimulation (the purple lightning-
headed arrow). The insulin secretion becomes greater as the body fat increases (the black lightning-headed arrow).
Amino acids (brown) are from the meal. FFAs (yellow) are from either adipose tissues or the meal. They are distributed
to muscles and adipose tissues, again depending on insulin. On the other hand, insulin inhibits lipolysis (the red bar-
headed arrow). (B) The meal supply function Smeal(t) (see Eq. S13). It is the source rate of nutrients as a function of
time. (C) Insulin signaling pathway. Upon binding to its receptor, insulin triggers a chain of molecular interactions inside
the cell. The signal propagates through the cytoplasm and eventually causes the activation of Akt and the subsequent
translocation of nutrient transporters to the plasma membrane, whereby nutrients can be massively transported into the
cell.
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connected by gray lines represent normal subjects’ clinical glucose and insulin concentration profiles, with the three
meals beginning at 09:00, 13:00 and 18:00 (Polonsky et al., 1988b). The black curves represent the glucose and
insulin dynamics simulated by the ODE model with the canonical parameter values.
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Table S1: Canonical parameter values. Related to Figures 2, 3, and 4.

Parameter Value Unit Remark

T 480.0 min The meal cycle. By apportioning one day to the three meal
cycles, one obtains T = 8 hour = 480 min.

FFA0 1.25 × 10−4 kg×L−1 The fasting FFA level. Taken from (Havel et al., 1963).
GLU0 9.50 × 10−4 kg×L−1 The fasting glucose level. Taken from (Polonsky et al.,

1988b).
INS0 8.00 µU×mL−1 The fasting insulin level. Taken from (Polonsky et al.,

1988b).
σmyo 0.35 lg(µU×mL−1) The standard deviation of the normal distribution of the

myocytes’ lg(INSon) values. It usually pairs with IR to rep-
resent the normal distribution, namely (IR, σmyo). The
value 0.35 was taken from (Wang, 2014).

VGLU0 0.0207 min−1 Estimated from Figure 1 of (Bonadonna et al., 1990).
Vmax 0.139 min−1 Estimated from Figure 1 of (Bonadonna et al., 1990).
umax 1.183 × 10−5 min−1 It equals (Vmax − VGLU0) / (Nadipo +Nmyo).
µumax 1.183 × 10−5 min−1 The mean of umax when it is randomized.
σumax 6.00 × 10−6 min−1 The standard deviation of umax when it is randomized.
VFFA0 0.200 min−1 Taken from (Havel et al., 1963).
uFFA0 2 × 10−5 min−1 It is estimated from VFFA0/ (Nadipo +Nmyo).
VAA0 0.118 min−1 Taken from (Bonadonna et al., 1993).
uAA0 1.18 × 10−5 min−1 It is estimated from VAA0/ (Nadipo +Nmyo).
κ 1 × 10−5 min−1 Estimated in .
Ω 5.0 L An adult’s blood volume is about 5 liters (Lee, 1998).
ρGLU , ρFFA, ρAA 4200, 9400, 4700 kcal×kg−1 Energy densities of glucose, fat, and protein (Hall, 2006).
η′GLU : η′FFA : η′AA 0.500 : 0.300 : 0.200 dimensionless Calorie percentage of glucose, fat, and protein in the food.
ηGLU : ηFFA : ηAA 0.615 : 0.165 : 0.220 dimensionless Mass percentage of glucose, fat, and protein in the food,

which can be converted from calorie percentage by ηi =
η′i/ρi/(η

′
GLU/ρGLU + η′FFA/ρFFA + η′AA/ρAA), for i =

GLU,FFA,AA.
s0 2 × 10−5 kg×L−1×min−1 Steady state condition s0 = VGLU0G0 = 2 × 10−5

k 0.322 min−1 Taken from (Wang, 2014), with adjustment.
fmax 35.52 µU×mL−1min−1 Taken from (Wang, 2014), with adjustment.
GLUh 1.443 × 10−3 kg×dL−1 Taken from (Wang, 2014), with adjustment.
n 6.432 dimensionless Taken from (Wang, 2012; Wang, 2014), with adjustment.
r 0.285 µU×mL−1min−1 Steady state condition r = kINS0 − f (GLU0)= 0.285
τ1 19.03 min Taken from (Wang, 2012; Wang, 2014), with adjustment.
τ2 40.20 min Taken from (Wang, 2012; Wang, 2014), with adjustment.
τ3 103.2 min Taken from (Wang, 2012; Wang, 2014), with adjustment.
b 4.064 dimensionless Taken from (Wang, 2012; Wang, 2014), with adjustment.
c 0.0482 min−1 Taken from (Wang, 2012; Wang, 2014), with adjustment.
ψ0 0.4265 dimensionless Estimated in .
ψ1 3.443 × 10−2 kg−1 Estimated in .
Nmyo 8000 dimensionless The number of in silico myocytes.
Nadipo 2000 dimensionless The number of in silico adipocytes.
α −4.000 dimensionless Standard value used in (Wang, 2010).
K 0.050 dimensionless Standard value used in (Wang, 2010).
INSh 7.3 µU×mL−1 IC50 of insulin inhibiting lipolysis. Taken from (Stumvoll

et al., 2000).
n0 2.0 dimensionless The Hill coefficient of insulin inhibiting lipolysis. It was ar-

bitrarily chosen.
ξ 1.5 × 10−4 kg×mL×(µU)−1 Suppose the fat mass is 20 kg and because there

are 2000 in silico adipocytes, the average mass of an
adipocyte is at the order of 10−2 kg. If the adipocyte’s
lg(INSon) value is 2, then one finds ξ is at the order of
10−2/102 = 10−4.



Table S2: Fat mass at different IR, TEE/EI, σumax , Nadipo values. Related to Figures 2, 3, and 4.
Subjects A1–A4 correspond to Figure 3(A1–A4). Subjects 1, 2, 3, 4, 13, 17, 19 correspond to
those in Table S3. Subjects 1*, 2*, 3*, 4*, 17*, 19*, 17**, 19** correspond to those in Table S4.

Subject IR TEE/EI σumax Nadipo FM (kg) FM (kg)
lg(µU×mL−1) (kcal×day−1) (min−1) (reported)

A1 1.8000 2400 0 2000 18.7
A2 2.0000 2400 0 2000 27.9
A3 1.8000 2400 6 × 10−6 2000 17.9
A4 2.0000 2400 6 × 10−6 2000 26.2
1 1.5486 2481 6 × 10−6 2000 12.0 12.0
1∗ 1.5486 3110 6 × 10−6 2000 16.3 17.1
2 1.8365 2380 6 × 10−6 2000 17.5 17.5
2∗ 1.8365 1952 6 × 10−6 2000 13.5 13.1
2 (90% Nadipo) 1.8365 2380 6 × 10−6 1800 15.2
2 (80% Nadipo) 1.8365 2380 6 × 10−6 1600 13.0
3 2.1830 3100 6 × 10−6 2000 68.0 68.0
3∗ 2.1830 2549 6 × 10−6 2000 41.8 54.6
3 (95% Nadipo) 2.1830 3100 6 × 10−6 1900 57.3
3 (90% Nadipo) 2.1830 3100 6 × 10−6 1800 48.7
4 2.1616 3129 6 × 10−6 2000 64.4 64.4
4∗ 2.1616 2243 6 × 10−6 2000 30.8 39.0
13 2.1132 2528 6 × 10−6 2000 37.7 37.7
13 (95% Nadipo) 2.1132 2528 6 × 10−6 1900 33.8
13 (90% Nadipo) 2.1132 2528 6 × 10−6 1800 30.4
17 1.8480 2556 6 × 10−6 2000 21.3 21.3
17∗ 1.8480 2113 6 × 10−6 2000 16.2 15.0
17∗∗ 1.8480 2122 6 × 10−6 2000 16.4 15.5
19 2.1320 1935 6 × 10−6 2000 24.4 24.4
19∗ 2.1320 1666 6 × 10−6 2000 19.3 18.4
19∗∗ 2.1320 1741 6 × 10−6 2000 20.6 19.2



Table S3: The body composition and metabolic data of 44 subjects. Related to

Figures 2, 3, and 4.

Subject FM LM TEE or EI η′GLU : η′FFA : η′AA Number Age Remark Reference

(kg) (kg) (kcal/day) of people

1 12.0 54.5 2481 0.450:0.400:0.150 13 27 Normal (Leibel et al., 1995)

2 17.5 53.0 2380 0.450:0.400:0.150 11 25 Overweight (Leibel et al., 1995)

3 68.0 64.1 3100 0.450:0.400:0.150 9 32 Obese (Leibel et al., 1995)

4 64.4 60.8 3129 0.450:0.400:0.150 10 31 Obese (Leibel et al., 1995)

5 30.7 48.1 2168 0.550:0.220:0.230 32F 38 Overweight(BMI=29) (Weinsier et al., 2000)

6 20.4 41.3 2221 0.595:0.210:0.195 27F 31.7 Normal (BMI=23.1) (Weinsier et al., 2002)

7 16.2 45.6 1945 canonical 16F 31.5 Normal(BMI=22.4) (Geissler et al., 1987)

8 20.7 54.2 2632 canonical 114M128F 39.7 Overweight(BMI=25.7) (Hopkins et al., 2019)

9 19.0 65.0 3140 canonical 114M 40.2 Overweight(BMI=26.4) (Hopkins et al., 2019)

10 21.5 45.2 2179 canonical 128F 39.2 Normal(BMI=24.8) (Hopkins et al., 2019)

11 17.9 50.5 2325 canonical 21 28.9 Normal(BMI=23.8) (Creasy et al., 2018)

but obesity prone

12 11.7 49.6 2274 canonical 20 27.4 Normal (BMI=20.2) (Creasy et al., 2018)

and obesity resistant

13 37.7 45.2 2528 canonical 29F Obese(BMI=32.1) (Hintze et al., 2018)

14 35.3 44.6 2294 canonical 25F Obese(BMI=31.6) (Hintze et al., 2018)

15 22.3 54.3 2730 canonical 105M90F 27.9 Overweight(BMI=25.8) (Shook et al., 2018)

16 20.5 59.3 2382 canonical 22M 37.8 Overweight(BMI=25.6) (Das et al., 2017)

17 21.3 60.3 2556 canonical 44M 40.5 Overweight(BMI=26.0) (Das et al., 2017)

18 25.0 43.0 1905 canonical 53F 37.9 Normal (BMI=24.9) (Das et al., 2017)

19 24.4 43.3 1935 canonical 99F 36.8 Normal(BMI=24.8) (Das et al., 2017)

20 21.5 54.4 2741 canonical 101M94F 27.8 Overweight(BMI=25.2) (Drenowatz et al., 2017)

21 10.9 73.1 2826 0.532:0.247:0.221 17M 29.94 Resist-trained athlete (Moro et al., 2016)

22 11.3 73.9 3007 0.547:0.239:0.214 17M 28.47 Resist-trained athlete (Moro et al., 2016)

23 31.8 50.4 2708 canonical 13M58F 37.4 Overweight(BMI=29.9) (Myers et al., 2017)

24 30.9 55.4 2668 canonical 41M44F 28.8 Overweight(BMI=29.6) (Shook et al., 2015)

25 24.6 55.0 2679 canonical 41M43F 28.3 Overweight(BMI=26.8) (Shook et al., 2015)

26 20.3 52.9 2652 canonical 41M43F 27.4 Overweight(BMI=25.2) (Shook et al., 2015)

27 16.4 52.9 2721 canonical 41M43F 27.5 Normal (BMI=23.5) (Shook et al., 2015)

28 14.2 53.3 2989 canonical 41M43F 26.2 Normal (BMI=23.0) (Shook et al., 2015)

29 23.6 48.2 2443 0.494:0.338:0.168 66M:151F 37.9 Overweight(BMI=25.2) (Redman et al., 2013)

30 21.0 60.0 2850 0.490:0.338:0.172 66M 39.7 Overweight(BMI=25.8) (Redman et al., 2013)

31 24.7 43.1 2266 0.496:0.339:0.165 151F 37.2 Normal (BMI=24.9) (Redman et al., 2013)

32 9.84 59.5 3468 0.545:0.314:0.141 32M 25.5 Minnesota starvation (Keys et al., 1950)

Converted from the experiment



Continuation of Table S3

Subject FM LM TEE or EI η′GLU : η′FFA : η′AA Number Age Remark Reference

(kg) (kg) (kcal/day) of people

reported ηGLU : ηFFA : ηAA

33 12.8 60.4 3603 canonical 54M26F 20.3 Athlete(BMI=22.1) (Silva et al., 2017b)

34 16.1 49.0 3002 canonical 26F 19.7 Athlete(BMI=21.9) (Silva et al., 2017b)

35 11.2 65.9 3897 canonical 54M 20.6 Athlete(BMI=22.3) (Silva et al., 2017b)

36 11.7 59.7 3673 canonical 39M18F 18.7 Athlete(BMI=21.7) (Silva et al., 2017a)

37 14.3 47.7 3126 canonical 18F 16.8 Athlete(BMI=21.1) (Silva et al., 2017a)

38 10.6 65.2 3892 canonical 39M 19.6 Athlete(BMI=21.9) (Silva et al., 2017a)

39 17.5 66.1 3154.8 canonical 13M 30.2 Overweight(BMI=25.6) (Grund et al., 2001)

40 14.5 77.4 3154.8 canonical 15M 28.2 Resistance trained (Grund et al., 2001)

athlete(BMI=27.4)

41 11.4 62.6 4493.2 canonical 14M 29.6 Endurance trained (Grund et al., 2001)

athlete(BMI=23.2)

42 11.2 62.1 2145 canonical 43M 27.8 Normal (BMI=24.0) (Schulz et al., 1991)

43 6.6 63.8 2100 canonical 20M 24.5 Endurance trained (Schulz et al., 1991)

athlete(BMI=22.1)

44 13.1 61.2 2458 0.55:0.29:0.16 10M 20 Boxers/Judokas athlete (Sagayama et al., 2013)



Table S4: Weight perturbation data of subjects 1, 2, 3, 4, 17, 19. Related to Figures

2 and 3.

Subject FM LM TEE or EI η′GLU : η′FFA : η′AA Number Age Remark Reference

(kg) (kg) (kcal/day) of people

1 12.0 54.5 2481 0.450:0.400:0.150 13 27 Normal weight (Leibel et al., 1995)

1∗ 17.1 56.0 3110 10% weight gain

2 17.5 53.0 2380 0.450:0.400:0.150 11 25 Overweight (Leibel et al., 1995)

2∗ 13.1 50.6 1952 10% weight loss

3 68.0 64.1 3100 0.450:0.400:0.150 9 32 Obese (Leibel et al., 1995)

3∗ 54.6 59.7 2549 10% weight loss

4 64.4 60.8 3129 0.450:0.400:0.150 10 31 Obese (Leibel et al., 1995)

4∗ 39.0 57.5 2243 20% weight loss

17 21.3 60.3 2556 canonical 44M 40.5 Overweight(BMI=26.0) (Das et al., 2017)

17∗ 15.0 57.3 2113 Calorie Restriction (1 year)

17∗∗ 15.5 57.3 2122 Calorie Restriction (2 year)

19 24.4 43.3 1935 canonical 99F 36.8 Normal weight(BMI=24.8) (Das et al., 2017)

19∗ 18.4 41.6 1666 Calorie Restriction (1 year)

19∗∗ 19.2 41.6 1741 Calorie Restriction (2 year)



Transparent Methods

The lipostatic set-point theory and its empirical conundrums

The lipostatic theory is incompatible with a number of empirical findings.

• Set-point ratchet-up (middle-age spread). Although our weight is quite stable, the set-point

value is subject to a bias toward ratcheting up, which leads to a general gain of weight during

aging. To resolve the “set-point ratchet-up” conundrum, the concept of leptin resistance, a

putative pathologic condition under which the brain becomes insensitive to leptin as fat mass

increases, was introduced (Frederich et al., 1995; Könner and Brüning, 2012; Myers et al.,

2012). Unfortunately, the existence of leptin resistance has not been verified. In contrast,

weight perturbation experiments showed no sign of leptin resistance. They demonstrated

that weight stability is robust under all the tested conditions, whether the subject is thin and

thus leptin sensitive or has higher fat mass and is thus leptin resistant (Sims and Horton,

1968; Leibel et al., 1995). They also demonstrated that both upward and downward deflec-

tions of body weight were suppressed equally well (Figure 1F). It is possible that the upward

rebound is slightly stronger than the downward rebound, causing the ratchet-up. However,

this asymmetric leptin response is only an assumption and quite an ad hoc one (Leibel,

2008). Finally, even if leptin resistance exists, its relevance to the set-point ratchet-up phe-

nomenon is questionable. The phenomenon clearly occurred even in historical times when

modern obesogenic factors promoting leptin resistance (overnutrition, sedentary lifestyle,

etc.) were generally absent. Indeed, the phrase “middle-age spread” has long been used in

both the West and East, in both wealthy and poor populations, to describe the widespread oc-

currence of fat accumulation after entering adulthood. Therefore, set-point ratchet-up should

be independent of leptin resistance.

• Leptin as a fat messenger. Intervention studies often found that leptin is not as effective as

supposed by the lipostatic theory. For example, leptin administration to mice should lead to

lethality due to chronic starvation of the mice, but this effect was not observed in response



to the recombinant leptin at any dose or by any mode of delivery (Halaas et al., 1997). This

led to the hypothesis that the recombinant leptin lacks a post-translational modification that

is present in the native leptin, which was found to be false (Cohen et al., 1996). Researchers

then set out to identify leptin-potentiating cofactors and found the protein clusterin, but un-

fortunately, a leptin/clusterin complex is no more potent than leptin alone (Zeng et al., 2015).

On the other hand, leptin knockout mice and normal mice should show different patterns of

fat regrowth after partial lipectomy, but the actual regrowth is quite similar, indicating that

leptin is not required for the regulation of total body fat (Harris et al., 2002). These negative

data even led some researchers to abandon the idea that leptin is a fat messenger. They

tried to establish other entities, such as sensory nerves emanating from white fat, as the fat

messenger (Rooks et al., 2004; Pénicaud, 2010).



The other lipocentric models

The two intervention point model

An alternative to the lipostatic set-point is the “two intervention point” model, which concludes

from an evolutionary perspective that there exists an optimal fat mass with respect to the trade-

off between the risk of starvation and the risk of predation (Herman and Polivy, 1983; Levitsky,

2002; Speakman, 2007). In the model, the optimal weight is no longer a single set-point but a

range of weights, e.g., [50 kg, 100 kg], where 50 (100) kg is called the lower (upper) intervention

point. When the weight drops below the lower intervention point, the central regulation (with leptin

signaling still assumed) activates to reduce the risk of starvation; when the weight exceeds the

upper intervention point, the central regulation activates again to reduce the risk of predation

(Speakman, 2018a). When the weight falls within the range, it is already optimal and should be

indifferent to central regulation, and insensitivity to leptin (i.e., leptin resistance) is thus expected

(Speakman, 2018b). Although the model may reduce the urgency to explain leptin resistance, it

does not explain the set-point ratchet-up. Indeed, if such a nonregulation zone existed, then the

body weight would change randomly within the zone without any bias upward or downward (which

cannot explain the ratchet-up). Moreover, the nonregulation zone, if it exists, should have already

been discovered by weight perturbation experiments. For example, if the weight is perturbed

from 70 to 80, then the final weight would be close to 80, without returning to 70, being within

the nonregulation zone. Such a discovery has not been reported, to the best of our knowledge.

Furthermore, it is necessary to explain the brain’s strange response to leptin: sensitive when the

weight is smaller than 50 kg, leptin resistant when the weight is between 50 kg and 100 kg, and

leptin sensitive again when the weight exceeds 100kg. In conclusion, the two intervention point

model has not been proven.

The settling point model

The “settling point model” takes the lean mass into consideration (Wirtshafter and Davis, 1977;

Payne and Dugdale, 1977; Speakman et al., 2002; Levitsky, 2005; Horgan, 2011). The underlying



proposition of the model is that when adipose tissue expands, there is also an increase in lean

tissue (Svenson et al., 2007). When food intake exceeds energy expenditure, the adipose tissues

expand, which leads to an increase in the metabolically active lean tissue and consequently an

increase in energy expenditure. At some point, a new steady state will be reached where the

increased intake is matched by the elevated expenditure, and at that point, no further increase in

adiposity will occur (Speakman et al., 2002; Christiansen et al., 2005; Christiansen et al., 2008).

Although the settling point model performs better than the lipostatic set-point model under some

conditions, such as perturbation by high-fat diet feeding (Tam et al., 2009), there remain obser-

vations that are more easily explained by the lipostatic theory. In particular, the hyperphagia that

follows a period of restriction would not be predicted to exist using the settling point model — in-

stead, individuals would be expected to slowly drift back to their original weight when they resumed

their original intake and expenditure conditions (Speakman, 2018a).



The ODE computational model

We first present the model equations (the first subsection) and then explain them in detail (the

remaining subsections). The readers are suggested to skim over the first subsection and then

read more carefully throughout the remaining subsections.

The model equations (divided into four parts)

Part 1. Dynamics of plasma glucose, FFAs, amino acids, and insulin

dGLU
dt

= ηGLUSmeal + s0 − (VGLU0 + Umyo + Uadipo) GLU (S1)

dFFA
dt

= ηFFASmeal + κFMφ(INS)/Ω− (VFFA0 + Umyo + Uadipo) FFA (S2)

dAA
dt

= ηAASmeal − (VAA0 + Umyo + Uadipo) AA (S3)

dINS
dt

= ψ (FM) [r + f (GLU)]− kINS (S4)

Umyo =

Nmyo∑
j=1

uj (S5)

Uadipo =

Nadipo∑
i=1

ui (S6)

FM =

Nadipo∑
i=1

mi (S7)

where

GLU is the plasma glucose concentration.

FFA is the plasma free fatty acid concentration.

AA is the plasma amino acid concentration.

INS is the plasma insulin concentration.

Smeal is the source rate of nutrients supplied by the meal; it is further described by Eq. S13.

s0 is the source rate of glucose supplied by the liver.

ηGLU , ηFFA, and ηAA are the mass percentages of glucose, fat, and protein, respectively, in



the meal.

VGLU0 is the basal (non-insulin dependent) rate of glucose intake by the whole body. It is

contributed primarily by the brain, which can utilize glucose actively in the absence of insulin.

VFFA0 is the basal (non-insulin-dependent) rate of FFA intake.

VAA0 is the basal (non-insulin-dependent) rate of intake of amino acids.

Umyo is the rate of nutrient intake by the muscles in response to insulin stimulation. It is the

sum of the intake by individual myocytes (Eq. S5).

uj is the rate of insulin-mediated nutrient intake by the j-th myocyte. The function uj (INS) is

constrained by Eq. S8.

Nmyo is the number of in silico myocytes.

Uadipo is the rate of nutrient intake by the adipose tissue in response to insulin stimulation. It is

the sum of the intake by individual adipocytes (Eq. S6).

ui is the rate of insulin mediated nutrient intake by the i-th adipocyte. The function ui (INS) is

constrained by Eq. S8.

Nadipo is the number of in silico adipocytes.

FM represents the fat mass. It is the sum of the mass from individual adipocytes (Eq. S7).

mi is the mass of the i-th adipocyte.

κ is the rate of lipolysis.

φ (INS) is a function of insulin inhibiting lipolysis (the red bar-headed arrow in Figure S4); it is

further described by Eq. S16.

Ω is the volume of blood in the body.

r is the basal rate of pancreatic insulin secretion.

f (GLU) is the rate of pancreatic insulin secretion in response to glucose stimulation (the purple

lightning-headed arrow in Figure S4); it is further described by Eq. S14.

ψ (FM) is a function of fat mass promoting insulin secretion (the black lightning-headed arrow

in Figure S4). It takes into account the fact that both basal and glucose-stimulated insulin secretion

increase as body fat increases. It is further described by Eq. S15.

k is the rate of insulin degradation.



Part 2. Insulin response curve u(INS) of an adipocyte or myocyte

Insulin response curve u(INS) is the relationship between the cell rate of insulin-mediated

nutrient intake u (the response) and the plasma insulin concentration INS (the stimulus). It is

constrained by the following equation

0 =
α

INSon

(
u

umax

)3

+

[
(K − 1)

α

INSon
+

INS
INSon

− 1

](
u

umax

)2

+

[
K + 1 + (K − 1)

INS
INSon

−K α

INSon

]
u

umax
−K INS

INSon
, (S8)

umax = (Vmax − VGLU0) /(Nadipo +Nmyo),

where u and INS are highlighted in red. This equation, obtained by mathematical modeling of

the insulin signaling pathway (Wang, 2010; Wang, 2012; Li and Wang, 2014), gives rise to the

sigmoidal curves in Figure 2B. Here,

α, INSon, and K are the three parameters determining the shape of u(INS); in particular, INSon

is the insulin response threshold (see Figure 2B) and is related to the cell’s insulin resistance.

umax is the cell’s maximal rate of insulin mediated nutrient intake (see Figure 2B).

Vmax is the maximal rate of glucose intake by the whole body. It can be estimated from the

whole-body data (Bonadonna et al., 1990).

VGLU0 is the basal (non-insulin-dependent) rate of glucose intake by the whole body.

The above symbols are often followed by a subscript: i to indicate adipocytes and j to indicate

myocytes. For example, ui is the nutrient intake rate of the i-th adipocyte; (INSon)j is the INSon of

the j-th myocyte.

Part 3. Dynamics of adipocyte growth



dmi

dt
=
[
ui (GLU + FFA + AA) + uFFA0FFA + uAA0AA

]
Ω− κmiφ (INS) (S9)

mi = ξ (INSon)i (S10)

where

uFFA0 = VFFA0/ (Nmyo +Nadipo) is a cell’s basal intake rate of FFAs.

uAA0 = VAA0/ (Nmyo +Nadipo) is a cell’s basal intake rate of amino acids.

mi is the mass of the i-th adipocyte.

(INSon)i is the INSon of the i-th adipocyte.

ξ is the scale factor between INSon and m.

Part 4. Leanocentric energy balance

EintoLean
3

=
TEE

3
, (S11)

where

EintoLean
3

=

∫ T

0

(
ρGLU · VGLU0 ·GLU · Ω + ρGLU · Umyo ·GLU · Ω + ρFFA · uFFA0 ·Nmyo · FFA · Ω

+ ρFFA · Umyo · FFA · Ω + ρAA · uAA0 ·Nmyo · AA · Ω + ρAA · Umyo · AA · Ω
)
dt. (S12)

Equation S11 is apparently equivalent to Eq. 1. Here, the division by 3 is because our com-

putation is on a per meal-cycle basis (see Eq. S.12). The meal cycle, denoted by T , is the period

starting with a meal and ending immediately before the next meal. Assuming a day is equally

divided by the three meals, we have T = 8 hour = 480 min. ρGLU , ρFFA, and ρAA are the energy

densities of glucose, fat, and protein, respectively.



Dynamics of plasma nutrients and insulin

The meal supply function

The plasma nutrients are primarily from the meal supply, with a rate Smeal (t) in the unit of

kg×L−1×min−1. The function has a shape with both rising and declining phases (Figure S4B)

(Sturis et al., 1991). We used sigmoidal curves to model both the rising phase (t < τ2) and the

declining phase (t ≥ τ2) (Wang, 2012; Wang, 2014)

Smeal (t) =

 A (t/τ1)
b /
[
1 + (t/τ1)

b
]

for 0 ≤ t < τ2

A exp [c (τ3 − t)] / {1 + exp [c (τ3 − t)]} for τ2 ≤ t <∞
, (S13)

where the values of b, c, τ1, τ2, and τ3 are given in Table S1. Therefore, the only unknown

parameter in Smeal (t) is the meal magnitude A. Under the condition of necessary feeding, the

food intake EI is determined by the given TEE. In other words, the value of A is usually not given

but needs to be calculated according to the given TEE. In food, the mass percentage of glucose,

fat, and protein is denoted by ηGLU , ηFFA, and ηAA, which can be converted into the calorie

percentages η′GLU , η′FFA, and η′AA by a formula given in Table S1. The calorie percentage is more

frequently reported in the literature.

Plasma glucose-insulin dynamics

The plasma glucose-insulin dynamics are described by Figure S5, where the FFA and AA

dynamics are blurred so that the glucose-insulin dynamics are highlighted.

Equation S1, namely,

dGLU
dt

= ηGLUSmeal + s0 − (VGLU0 + Umyo + Uadipo) GLU

describes the dynamics of GLU(t), where ηGLUSmeal (t) is the source rate of glucose from the

meal; s0 corresponds to the hepatic output of glucose. VGLU0 is the basal (non-insulin dependent)

rate of glucose utilization by the whole body, primarily the brain. Umyo =
∑

juj (INS) is the total

rate of myocyte glucose utilization; it is stimulated by insulin, indicated by the left green lightning-



headed arrow in Figure S5. Uadipo =
∑

iui (INS) is the total rate of adipocytes glucose utilization;

it is also stimulated by insulin, indicated by the right green lightning-headed arrow.

Equation S4, namely,
dINS
dt

= ψ (FM) [r + f (GLU)]− kINS

describes the dynamics of INS(t). According to (Bilous and Donnelly, 2010), the pancreatic insulin

secretion rate has a basal component r and a glucose-stimulation component f (GLU). The latter

is indicated by the purple lightning-headed arrow. f (GLU) is modeled by a Hill function (Wang,

2012; Wang, 2014)

f (GLU) =
fmax

1 + (GLUh/GLU)n
, (S14)

where fmax is the maximum rate of glucose stimulated insulin secretion, GLUh is the half maximal

effective glucose concentration (EC50), and n is the Hill coefficient. Because insulin secretion

increases as the fat mass increases (indicated by the black lightning-headed arrow) (Polonsky

et al., 1988a), r + f (GLU) is multiplied by ψ(FM), an increasing function of fat mass:

ψ(FM) = ψ0 + ψ1FM. (S15)

The parameters ψ0 and ψ1 were determined as follows. First, because the model uses the normal

subjects in (Polonsky et al., 1988b; Polonsky et al., 1988a) as the reference, we have ψ(FM1) = 1,

where FM1 is the fat mass of the normal subjects. Second, because the insulin secretion of the

obese subjects in (Polonsky et al., 1988b; Polonsky et al., 1988a) was approximately doubled, we

have ψ(FM2) = 2, where FM2 is the fat mass of the obese subjects. We thus obtain

ψ0 =
FM2 − 2FM1

FM2 − FM1
and ψ1 =

1

FM2 − FM1
.

The values of FM1 and FM2 are not given in (Polonsky et al., 1988b; Polonsky et al., 1988a). We

thus estimated the values according to the formula (Deurenberg et al., 1998)

FM% = 1.294× BMI + 0.2× Age− 11.4× Sex− 8.0.



For the normal subjects, BMI = 23.0, Age = 38.5, and Sex = 0.5 (7 male and 7 female); thus,

we have FM% = 23.762 and then FM1 = 70.1 × 23.762% = 16.657 kg. For the obese subjects,

BMI = 37.0, Age = 35.8, and Sex = 1/3 (5 male and 10 female); we thus have, FM% = 43.238 and

then FM2 = 105.7× 43.238% = 45.703 kg. We then obtain ψ0 = 0.42653 and ψ1 = 0.0344281.

The glucose-insulin dynamics were already simulated by an earlier mathematical model (Eqs.

2.1 and 2.2 in (Wang, 2014)). The simulation runs fit well with the clinical data in (Polonsky et al.,

1988b; Polonsky et al., 1988a; Bonadonna et al., 1990). In this model, Eq. S1 is based on Eq.

2.1 of (Wang, 2014). The only difference is that ηGLU = 1 in (Wang, 2014) because in that paper

FFA and amino acids were not studied. Equation S4 is based on Eq. 2.2 of (Wang, 2014), namely,

dINS/dt = f(GLU) − kINS. The new parameter r is to take into account the basal (non-glucose-

stimulated) insulin secretion (Bilous and Donnelly, 2010). This change necessitated adjustment of

the original parameter values so that the new simulation run (the black curves in Figure S6) can

still fit well with the clinical data in (Polonsky et al., 1988b; Polonsky et al., 1988a; Bonadonna

et al., 1990) (represented by the gray dots in Figure S6).

Plasma FFA dynamics

The plasma FFA dynamics are described by Figure S7, where the GLU and AA dynamics are

blurred so that the FFA dynamics are highlighted.

Equation S2, namely,

dFFA
dt

= ηFFASmeal + κFMφ(INS)/Ω− (VFFA0 + Umyo + Uadipo) FFA

describes the dynamics of FFA(t), where ηFFASmeal (t) is the source rate of FFA from the meal;

κFMφ (INS) /Ω is the source rate of FFA arising from lipolysis of the FM. Here, Ω is the blood

volume, and the division by Ω is for the conversion from the rate of mass change (kg×min−1) to

the rate of concentration change (kg×L−1×min−1). A typical adult’s blood volume is approxmiately

Ω = 5.0 L (Lee, 1998). The function

φ (INS) =
1

1 + (INS/INSh)n0
(S16)



takes into account the effect of insulin in inhibiting lipolysis (the red bar-headed arrow in Figure

S7), where n0 is the Hill coefficient and INSh is the half maximal inhibitory insulin concentration

(IC50). The value of INSh was estimated to be approxmiately 51 pM (Stumvoll et al., 2000), that is,

7.3 µU/mL. The rate of FFA utilization is divided into the basal component VFFA0 and the insulin-

dependent component Umyo +Uadipo. The experimental value of VFFA0 is in the range 0.18 – 0.21

min−1 (Havel et al., 1963), and the value 0.20 min−1 was used in this study.

The value of κ was determined by considering the fasting steady-state (when INS = INS0, FFA

= FFA0, and Umyo = Uadipo = 0):

dFFA
dt

∣∣∣∣
FFA=FFA0

= κFMφ (INS0) /Ω− VFFA0FFA0 = 0,

namely,

κ =
VFFA0FFA0Ω

FMφ (INS0)
.

The value of FFA0 is about 0.0005 mol/L (Havel et al., 1963). It is known that palmitic acid is the

main fatty acid in the blood (Abdelmagid et al., 2015). We thus let the molecular weight of an

average FFA be that of palmitic acid, namely, 0.25 kg/mol, resulting in FFA0 = 1.25 × 10−4 kg/L.

By taking FM = 16.657 kg (see above), we obtained κ ≈ 10−5 min−1.

Plasma amino acid dynamics

The plasma AA dynamics are described by Figure S8, where the GLU and FFA dynamics are

blurred so that the AA dynamics are highlighted.

Equation S3, namely,

dAA
dt

= ηAASmeal − (VAA0 + Umyo + Uadipo) AA

describes the dynamics of AA(t), where ηAASmeal (t) is the source rate of amino acids from the

meal; VAA0 is the basal (non-insulin dependent) rate of amino acid utilization by the whole body.



Insulin response curve u(INS) of an adipocyte or myocyte

The fat tissue consists of heterogeneous adipocytes, each responding differentially to in-

sulin. To take heterogeneity into account, Nadipo adipocytes are created in silico. Each in silico

adipocyte’s insulin dose response is denoted by ui (INS), where u represents the rate of nutrient

intake, and the subscript i numbers the adipocytes. We thus have Uadipo =
∑Nadipo

i=1 ui (Eq. S6).

Note that Nadipo cannot be too large; otherwise, computational costs would be prohibitive. In this

paper, Nadipo = 2000 is used as the canonical value. If FM = 12 kg, then the mass of an in silico

adipocyte is on average 0.006 kg, too large for a real adipocyte. Therefore, an in silico adipocyte

actually corresponds to a collection of many real adipocytes. Similarly, Nmyo myocytes are cre-

ated in silico, and their insulin dose responses are denoted by uj (INS). Note that adipocytes and

myocytes are distinguished by the subscripts i and j, respectively.

The insulin response curve u(INS) is constrained by an algebraic equation (Eq. S8), namely,

0 =
α

INSon

(
u

umax

)3

+

[
(K − 1)

α

INSon
+

INS
INSon

− 1

](
u

umax

)2

+

[
K + 1 + (K − 1)

INS
INSon

−K α

INSon

]
u

umax
−K INS

INSon
,

umax = (Vmax − VGLU0) /(Nadipo +Nmyo),

which was obtained by mathematical modeling of the insulin signaling pathway (Figure S4C)

(Wang, 2010; Wang, 2012; Li and Wang, 2014). The equation comprises, in addition to u and

INS, four quantities α, K, INSon, and umax. When the values of these four quantities are given,

the response curve u(INS) is completely determined. The shape of u(INS) is generally sigmoidal

(see, e.g., the curves in Figure 2B).

The symbol INSon shows the intended biological meaning: the turning-on threshold of insulin

response. To see this correspondence with ease, one can use the limit condition K = 0, whereby

Eq. S8 is factored into three linear equations, which correspond to the three straight lines in Fig-

ure 2B (drawn in gray). From the geometrical perspective, the intersection of the bottom straight

line and the tilted straight line is clearly the insulin response threshold. From the algebraic per-

spective, some calculation shows that the x-coordinate of the intersection point is precisely INSon.



Therefore, the symbol INSon does have the intended meaning.

The threshold INSon can be used to quantify a cell’s insulin resistance. Indeed, the larger the

threshold, the more difficult it is for the cell to respond, and the more resistant the cell is to insulin.

The increase in INSon leads to an almost parallel shift of the response curve to the right (Wang,

2010; Wang, 2012; Li and Wang, 2014). When K = 0, the right-shift is exactly parallel (Figure

2B). This right-shift phenomenon corresponds well to the clinical discovery that exacerbation of

insulin resistance can be well characterized by a right-shift in insulin dose response (Olefsky and

Kolterman, 1981; Bonadonna et al., 1990; Basu et al., 2004). These features all suggest the

suitability of using INSon to quantify a cell’s degree of insulin resistance.

In this paper, the lg(INSon) value, instead of INSon, is used to quantify insulin resistance. This

choice is primarily because for a biochemical dose response, it is usually the logarithm of concen-

tration, not the concentration itself, that is plotted on the horizontal axis. This is particularly true for

the insulin dose response (Bonadonna et al., 1990; Bedinger et al., 2015; Cieniewicz et al., 2017).

Due to cellular heterogeneity, the cells have different degrees of insulin resistance; they spread out

over the lg(INSon)-axis and form stable distributions (Figure 2C). Fitting whole-body insulin dose

response data reported in (Bonadonna et al., 1990) showed that the body’s insulin-responsive

cells roughly form a normal distribution over the lg(INSon)-axis (Wang, 2014). The mean of the

normal distribution has been denoted by IR in the main text and used to quantify peripheral insulin

resistance.

Dynamics of adipocyte growth

The dynamics of adipocyte growth are described by Figure S9.

Equation S9, namely,

dmi

dt
=
[
ui (GLU + FFA + AA) + uFFA0FFA + uAA0AA

]
Ω− κmiφ (INS) ,

models the dynamical change in mi, the mass of the i-th adipocyte. The adipocyte shrinks by

default due to the cell’s lipolysis −κmi, but the plasma nutrients (GLU, FFA, AA) allow the cell to

grow. The rate of nutrient uptake has both basal components uFFA0FFA+uAA0AA and insulin-



dependent components ui (INS) (GLU + FFA + AA) (the green lightning-headed arrows in Figure

S9). The multiplication of the blood volume Ω is for the conversion from the rate of concentra-

tion change (kg×L−1×min−1) to the rate of mass change (kg×min−1). Insulin not only promotes

adipocyte growth but also inhibits lipolysis through the function φ (INS) (the red bar-headed arrow

in Figure S9). Note that the dynamics of adipocyte growth are largely complementary with Eq. S2,

the dynamics of FFAs.

Equation S10 models the positive correlation between an adipocyte’s INSon value and its mass.

It is well known that an adipocyte’s insulin sensitivity negatively correlates with its mass (Salans

et al., 1968; Engfeldt and Arner, 1987; Guilherme et al., 2008; Yang et al., 2012). Therefore,

(INSon)i, corresponding to the degree of insulin resistance, ought to positively correlate with mi.

Leanocentric energy balance

The leanocentric energy balance is represented by EintoLean = TEE, where TEE is the body’s

total energy expenditure per day, and EintoLean is equal to the energy that enters the lean tissues

during the day. EintoLean is computed by Eq. S12, namely,

EintoLean
3

=

∫ T

0

(
ρGLU · VGLU0 ·GLU · Ω + ρGLU · Umyo ·GLU · Ω + ρFFA · uFFA0 ·Nmyo · FFA · Ω

+ ρFFA · Umyo · FFA · Ω + ρAA · uAA0 ·Nmyo · AA · Ω + ρAA · Umyo · AA · Ω
)
dt.

The term ρGLUUmyoGLUΩ computes the kilo-calories burned from glucose that enter the mus-

cles during a minute (kcal/min). Indeed, GLU is the plasma glucose concentration, and Ω is the

blood volume; thus, ΩGLU is the mass of glucose in the blood. Umyo is the rate of muscle glu-

cose uptake (min−1); thus, UmyoGLUΩ is the mass of glucose that enters the muscles during

a minute (kg/min). The multiplication by ρGLU converts kilograms of glucose into kilocalories

of energy. Similarly, ρGLUVGLU0GLUΩ is the kilocalories generated by basal glucose utilization

during a minute; ρFFA (uFFA0Nmyo + Umyo)FFAΩ and ρAA (uAA0Nmyo + Umyo)AAΩ are the kilo-

calories burned from fat and amino acids, respectively, that enter the muscles during a minute. By

summing these values up and then integrating the sum over the entire meal cycle, one obtains



EintoLean/3, namely, the total kilocalories that enter the lean tissues during a meal cycle.

Direct application of the ODE model: from Smeal (t) to determine TEE

A straightforward application of the ODE model is to start from a given meal supply function

Smeal (t) to determine EintoLean, namely, TEE. The parameters of Smeal (t) are all fixed in this paper

(see Table S1) except the magnitude A. With a value of A given, the computer simulation is

performed for the whole meal cycle (from time 0 to time T ) to obtain the time course of all the

variables, which are then used by Eq. S12 to calculate EintoLean. TEE is also obtained because it

is equal to EintoLean.

Indirect application of the ODE model: from TEE to determine Smeal (t)

This paper primarily considers the condition of necessary feeding, under which TEE is a pre-

scribed value, and Smeal (t) has to be computed to match the given TEE. In other words, the

purpose of numerical simulation is to determine the meal magnitude A according to the given

TEE. The determination has to be performed by trial and error because the simulation always

starts from food intake. Given a trial value of A, the meal function Smeal (t) is obtained, and the

direct computation (see the last section) is performed to obtain EintoLean. If the obtained EintoLean is

not sufficiently close to the given TEE, then the simulation is repeated with an updated value of A.

After several such trials, the value of EintoLean is sufficiently close to TEE, implying that the correct

A, representing the suitable food amount, has been determined.



The clinical data collected from the literature

Table S3 includes the body composition and metabolic data of 44 “subjects” collected from the

literature. Each subject actually represents a group of people whose data were averaged in the

original literature. The data were used to estimate the three coefficients γ0, γ1, and γ2 in LIFE.

Among the 44 total subjects, subjects 1, 2, 3, 4, 17, and 19 had undergone weight perturbation

experiments. The post-perturbation data of subjects 1, 2, 3, 4, 17, and 19 are not included in this

table but in Table S4.

Table S4 includes the data on subjects 1, 2, 3, 4, 17, and 19 who had undergone weight

perturbation experiments. The baseline data were copied from Table S3. The post-perturbation

data (marked with asterisks) were taken from the corresponding literature. The data in Table S4

were used to validate the ODE model (see below).



Estimation of the coefficients of the LM-IR-FM Equation (LIFE)

The three coefficients (γ0, γ1, γ2) in LIFE were estimated from the data in Table S3. The

scheme of coefficient estimation is as follows. For every subject, an algebraic equation of γ0, γ1,

and γ2 only is obtained by substituting the subject’s (LM, FM, IR) value into Eq. 6, i.e.,

IR = γ0 + γ1
lg(FM)

LM− γ2
.

In this way, a set of 44 algebraic equations of γ0, γ1, and γ2 is obtained, from which the values of

γ0, γ1, and γ2 can be estimated by a nonlinear fitting program. Unfortunately, what is reported in

Table S3 is not (LM, FM, IR) but (LM, FM, TEE). Therefore, for each subject, the IR value must

first be obtained by the ODE model. Because the simulation actually starts by using (IR, TEE)

to obtain FM, IR must be determined by trial and error. The ODE model is first run with a trial

IR and the reported TEE. When the steady state is reached, the simulated FM is obtained. If

the simulated FM is sufficiently close to the reported FM, then the trial IR is the desired result.

Otherwise, more trials have to be performed until the desired IR is found. After all the subjects’

IR values are obtained, the values of γ0, γ1, and γ2 can be estimated. It turns out that only 38

subjects’ data are feasible; thus, the three coefficients were actually estimated from 38 algebraic

equations.

Following the above scheme, the subjects’ IR values were first obtained and are tabulated in

Figure 4B. By using the program NonlinearModelFit of the software Mathematica (Wolfram Re-

search Inc.), the estimated values γ0 = 0.664, γ1 = 45.4, and γ2 = 0 were obtained. A scatter plot

(Figure 4A) was then generated where the 44 dots represent the 44 subjects, whose lg(FM)/LM

values are presented along the x-axis and IR values along the y-axis. Among the 44 subjects,

there are 38 subjects who demonstrate a linear relationship between IR and lg(FM)/LM; the re-

maining six subjects (shown within an oval circle) are outliers. The outliers were excluded from

the coefficient estimation.

The common feature of the six outliers was their high energy turnover. Their TEE values were

the highest among the 44 total, ranging from 3468 (subject 32) to 4493 (subject 41) kcal/day. The



six outliers were all athletes except subject 32, representing the men in the Minnesota Starvation

Experiment during the control period (Keys et al., 1950). Although the Minnesota men were not

professional athletes, they had an athlete body type because they were specifically selected to

survive the upcoming starvation. Furthermore, during the control period they were required to

engage in vigorous physical activity, leading to a high rate of energy turnover (TEE = 3468) and

high physical activity level (PAL = 2.2) comparable to those of athletes. Therefore, the emergence

of outliers was probably because our model parameter values were not applicable to the athletes’

special metabolism and physiology. Indeed, for all the simulations the model parameters were

fixed to the canonical values (Table S1), which had been estimated from data on sedentary people

whose energy turnover ought to be much lower. This explains why the model worked well on the

38 regular subjects, whose TEE values ranged from 1905 to 3155, which were far less than those

of the six outliers.



Validation of the ODE model

Table S3 presents the 44 subjects in their baseline (natural, unperturbed) state. Subjects 1, 2,

3, 4, 17, and 19 were perturbed by overfeeding or underfeeding. These subjects are duplicated

in Table S4, in both the baseline state (without asterisk) and the post-perturbation, unnatural state

(with asterisk). The post-perturbation data were not used to estimate the IR values (Figure 4B).

Therefore, they can be used to test the prediction power of the ODE computational model.

As an example, Figure S10A illustrates subject 1, who had IR = 1.5486 and maintained a

natural state with FM = 12.0 and TEE = 2481. After several weeks of overfeeding, the subject

(now denoted as subject 1*) maintained an unnatural state with FM = 17.1 and TEE = 3110.

The question is as follows: can the ODE model accurately predict the unnatural fat mass? We

answered the question in the affirmative. By running the model with IR = 1.5486 and TEE = 3110,

a steady state was reached at FM = 16.3 kg, which was only 4.6% smaller than the reported

FM = 17.1 kg (Figure S10B, the first bar), indicating the accuracy of the prediction. The other

subjects were similarly analyzed. The predictions on subjects 1*, 2*, 17*, 17**, 19*, and 19**

were all accurate; the predictions on subjects 3* and 4* were reasonably good (Figure S10B).

The predicted FM and the reported FM are presented in Figure S10C as the y-coordinate and

x-coordinate of the subjects, respectively. Except for subjects 3* and 4*, the dots all accumulate

along the diagonal, demonstrating the accuracy of the predictions. It might be more reasonable

to compare the predicted lg(FM) with the reported lg(FM) (Figure S10D), which shows that the

predictions on subjects 3* and 4* were actually very good, although not as accurate as those on

the other subjects. These data suggest the accuracy of the predictions and thus validate the ODE

model.



Derivation of Equation 12

Equation 12 is derived from Ohm’s law, namely,

V = I ×R,

Q = eV .

The derivation is as follows. First, we have

dQ

dEI
=

deV

dTEE
= eV

dV

dTEE
= Q

d (I ×R)

dTEE
= QR

dI

dTEE
.

Using Eq. g in Figure 6C, namely,

I =
ln 10

γ1σ1PAL
TEE− ln 10σ2

γ1σ1
,

we have

dQ

dEI
= QR

ln 10

γ1σ1PAL
. (S17)

Using Eq. 6, namely,

IR = γ0 + γ1
lg(FM)

LM
,

we have

R = IR− γ0 = γ1
lgQ

LM
. (S18)

Combining Eqs. S17 and S18, we have

dQ

dEI
= Q

γ1 lgQ

LM
ln 10

γ1σ1PAL

=
Q lnQ

σ1PAL× LM
.



Because Q actually represents FM, we have

dFM =
FM× ln FM× dEI
σ1 × PAL× LM

,

which is exactly Eq. 12.
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